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Abstract

Current automatic speech recognition (ASR) systems are able to transcribe large volumes of
speech data with reasonable accuracy. However, automatic transcripts produced by these sys-
tems often do not have a form convenient for subsequent processing. The problem is that
standard speech recognizers output only a raw stream of words, leaving out important struc-
tural information such as locations of sentence or dialog act boundaries. Natural language
processing techniques used in downstream processing (e.g., text summarization, information
extraction, machine translation) are typically trained on well-formatted text, and fail on un-
structured streams of words. This thesis deals with the problem of automatic segmentation
of speech recognition output into sentence-like units. The work is focused on two languages –
English and Czech.

Since no Czech speech corpora with appropriate annotation of sentence-like units had been
available, they had to be prepared as part of this thesis. I describe creation of two Czech
speech corpora with structural metadata annotation in two different domains: broadcast news
(mostly read-aloud speech) and broadcast conversations (spontaneous speech). The employed
annotation scheme creates boundaries between natural breakpoints in the flow of speech, flags
non-content words for optional removal, and identifies sections of disfluent speech. Then I
present a detailed analysis of the annotated corpora in terms of structural metadata statistics.

The main goal of this work is to develop automatic systems for dialog act segmentation of
English multiparty meetings and sentence unit segmentation of the two new Czech corpora. I
use and compare three modeling approaches – hidden Markov models, maximum entropy, and
a boosting-based algorithm called BoosTexter. All of these approaches rely on two information
sources – recognized words (what was said) and prosody (how it was said).

Features extracted from the recognized words describe lexical patterns associated with
sentence-external and sentence-internal interword boundaries. I explore features capturing
word identities, parts of speech, and automatically induced word classes. Prosodic features
are used to reflect breaks in temporal, intonational, and loudness contours in an utterance.
In the approaches I employ in this thesis, prosodic features for automatic classification are
extracted directly from the speech signal based on ASR time alignments, without any need
for hand-labeling of prosodic events.

All methods are evaluated on two types of speech transcripts – manual transcripts (ref-
erence conditions) and automatically-generated transcripts (ASR conditions). The results
indicate that superior performance is achieved when the three statistical models are combined
via posterior probability interpolation. Furthermore, feature analysis reveals that English and
Czech slightly differ in overall feature usage patterns. In addition to experiments in a stan-
dard speaker-independent fashion, I also explore speaker-dependent modeling for the English
multiparty meeting domain. The experimental results show that speaker adaptation of both
prosodic and language models yields modest yet significant improvement for sentence-like unit
segmentation.
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Abstrakt

Systémy automatického rozpoznávání řeči (automatic speech recognition, ASR) jsou již dnes
schopny přepisovat velké objemy řečových dat s uspokojivou přesností. Problémem ale je, že
tyto automatické přepisy nemají formu vhodnou pro následné zpracování. Standardní ASR sys-
témy generují pouze nestrukturovaný proud slov, který neobsahuje žádnou interpunkci. Tento
fakt nejenom snižuje čitelnost těchto přepisů, ale také způsobuje problémy při jejich následném
automatickém zpracování. Systémy zpracování přirozeného jazyka (např. automatická suma-
rizace textu, automatická extrakce informací, automatický překlad) jsou obvykle natrénovány
na formátovaném textu, a proto na automatických přepisech nezřídka selhávají. Tato diser-
tační práce se zabývá problémem automatické segmentace těchto přepisů do větných jednotek.
Zaměřuje se na dva jazyky – angličtinu a češtinu.

Jelikož nebyly k dispozici žádné české řečové korpusy s vhodnou anotací hranic větných
jednotek, musely být připraveny v rámci této práce. Byly vytvořeny dva české korpusy s
anotací tzv. strukturálních metadat. Tyto korpusy obsahují řeč ze dvou rozdílných oblastí –
rozhlasových a televizních zpráv (převážně čtená řeč) a diskusních pořadů (převážně spontánní
řeč). Použité anotační schéma v řeči definuje hranice syntakticko-sémantických jednotek, oz-
načuje výplňová slova a vymezuje oblasti neplynulé řeči. V práci dále porovnávám četnosti
výskytu jednotlivých druhů strukturálních událostí v obou korpusech.

Hlavním cílem práce je vytvořit systémy pro automatickou segmentaci řeči do větných
jednotek pro tři různé korpusy – anglický korpus pracovních schůzek a dva výše zmíněné české
korpusy. V práci používám a srovnávám tři statistické modely – skrytý Markovův model,
model maximální entropie a boostingový model BoosTexter. Všechny tři modely využívají
dva základní zdroje informací – rozpoznaná slova (co bylo řečeno) a prozódii (jak to bylo
řečeno).

Klasifikační příznaky získané z rozpoznaných slov popisují mimo slovních tvarů také je-
jich morfologické značky. Dále využívám i metody automatického shlukování slov do tříd.
Prozodické příznaky zachycují nespojitosti v melodických, hlasitostních a temporálních kon-
turách řeči. Všechny prozodické příznaky jsou získány přímo z řečového signálu na základě
časových značek získaných ze systému ASR. Pro trénování systému tedy nejsou třeba data s
ruční anotací prozodických jevů.

Všechny použité metody jsou vyhodnoceny na dvou druzích řečových přepisů – ručních a
automatických. Výsledky ukazují, že největší přesnosti segmentace je dosaženo, když jsou
všechny tři zkoumané statistické modely zkombinovány pomocí interpolace aposteriorních
pravděpodobností. Analýza použitých příznaků dále odhaluje, že angličtina a čeština se mírně
liší v tom, jaké příznaky jsou pro jejich segmentaci nejdůležitější. Mimo standardních ex-
perimentů nezávislých na řečníkovi zkoumám také možnosti adaptace modelů na konkrétního
řečníka, která je zajímavá pro oblast pracovních schůzek, ve kterých se obvykle řečníci opakují.
Experimentální výsledky signalizují, že adaptace jazykových i prozodických modelů přináší
malé, ale statisticky významné zlepšení celkové přesnosti segmentace do větných jednotek.
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Chapter 1

Introduction

For me, the big chore is always the same:
how to begin a sentence, how to continue it,
how to complete it.

Claude Simon

1.1 Motivation

Recent years have witnessed significant progress in the area of automatic speech recogni-
tion (ASR). Nowadays, large volumes of audio data can be transcribed automatically with
reasonable accuracy. However, automatic transcripts often do not have a form convenient for
subsequent processing. The problem is that standard ASR systems output only a raw stream
of words, leaving out important structural information such as locations of sentence or dialog
act boundaries. Such locations are overt in standard text via punctuation and capitalization,
but “hidden” in speech.

As shown by a number of studies, the absence of sentence boundaries is confusing both
for humans and computers. For example, Jones et al. [1] demonstrated that sentence breaks
are critical for legibility of speech transcripts. Moreover, missing sentence segmentation makes
meaning of some utterances ambiguous. If an automatic speech recognizer outputs the stream
of words “no jobs are running”, it is not clear what was said – whether it is “No jobs are
running.” or “No. Jobs are running.” The two possible interpretations have completely
opposite meaning.

Likewise, missing sentence boundaries cause significant problems to automatic downstream
processes. Many natural language processing (NLP) techniques (e.g., parsing, automatic sum-
marization, information extraction and retrieval, machine translation) are typically trained
on well-formatted input, such as text, and fail when dealing with unstructured streams of
words. For instance, Kahn et al. [2] achieved a significant error reduction in parsing perfor-
mance by using an automatic sentence boundary detection system, Furui et al. [3] reported
that speech summarization improved when sentence boundaries were provided, and Matusov
et al. [4] showed that the use of sentence boundaries is beneficial for machine translation.
Thus, automatic segmentation of speech into sentence-like units is, without a doubt, a very
important task that is essential for linking automatic speech recognition and downstream NLP
processes.
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Chapter 1. Introduction

Figure 1.1: Diagram of the sentence segmentation task

1.2 General Task and Approach

The previous section outlined the motivation for this thesis. In this section, I take a closer
look at the general task of this work. First of all, note that the sentence segmentation task
should not be confused with cepstrum-based signal segmentation tasks such as automatic
speech/non-speech detection. Automatic speech/non-speech detectors are only able to split
the speech signal into segments based on a non-speech region duration threshold. This kind
of speech segmentation is quite easy to obtain, however, it does not meet the requirements on
syntactic and semantic completeness imposed by the downstream NLP processes. Thus, the
goal of this work is to segment speech into linguistic (defined as syntactically and semantically
coherent) units, instead of acoustic units (defined as bounded by silence on either end).

When addressing the sentence segmentation task, it must be taken into account that speech
(especially spontaneous) is not as clearly structured as written text. In conversational speech,
“sentence” is not a straightforward notion because spontaneous utterances do not consist of
sentences as we know them from prose. The linguistic units into which I aim to segment
speech can generally be referred to as sentence-like units. Hence, the official title of this
thesis is Automatic Segmentation of Speech into Sentence-like Units. In the following text,
I sometimes also use a shorter term “sentence segmentation” in place of “segmentation into
sentence-like units” for the sake of brevity. Exact definitions of sentence-like units slightly differ
for individual data sets used in this thesis. They are always precisely defined in corresponding
chapters.

A diagram of the automatic sentence segmentation task is shown in Fig. 1.1. It is assumed
that a speech signal and an ASR output containing recognized words with corresponding
timestamps are available to be used to solve the task. The goal is to create an enriched
speech transcript containing automatically inserted sentence unit boundaries. Therefore, the
problem is addressed as a post-processing step that generates the structural information after
the recognition results are produced. The segmentation task can be viewed as a two-way
classification problem, in which each inter-word boundary has to be labeled as either a within-
unit boundary, or a boundary between two units.

There are two basic sources of information that can be used to solve this task — recognized
words (what was said) and prosody (how it was said). By prosody we mean information
about temporal, pitch, and energy characteristics of utterances. This information is basically
independent of word identities. To detect possible sentence boundaries in the recognized word
stream, we utilize prosodic features extracted from the speech signal, and combine them with
textual cues obtained from the word string. The question is how to model and combine the
available knowledge sources to find the most accurate hypotheses.

The first issue is how to exploit the information contained in the word sequence. It is
obvious that, in some word contexts, sentence boundaries are more probable than in others. For
example, the English pronoun I is a strong indicator of the beginning of a new sentence. This
subtask is referred to as language or lexical modeling. On the other hand, prosodic modeling
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aims to find acoustic-prosodic contexts indicating sentence boundaries. Such examples include
long pauses or marked pitch falls. The final issue is how to effectively combine prosodic and
language models. It is not only possible to combine two independent models, but we can also
consider joint lexical and prosodic modeling.

1.3 Scope of the Thesis

The thesis deals with sentence segmentation of speech in two languages – Czech and English.
For English, there has been quite a lot of material to build upon, while the starting point
for Czech was completely different. At the time I started my research, no related previous
work in Czech had been published and no corpora with appropriate annotation were available.
Hence, I had to start everything from scratch. My work on Czech not only included building
an automatic sentence segmentation system, but also a design and creation of Czech speech
corpora with appropriate annotation.

I decided to create two corpora corresponding to two distinct speaking styles: a read
speech (broadcast news) corpus and a spontaneous speech (broadcast conversation) corpus.
The first corpus was created by enriching an existing Czech broadcast news corpus, whereas
the preparation of the latter started from scratch. The annotation scheme I used went far
beyond labeling of sentence-like unit boundaries – speech disfluencies, filler words, and some
other spontaneous speech phenomena were also annotated. Although automatic detection
of the additionally annotated phenomena exceeds the planned scope of this work, I wanted
to prepare corpora useful for studying a broad spectrum of spontaneous speech phenomena.
After the corpora had been prepared, I used them to create a sentence segmentation system
for Czech and performed a number of various experiments.

For English, the scope of the work was a bit different. I focused on the meeting domain,
which is an area of growing interest in the spoken language technology community. For all
experiments, I used the publicly available ICSI meeting corpus. In addition to experiments in
a standard speaker-independent fashion, I also explored speaker-dependent modeling for the
multiparty meeting domain.1

All sentence segmentation models used in this thesis are statistical, i.e. trained from data
using machine learning methods. The segmentation systems for Czech and English are trained
on different data, however, they share a common modeling groundwork. For example, they
employ the same prosodic feature extraction methods and combine the same statistical mod-
eling techniques. Three different statistical models have been explored – a hidden Markov
model, a maximum entropy model, and a boosting-based model called Boostexter.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. The text consists of eleven chapters
and three appendices. Chapter 2 summarizes important linguistic topics – differences between
structure of spoken and written language, prosody, and spontaneous speech. Chapter 3 surveys
literature about perception of prosodic boundaries and automatic sentence segmentation of
speech. Chapter 4 explicitly lists goals of this thesis.

After four introductory chapters, Chapter 5 presents design, creation, and analysis of
Czech corpora with structural metadata annotation. Chapter 6 describes implementation
of prosodic features used for automatic classification. Chapter 7 overviews three statistical

1Note that an explicit list of this thesis objectives is presented in a separate chapter (Chapter 4), as required
by the dissertation guidelines of our department.
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models used in this work – hidden Markov model, maximum entropy, and BoosTexter. Chap-
ter 8 reports automatic dialog act segmentation of English multiparty meetings. Chapter 9
investigates speaker-specific modeling for dialog act segmentation of meetings. Chapter 10
describes experiments with sentence unit segmentation of Czech data. Finally, Chapter 11
draws conclusions.

The main part of the thesis is followed by an appendix part. Appendix A introduces the
software tool used for metadata annotation of Czech corpora. Appendix B shows a complete
list of all implemented prosodic features. Appendix C presents examples of automatically
sentence segmented speech transcripts. At the end of the text, there is a complete list of
references and a list of my publications.
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Chapter 2

Linguistic Background

Thought is the fountain of speech.
Chrysippus

The pen is the tongue of the mind.
Miguel de Cervantes

This chapter briefly presents linguistic background important for this thesis. The chap-
ter describes differences between structure of spoken and written language, suprasegmental
(prosodic) features of speech, and particularities of spontaneous speech. Although these top-
ics may seem to be disparate, all pertain to the sentence segmentation task. Since this work
aims to automatically segment speech into units that have primarily been defined for text, it
is important to note differences between linguistic units into which we can decompose spo-
ken utterances and text. Speech prosody is overviewed here since I use prosodic features as
important cues for automatic sentence boundary detection. Spontaneous speech is described
because two of the three corpora used in this thesis contain spontaneous conversations and it
is important to know which phenomena we should expect to observe.

The chapter is organized as follows. Section 2.1 compares linguistic structural units in
spoken and written language. Section 2.2 describes prosody and prosodic terminology. Note
that this section focuses mainly on a qualitative description of prosody. A description of
prosodic features as used for automatic classification is presented in Chapter 6. Section 2.3 is
devoted to the particularities of spontaneous speech. Finally, Section 2.4 gives a summary of
the whole chapter.

2.1 Structural Units in Spoken and Written Language

Language has two basic forms: spoken (speech) and written (text). In this section, I briefly
compare linguistic unit hierarchies of the two forms of language. Because the main goal of this
thesis is to automatically segment speech into units primarily defined for written language, it
is important to be aware of the differences between spoken and written language units.

In terms of a formal description, both forms of natural language can be viewed as hierar-
chical systems of symbols. It is possible to represent them as a set of mutually separated units
and a set of their relations. Elements of higher orders are composed of lower order elements
and boundaries of the higher order segments are typically consistent with the lower order
boundaries. Given the different natures of speech and text, these hierarchies are not identical.
The written form of language is a system of discrete symbols. In most languages, strings of
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these symbols are interrupted at word boundaries. On the other hand, speech is a continuous
acoustic signal. For the recipient, it is much more difficult to divide it into meaningful lin-
guistic segments since the majority of their boundaries is not explicitly marked in the speech
signal [5].

Spoken language is directly dependent on speech production physiology. Thus, its hierarchy
depends on the way an utterance is produced. The smallest segmental unit of speech is a
phoneme, however, the smallest stretch of speech into which a speaker is able to divide his/her
utterance is a syllable. Syllables are often considered the phonological “building blocks” of
words. The general structure of a syllable consists of onset, nucleus, and coda. The nucleus
(sometimes also called peak) is the central part of the syllable and typically consists of a vowel.
The onset is the syllable part preceding the nucleus, whereas the coda comprises all consonant
sounds that follow the nucleus. The final part of each syllable (nucleus plus coda) is called a
rhyme.

The smallest lingual unit that carries a semantic interpretation is a morpheme. Examples
of morphemes are prefixes, suffixes, or roots. They are defined in both spoken and written
language. It is not possible to specify whether morphemes are on the higher or lower level
than syllables in the spoken language unit hierarchy. Their boundaries may overlap since
morphemes can be smaller than a syllable as well as span over several syllables; phonologic
and semantic boundaries apparently do not have to coincide.

In continuous speech, syllables tend to form rhythmical groups of similar lengths. Such
groups are typically indicated by stress, the relative emphasis given to certain syllables. In
the linguistic literature, these groups are referred to as feet, stress-groups, prosodic words, or
phonemic words. Several feet fluently pronounced one after another form a larger intonational
unit – intonational phrase. Speakers indicate relationships of different intensities between the
intonational phrases to express their mutual relation.

A compact group of intonational phrases compose an utterance unit (or sentence-like unit).
In spoken language as well as in text, it is also possible to define units larger than a sentence.
For instance, a portion of speech in a dialog uttered by a single speaker while he/she holds
the floor is defined as a turn. Likewise, a stretch of speech relating to a single topic may in a
longer monolog may, in analogy with text, be marked as a paragraph. It has been shown that
boundaries between topics are signalized in speech [6, 7, 8, 9]. An utterance is the unit on the
highest level of the hierarchy.

Written language shows a different hierarchy. The smallest segmental unit is a grapheme
(character), however, analogous to spoken language, the smallest unit that carries semantic
meaning is a morpheme. While in spoken language, morphemes are composed of phones, in
written language, they are composed of graphemes. By joining morphemes we get words, words
constitute clauses and sentences, sentences form paragraphs, and a sequence of paragraphs is
text.

The alignment between the two language unit hierarchies may be outlined as follows. On
the segment level, there are phonemes vs. graphemes. The degree of agreement between them
differs language to language. For example, in Czech, there is a tight agreement given the
phonetically-based spelling rules, whereas for English, which does not have exact letter-to-
sound rules, the correspondence is not that good. On further levels, there is a relationship
between feet and words. For instance in Czech, feet are often identical with written words,
but also may comprise several words (e.g., a preposition plus a noun). Intonational phrases
typically have an equal or shorter length than clauses, however, in some special cases they
may span over two clauses. The average length of an intonational phrase in Czech is between
two and three feet. The relationship of written and spoken “paragraphs” has already been
mentioned above, text and utterance are well-corresponding units on the highest level of the
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hierarchy.
For this work, a critical part of the comparison is the alignment of written sentences and

spoken sentence-like units. While a sentence is a clearly defined notion for text, the notion
“sentence-like unit” does not have a standardized definition in the literature. In particular, it
is often difficult to distinguish between boundaries of compound clauses within a sentence and
boundaries between two (compound) “sentences” in speech. I use two distinct definitions of
sentence-like units in this thesis. For English meeting data, these units are defined as dialog
acts (DAs), while for Czech broadcast corpora, they are defined as syntactic-semantic units
(SUs) according to the MDE standard (detailed definition is presented in Chapter 5). Although
the two definitions differ slightly (in particular, some types of grammatically subordinate
clauses may form a complete DA, but not a complete SU), both of them rely on the idea of
dividing speech into meaningful units having a minimal possible length. Thus, we can say that
these units are typically shorter (or at most equally long) than sentences in standard text.

2.2 Prosody

The description of prosody is useful for this work because prosodic cues are important indica-
tors of sentence-like unit boundaries in speech, and may be employed in automatic sentence
segmentation systems. In this section, I describe the most important prosodic phenomena and
also overview standard prosodic terminology.

2.2.1 Suprasegmental Information in Speech

A speaker’s utterance contain more information than just identities of the uttered words.
It is not only important to know what was said, but also how it was said. This additional
information which may not be encoded by grammar is referred to as prosody. A typical feature
of prosody is that it is linked to stretches of speech larger than a segment (phoneme), i.e.
syllables, words, phrases, or entire utterances. That is why we also refer to prosodic features
as suprasegmental features of speech. Among others, prosody may convey to the listener the
following information:

• Whether an utterance is a question, a statement, or an imperative;

• Speaker’s state of mind;

• Whether the speaker is being sarcastic or ironic;

• Which word(s) in the message carry the most important information;

• Syntactic structure of an ambiguous utterance;

• Locations of word, phrase, and sentence boundaries.

The term prosody is derived from the Greek word πρoσωδια, which is a musical term
meaning something like “song sung to music” or “sung accompaniment”. In more recent usage,
the term has come to be used to refer to rhythmical structure of verse in poetry. Linguistics has
taken over the term prosody to refer to “musical” features of actual language utterances [10].

In the area of automatic speech processing, prosody has largely been used in Text-to-Speech
(TTS) synthesis. Since monotonic speech sounds highly unnatural, generating prosodically rich
speech is critical for success of TTS systems. In recent years, speech scientists have also started
to more often use prosody in speech recognition and understanding applications. The tasks
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for which use of prosodic features has been studied include linguistic segmentation of speech
(focus of this thesis), fast endpointing in spoken dialog systems, emotion recognition, or speech
recognition itself.

2.2.2 Levels of Prosody Description

Suprasegmental features perceived by the listener include length, pitch, loudness, rhythm, and
speaking rate. It is not possible to measure these human-perceived features from a speech
signal directly; we can only measure their correlates. For instance, loudness is correlated with
short term energy of the speech signal and pitch is correlated with fundamental frequency (F0)
of the signal [11]. Thus, we should distinguish the acoustic (measurable) and psychoacoustic
(perceived) level of prosody.

Prosody also has a linguistic description. In this description, we only take into account
those features that are “linguistically significant”. These are only those that represent speaker’s
linguistic intention and can be recorded as a sequence of symbols [12]. Such features are
typically expressed as a combination of several acoustic features. These combinations are not
exactly determined since the same linguistic intention may be expressed using different means
– less expressive use of one acoustic feature may be compensated by stronger use of another.

Prosody is also influenced by paralinguistic events. These phenomena are defined as all
nonlinguistic and nonverbal elements of communication, regardless whether they are percep-
tible from voice (voice quality, voice color) or not (gestures, facial expressions). They express
an emotional and visceral state of the speaker by affecting realization of the verbal message.

2.2.3 Prosodic Terminology

The following subsections overview the most important terms of prosodic terminology. The
terminology is not standardized in the literature. A number of terms have varying definitions
and some terms (such as intonation or melody) are used to refer to more than one phenomenon.
Thus, I find important to clarify here in which meaning the prosodic terms are used in this
thesis.

2.2.3.1 Stress, Accent, Rhythm

In phonology, stress is a relative emphasis given to certain syllables in a word. We often
distinguish two terms: stress and accent (or pitch-accent). The term stress usually denotes
a “potential feature”, while the term accent stands for a realized emphasis [5, 13]. However,
some other authors use these two terms as synonyms.

The accent is a complex event comprising intensity, pitch, and duration. An accented
syllable is typically not recognized based on absolute values of acoustic-prosodic quantities,
but rather based on contrast with syllables in its vicinity. In other words, the accented syllable
may show, for instance, either a lower or higher pitch than the surrounding syllables. We can
also observe that phonemes in accented syllables are usually more carefully articulated [14].

A placement of stress within a foot may either be fixed to a given syllable (Czech, Finnish
– stress always on the first syllable, Polish – always on the penult syllable, etc.), or comes as
part of the word and must be memorized (so called lexical stress – English or Italian). Beside
the primary stress, longer feet may also show secondary (less prominent) stress. Overall
distribution of stressed syllables within an utterance sets the rhythm (or timing) of speech.

The timing is determined by segmentation of the continuous stream of syllables into groups
having similar length and acoustic characteristics. There are two basic ways in which languages
distribute syllables across time: stress timing and syllable timing. In syllable-timed languages,
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every syllable is perceived as taking up roughly the same amount of time (e.g., Czech or
French). By contrast, syllables in stress-timed languages may have different duration, but there
is a roughly constant time period between each pair of adjacent stressed syllables (e.g., English
or German).

2.2.3.2 Focus

Besides word accent, we also recognize semantic accent – focus (also focal accent). This accent
is not linked with words but with sentences or clauses. It does not indicate prominence of a
syllable but prominence of a word. The emphasized word usually shows a stronger stressed
syllable with higher or lower pitch, or eventually it is longer or shorter. In Czech, it is usual
that focus is on the last foot of the sentence. By changing its placement, the speaker may
modify meaning of the utterance as it is outlined in the following example.

A better result was achieved by Czech women. (in contrast to Czech men)
A better result was achieved by Czech women. (in contrast to Slovak women)

2.2.3.3 Melody, Intonation, Intonation Patterns

The term melody of speech refers to a pitch curve within an utterance. The term intonation
is also often used as a synonym of melody. One way how to formally describe a melody of an
utterance is to disarticulate its pitch curve into abstract melodic patterns – intonation patterns
(cadenza). Linguists particularly focus on intonation patterns of sentence-final intonation
phrases. The following patterns are usually distinguished: falling, rising, flat, falling-rising,
and rising-falling. This classification system is phonemic – it is meant to express contrasts
in a succinct manner rather than specify the realization. More information on the concept of
intonation patterns is given, among others, in [5].

2.2.3.4 Pitch Declination, Pitch Reset

When analyzing the pitch contour within a single utterance unit, in general we observe a
gradual pitch lowering. In other words, running averages of F0 are higher on the beginning
of an utterance unit than on the end. This feature of speech is usually denoted as a pitch
declination. There are many ways how to quantitatively describe the declination. Most fre-
quently it is displayed as a line connecting local pitch peaks (topline) or local pitch minima
(baseline). Alternatively it can be captured using linear regression from all F0 values [15]. The
declination trend does not necessarily have to be linear, rarely we also observe an exponential
declination [16].

So-called pitch reset is often observed at utterance unit (sentence, paragraph) boundaries.
The speaker returns to higher F0 values and the declination slope is usually changed. It was
shown that stronger pitch resets usually correspond with more significant boundaries. For
instance, there typically occur stronger pitch resets at paragraph boundaries than at sentence
boundaries [8, 17, 18]. An important finding is that a breath is not necessary for pitch resets,
and vice versa, a breath does not imply a pitch reset [19].

An issue is whether the pitch declination is phonetically-motivated (caused by a decrease of
air pressure in the lungs and a consequent decrease of sub-glottal pressure) or phonologically-
motivated (intentionally controlled by the speaker). Since several experiments showed that
shorter sentences have a steeper slope of declination, it is considered that the declination is
rather purposeful although physiological causes may not be neglected [20].
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The form of the declination depends on speaking style. The differences are rather quan-
titative than qualitative. A steeper declination and larger pitch reset is usually observed in
read-aloud speech, however, even in spontaneous speech, we may observe correlations between
resets and linguistic unit boundaries.

2.2.4 Prosodic Boundaries in Speech

Speakers typically join words (feet) into phrases separated by prosodic means. These into-
national phrases are defined as groups of feet perceived as compact intonational units. Their
compactness is most typically based on prosodic marking of their boundaries [5, 21]. If an
utterance is short, the intonational phrase may correspond to the entire utterance. On the
other hand, longer utterance units cannot be uttered as a single intonation unit. Even if it
was possible, it would only make understanding harder for the listener.

As was mentioned above, intonational phrases are primarily marked by their boundaries.
In general, we distinguish several types of boundaries in speech. In the literature about Czech
prosody, the only recognized type of a prosodic phrase is an intonation phrase (frequently
referred to as an “utterance stretch”). By contrast, English literature also recognizes smaller
phrasal units – intermediate phrases. In this theory, intonation phrases consist of one or several
intermediate phrases and a boundary tone.

A most frequently used standard for annotation of English intonation is called ToBI (Tones
and Break Indices) [22]. When using the ToBI annotation scheme, an index number reflecting
strength of prosodic juncture with the following word is assigned to each word in an utterance.
These so-called break indices range from 0 (the strongest juncture – boundary within a clitic
group) to 4 (the weakest juncture – boundary of an intonational phrase). More information
on the ToBI labeling system is given, for example, in [13].

The placement of prosodic boundaries is influenced by syntactic and semantic structure of
the utterance. Speakers generally tend to realize their utterances as a sequence of intonation
units that are linguistically meaningful. In most of languages, prosodic phrasing is more
related to syntax than to semantics. Besides these two factors, the phrasing is also influenced
by rhythmic constraints. If all these three factors are in harmony and lead the speaker to
the same prosodic structure, then this structure is more markedly prosodically expressed in
the produced utterance. On the other hand, if they are not in harmony, the speaker has to
deal with their discrepancy and decide which of them to prefer. While the prosodic structure
following semantic and syntactic structure of the message is more convenient for listeners, for
the speaker, it is easier to follow the rhythmic constraints.

2.3 Spontaneous Speech

The quality and fluency of speech is highly dependent on whether the utterance is prepared
beforehand or not. The most fluent speech is typically produced when it is read-aloud from
a paper or screen, while the least fluent utterances are usually produced when the speaker is
completely surprised by an unexpected question or unforeseen situation and has to respond
spontaneously. According to the level of spontaneity, we distinguish planned and spontaneous
speech.

There is no general agreement on the spontaneous speech definition in the ASR literature.
Most typically, all speech that is not read-aloud is considered to be spontaneous. When using
this definition, we must be aware of the fact that it includes a number of distinct speaking
styles with different levels of spontaneity [23]. On the one hand, this definition includes
just repeating some prompted words, while, on the other hand, it also includes completely
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I believe it’s not
︸ ︷︷ ︸

Reparandum

* uh pardon me
︸ ︷︷ ︸

Editing Phase

it is
︸ ︷︷ ︸

Correction

a significant difference.

Figure 2.1: Structure of an edit disfluency. The asterisk (*) denotes the interruption point.

unprepared spontaneous conversations. For the remainder of this thesis, the term “spontaneous
speech” will stand for such utterances which were not prepared in detail in advance.

Spontaneous speech is described here because two of the three corpora used in this thesis
contain spontaneous conversations and it is good to know which phenomena we can expect to
observe. The description herein primarily focus on the most prominent spontaneous speech
phenomenon – speech disfluencies. I also mention differences between prosody in planned and
spontaneous speech.

2.3.1 Disfluencies in Spontaneous Speech

Involuntary speaker’s lapses disturbing a fluent flow of speech are referred to as speech dis-
fluencies. These failures may show themselves as filled or unfilled pauses, word repetitions,
corrections, or false starts. According to the terminology introduced by Shriberg in [24],
disfluencies consist of the following four parts:

• Reparandum – stretch of speech that was later revised (i.e., repeated, corrected, or
abandoned), and may be deleted without losing an “important” piece of information.

• Interruption Point (IP) – interword location at which point fluent speech becomes dis-
fluent.

• Editing phase – temporal region spanning from the end of the reparandum to the onset
of the correction phase which may contain filled or silent pauses and/or explicit editing
term.

• Corrrection – stretch of speech that “repairs” the material in the reparandum.

The structure of disfluency is displayed in Fig. 2.1. This structure may be used to describe
complex disfluencies such as repairs or false starts as well simpler disfluencies such as filled
pauses. In the latter case, the reparandum as well as the correction are empty [25].

Shriberg also showed that the probability of observing a disfluency grows exponentially
with the length of the uttered sentence [26]. It also has been shown that disfluencies occur
more frequently in the initial part of the sentence than in the final part. The number of
disfluencies also differ between monologs and dialogs. The disfluencies occur more often in
dialogs since they are more difficult to be managed by the speakers. An interesting observation
is that speakers produce less disfluencies when speaking with computers than with humans.
However, this is expected to change when automatic spoken dialog systems become more
natural.

Despite all the difficulties in producing spontaneous speech, we cannot say that it represent
an inferior form of communication than read-aloud speech. For example, professional TV and
radio anchors try to speak spontaneously when interviewing their guests in studio. Thus,
spontaneous speech is not a synonym for sloppy speech [27]. The following subsections describe
the most frequent types of disfluencies.
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2.3.1.1 Filled Pauses

If a speaker gets in trouble and does not know which word should he/she use at the moment,
an inarticulate sound filling a pause in the utterance is usually produced. It signals that the
speaker is not done, and wants to keep holding the floor. In English, we recognize two typical
instances of filled pauses (FPs): “um” (longer with a nasal component), and “uh” (shorter
without a nasal component). Speakers often pronounce filled pauses with a lower pitch and
their duration is longer than standard duration of the spectrally most similar phonemes [7].
Since it has turned out that filled pauses discomfort machines more than people, spoken
language processing researchers have increased their attention to them in recent years. An
example of an utterance with an FP follows.

This has already been reported by * uh
︸︷︷︸

Editing Phase

Ivanov.

FPs can occur separately as well as in editing phases of various complex disfluencies.
Freestanding FPs are frequently produced when the speaker searches for a proper word. In
such cases, the filled pause is typically followed by a highly informative word or phrase. Filled
pauses also frequently appear at the very beginning of an utterance when the speaker holds
the floor but does not know how to start. Another typical occurrence locations are boundaries
between syntactic constituents since speakers tend to produce their utterances in consistent
units [28]. Filled pauses may also mark start of a new topic in a longer stretch of speech [27].
For spoken English, it has also been reported that um is more frequently used at utterance
unit boundaries, while uh is typically used inside a unit [24]. A detailed survey on using uh
and um in spontaneous English is given in [29].

A frequently discussed problem is how listeners use filled pauses for processing and un-
derstanding of an utterance. The view that listeners “ignore” them was prevailed by the
estimation that they perceive their communication function. This finding is in correspondence
with the theory of the full-value of spontaneous speech. FP locations may be important fea-
tures for automatic linguistic segmentation of speech, however, the problem is that their use
is strongly dependent on an individual speaking style. Fox Tree [30] argued that ums seem to
aid comprehension by directing listeners’ attention to the upcoming phase, while, by contrast,
uhs have no effect on human word recognition, possibly because the effects were masked by
pausing.

Beside by FPs, a disfluency may also be signaled by a silent pause. Such disfluencies are
especially overt at places where there is no syntactic or semantic motivation for a silent pause
or where the pause is inadequately long.

2.3.1.2 Repetitions

Repetition disfluencies occur when a speaker repeats a word or phrase. By repeating, the
talker gains some additional time to plan the rest of the utterance. In our disfluency notation,
the reparandum of the repetition disfluency contains all but the last repetition and the editing
phase contains a filled pause or is empty. If there is more than just one repetition, we can
describe its structure using nested disfluencies. The number of editing phases and IPs is then
equal to the number of times the phrase is repeated. Thus, the ultimate repair only contains
the last repetition.

Repetitions in spontaneous speech were analyzed by Clark and Wasow [31]. They divided
repeats into four stages: initial commitment, suspension of speech, hiatus, and restart of the
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constituent. In the notation used in this thesis, these stages correspond to reparandum, in-
terruption point, editing phase, and correction. In a so-called commit-and-restore model of
repeated words, Clark and Wasow hypothesized that the more complex is a constituent, the
more likely a talker is to suspend it after an initial commitment to it. Moreover, they claimed
that speakers prefer to produce constituents with a continuous delivery, and that speakers
make a preliminary commitment to constituents, expecting to suspend them later. Their hy-
potheses are supported by the finding that in spontaneous English, function words are repeated
more frequently than content words. An example of a repetition disfluency follows.

So let’s
︸ ︷︷ ︸

Reparandum

* uh
︸︷︷︸

Editing Phase

let’s
︸ ︷︷ ︸

Correction

do it the other way round.

2.3.1.3 Corrections

Corrections are the most typical examples of a disfluency. A typical example of a correction
has already been displayed in Fig. 2.1.

2.3.1.4 False starts

False starts occur when a talker decides not to repair an inaccurate part of the utterance,
but rather abandons it completely and starts to reformulate the message from the beginning.
The false starts apparently aggravate speech understanding [30]. An example of a false start
disfluency follows.

This is really * really
︸ ︷︷ ︸

Reparandum

* uh
︸︷︷︸

Editing Phase

you can see that it works
︸ ︷︷ ︸

Correction

.

2.3.1.5 Disfluencies with Explicit Editing Terms

Talkers sometimes utter words or phrases not relating to the semantic content of the utterance
but having a different metalinguistic function. Explicit editing terms are examples of such
phrases. These terms may appear in disfluency editing phases to explicitly indicate that the
speaker made a mistake in his/her utterance. An example of a disfluency with an explicit
editing term follows.

I know the kids
︸ ︷︷ ︸

Reparandum

∗ uh or rather
︸ ︷︷ ︸

Editing Phase

some of the kids
︸ ︷︷ ︸

Correction

will like this idea.

2.3.2 Prosody in Spontaneous Speech

When reading aloud, speakers know how long sentences they are going to read and thus may
plan their prosody in advance. On the other hand, when speaking spontaneously, the planning
of prosody is much more difficult. Moreover, prosody of spontaneous speech is largely affected
by disfluencies disrupting continuity of prosodic trends. Consequently, we can conclude that
spontaneous prosody is much less regular than prosody of planned speech. Various linguistic
literature [11, 15, 32, 33, 34, 35] reports the following particular differences between prosody
of planned and spontaneous speech:

• Differences in pausing – pauses are more frequent in spontaneous speaking and they also
occur at locations where they do not have syntactic or semantic motivation.
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• Differences in pitch declination – the declination is less steep (or completely missing) in
spontaneous speech and pitch resets are less perceptible.

• Differences in mean pitch – average of pitch values is usually lower in spontaneous speech.

• Differences in duration – preboundary lengthening is not that regular and expressive in
spontaneous speaking as well as its relation with the strength of a boundary may differ;
regularity of segment duration may be disrupted by disfluencies, duration of segments
in corrections is usually shorter.

2.4 Chapter Summary

In this chapter, I have presented linguistic background to aid understanding of my thesis,
particularly for non-linguists. First, I described differences between linguistic structural units
in spoken and written language. These differences must be taken into account since the goal
of this thesis is to automatically segment speech into units that have primarily been defined
for text.

Second, I overviewed suprasegmental features of speech – prosody. The description of
prosody is useful herein because prosody is an important indicator of sentence-like unit bound-
aries in speech. I described the most important prosodic phenomena and also overviewed
prosodic terminology. This description is referred to in Chapter 6, which is devoted to extrac-
tion of prosodic features useful for automatic classification.

Third, I summarized phenomena typical for spontaneous speech. Spontaneous speech is
described here because two of the three speech corpora used in this thesis contain sponta-
neous conversations and it is important to know which phenomena we can expect to observe.
The presented description was primarily focused on the most prominent spontaneous speech
phenomenon – speech disfluencies. Differences between prosody in planned and spontaneous
speech were also mentioned.
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Chapter 3

Related Work

If I have seen further, it is by standing
on the shoulders of giants.

Isaac Newton

In recent years, a substantial amount of research has been conducted in the areas relating to
automatic segmentation of speech into linguistic units. In this chapter, I survey the literature
presenting that research. Because I have tried to make the survey as exhaustive as possible,
I have also included some very recent papers that have been published parallel with my ongo-
ing work. Some specific research performed in the domains that are investigated in this thesis
(corpora with structural metadata, dialog act segmentation of meetings, and sentence segmen-
tation of spoken Czech) is not presented here but in the respective chapters (Chapters 5, 8,
and 10), in order to enhance their readability. The survey in this chapter is categorized based
on what knowledge sources and modeling approaches have been used.

The chapter is structured as follows. Section 3.1 surveys important psycholinguistic stud-
ies on perception of intonational boundaries in speech. In that section, separate subsections
overview studies about preboundary lengthening, pausing, local coding of prosodic bound-
ary information, prosodic boundaries in Czech, and relations between syntactic and prosodic
structures. Section 3.2 refers to technology-motivated research. Before presenting results of in-
dividual research groups, Subsection 3.2.1 overviews scoring metrics used for evaluation of the
tasks related to sentence segmentation. Subsection 3.2.2 summarizes signal-based approaches
to sentence segmentation that do not rely on speech recognition output. In contrast, Sub-
section 3.2.3 describes approaches only relying on recognized words. Section 3.2.4 presents
approaches combining textual and prosodic knowledge. Finally, Section 3.3 gives a summary
of the whole chapter.

3.1 Survey of Psycholinguistic Studies about Realization and
Perception of Prosodic Boundaries

Studies about realization and perception of prosodic boundaries are important for this thesis
since they provide insights that may be useful for design of prosodic features for automatic
sentence segmentation systems. A number of papers has been published about perception of
prosodic boundaries in various languages – in particular English, French, Swedish, and Dutch.
Although this thesis focuses only on Czech and English, I report interesting results for other
languages as well. Part of these results is directly applicable since some prosodic features
are language-independent. The inter-language similarity is caused by physiologic properties
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of vocal organs that are common for all speakers. Prosodic differences among individual
languages are mainly displayed in the rhythm, the relation among prosodic cues, and the way
of expressing of overlapping prosodic events [16, 36].

3.1.1 Studies about Preboundary Lengthening

A lot of effort has been put into analyses of segmental duration before the boundaries. These
phenomena are referred to as final or preboundary lengthening. It is considered that the region
in which this lengthening is most prominently displayed is the final rhyme of the last word
before a boundary. The final lengthening is considered not to be inborn, but the speaker has to
learn it. This view is based on the finding that children do not use it. Thus, it is necessary to
study it for each language individually. An interesting fact is that the final lengthening do not
only appear in human speech, but is also present in bird singing, cicada chirp, or music [16].

Wightman et al. [37] reported that the lengthening in spoken English is progressive. It
means that the last consonant in a word (if present) is relatively more lengthened than the
preceding vowel. For spoken Swedish (radio stock market reports), it was shown that the
lengthening is affected by the presence or absence of the semantic accent on the sentence-final
word since the stressed words are lengthened more [38]. The authors also reported a negative
correlation of the final lengthening and pause duration. In such cases, a compensation rule
is applied – prosodic events may be marked using different means and less intensive use of
one mean may be compensated by stronger use of another. Another finding of that work
was that a longer lengthening corresponds to a stronger boundary. In contrast, Heldner and
Megyesi [39] got contradictory results for spontaneous Swedish – the lengthening was more
prominent before weaker boundaries, while stronger boundaries were usually marked by longer
pauses.

Strangert analyzed features of intonational phrases in spontaneous Swedish [40]. She found
that 80% of intonational phrase boundaries were syntactically motivated. Most of other bound-
aries occurred after function words on onsets of syntactic constituents. Moreover, she also
studied preboundary lengthening. The lengthening of final rhymes was more prominent pre-
ceding weaker boundaring. On the other hand, pauses were longer after stronger boundaries.
It was also found that the lengthening was more prominent in shorter intonational phrases.

Yang [41] focused on an analysis of occurrences of pauses and final lengthening in various
forms of English broadcast news. Regarding preboundary lengthening, it was reported that
the syllables before boundaries are the longest and syllable duration is decreasing toward a
phrase onset. The lengthening usually began on the fifth syllable before the boundary.

3.1.2 Studies about Pausing

A substantial amount of research has been conducted to analyze pausing. Pauses are without
a doubt the most expressive instruments for marking of strong boundaries. Their expressive
power is strong enough to override all other prosodic means [9]. Megyesi [35] reported that,
as expected, pauses were more frequent in spontaneous speech. In the already mentioned
paper [41], Yang reported that the pauses marking boundaries were longer than other pauses.
The percentage of phrases separated by a pause was ranging from 35% in a spontaneous
interview to 75% in a radio story read by a single speaker. Moreover, it was found that longer
pauses correspond to stronger boundaries. Van Donzel and Koopmans reported that clause,
sentence and paragraph boundaries are realized using silent pauses and high boundary tones
in spontaneous Dutch [42, 43].
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3.1.3 Studies about Local Coding of Prosodic Boundaries

Interesting experiments were performed by Grosjean [44, 45]. He let a single speaker read four
English sentences of different lengths. These sentences were special in that a shorter sentence
was always identical with the beginning of a longer sentence. The shared sentence-initial part
was in individual sentences followed by zero, three, six, and nine words, respectively. In a
perception experiment, the author replayed the common part of the sentences to a group of
subjects. He found that the listeners were able to guess whether the sentence ends after the last
replayed word, and even to predict how many words come after in a particular recording. In
a consecutive experiment, he found that the subjects were also able to do the same prediction
when they only heard last words of particular recordings. In that case, the predictions were
only slightly less accurate. Later, he repeated the same experiment with using French sentences
instead of English to study language-dependency. Then, the listeners were also able to tell
whether the replayed word is the last one in a sentence, but were not able to recognize how
many words would follow.

In a similar study, Carlson, Swerts, and Hirschberg focused on the issue whether speakers
prosodically mark boundaries “in advance”, that is whether the listener has to hear prosody
after the last word before the boundary to recognize the boundary [46, 47]. To analyze it, they
used a radio interview in Swedish. The subjects had to recognize the boundaries from stimuli
comprising either only a single word or a two second stretch of speech. Thus, the listeners could
not use pause duration or pitch resets as cues. Despite this fact the results showed that the
listeners were able to successfully predict the boundaries. An interesting finding was that using
the longer, two-second stimuli did not yield a prediction improvement. It motivates a question
whether the listeners use lexico-grammatical information at all. Hence, they repeated the same
experiments with American subjects who did not have any knowledge of Swedish. The result
was that the American group of listeners was in predicting the boundaries almost as good as
the Swedish group. These results as well as findings of Grosjean support the hypothesis that a
significant amount of prosodic information is contained in the last word before the boundary.
It implies that it is possible to achieve good results in automatic boundary detection only
using local prosodic features.

3.1.4 Studies about Prosodic Boundaries in Czech

There is not a lot of published work on perception of prosodic boundaries in spoken Czech.
An interesting study was done by Palková [5] who evaluated listening tests and reported
the following findings regarding boundaries of intonational phrases. The subjects marked as
strongest the boundaries that were marked both by a pause and a characteristic intonation
pattern (falling or rising). If the pause was not present, the perceptual recognition of boundary
become more difficult. In that case, the intonation tone had to be much stronger. Other
prosodic means were not that heavily utilized and usually were only used as an accompaniment
of the basic two means. For instance, slowing down toward the boundary was frequently used
together with a less emphatic melodic change. Another finding was that structuring the
utterance into intonational phrases facilitates its understanding. Moreover, non-professional
talkers tended to structure their speech into stretches having a roughly constant length and
only rarely used intonational phrases containing just one foot. The listeners were also able to
recognize intonational phrases in spontaneous speech – the inter-subject agreement was 80 %.
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3.1.5 Studies about Relation between Syntactic and Prosodic Boundaries

Finally, I also cite here work analyzing relations between syntactic structure and prosody.
This relationship was explored by Fach [48]. He used a large broadcast speech corpus which
was annotated by an automatic syntactic parser and measured collocations of syntactic and
prosodic boundaries. The comparison of syntactic and prosodic structure is not easy to perform
because while the syntactic structure is hierarchical, the prosodic structure is considered to
be linear. Fach solved the problem by leaving the problematic segments in the syntactic tree
unattached. After adjusting the data for disagreements caused by individual speaking style, he
observed that 84 % of syntactic boundaries were in correspondence with prosodic boundaries.
However, although these results are interesting, the alignment of prosody and syntax remains
a debated area requiring further research.

3.2 Survey of Related Work on Sentence Segmentation and
Automatic Punctuation of Speech

3.2.1 Evaluation Metrics for Sentence Segmentation

Several different evaluation metrics have been used for performance scoring of automatic sen-
tence segmentation systems. In general, there is no measure considered as a standard. In-
stead, various metrics have been used in various projects. The most straightforward metric is
a “boundary error rate”1 (BER) [49] defined as the number of incorrectly classified samples
divided by the total number of samples

BER =
I +M
NW

[%] (3.1)

where I denotes the number of false DA boundary insertions, M the number of misses, and
NW the number of words (thus also interword boundaries) in the test set. A complement of
BER defined as Acc = 100%−BER, called Classification Accuracy, is often used as well.

When using BER for performance measuring, one must be aware of the fact that a strong
majority of words (approximately 80–95% depending on the speaking style and genre) in speech
transcripts are not followed by sentence unit boundaries. Hence, relatively low absolute error
rates may be achieved by simply classifying all test samples as “non-sentence” boundaries.
Thus, we always should report a “chance error rate”. This error rate coresponds to an imaginary
model that classifies all test samples as belonging to the class having the highest prior (i.e.
“no-boundary” in all our tasks). An advantage of BER is that it has a clear interpretation. The
differences in performance between two systems may easily be tested for statistical significance,
e.g. using the Sign test [50].

Another frequently used measure is the NIST error rate, which was used for evaluation in
the DARPA EARS project. For sentence boundary detection, the NIST error rate is defined
as the number of misclassified boundaries divided by the total number of sentence boundaries
in the reference

NIST =
I +M
NSU

[%] (3.2)

where NSU denotes the number of sentence unit boundaries in reference. The difference be-
tween BER and NIST is only in the denominator. While BER has the total number of word
boundaries in the denominator, the NIST metric only calculates the number of sentence bound-
aries. An unnatural feature of the NIST error rate is that its values may exceed 100%. Another

1Sometimes also referred to as Classification Error Rate.
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drawback of this scoring method is that we cannot directly use any standard statistical test
for testing of differences in NIST for statistical significance because this metric is not based
on consistent segments [51].

Yet another popular scoring approach evaluates performance using a pair of complementary
measures – precision (P ) and recall (R). These measures are well-known from information
retrieval systems where it is also necessary to deal with a highly skewed prior distribution.
Let TP denote the number of true positives, TN true negatives, FP false positives, and FN
false negatives. Then, precision, defined as a measure of the proportion of the detected event
labels that the system got right, may be expressed as

P =
TP

TP + FP
(3.3)

Recall, defined as the proportion of the detected event labels that the system found, may be
expressed as

R =
TP

TP + FN
(3.4)

Precision reflects substitution and insertion errors (purity of retrieval), while recall reflects
substitution and deletion errors (completeness of retrieval). The higher precision and recall
scores are, the better we consider the evaluated system. There is typically a trade-off relation
between P and R; for example, many empirical studies of information retrieval performance
have shown a tendency for precision to decline as recall increases.

It is often favorable to express system performance by a single number. Then, we can use
a metric called F -measure, which is the harmonic mean of P and R

F =
2PR
P +R

[%] (3.5)

F -measure is a very popular metric in the NLP community. However, it also has some draw-
backs. If we detect more than one event (for example in automatic punctuation), we must be
aware of the fact that F -measure deweights deletion and insertion errors in comparison with
substitution errors by a factor of two, as shown by Makhoul et al. [52]. Nevertheless, this
problem is not relevant to sentence segmentation where there are no substitution errors since
we only detect sentence boundaries. Thus, using F -measure for scoring sentence segmentation
systems is well-founded.

3.2.2 Signal-Based Approaches Not Using Textual Information

Some research has been conducted on segmentation of speech into sentence units without using
an ASR system. These methods are based on analyzing pitch, energy, and spectral features of
speech signal. In certain conditions, these techniques may be useful since they are not affected
by speech recognition errors.

Haase et al. [53] developed a method for determining utterance unit boundaries in Ger-
man broadcast news using F0 contours and energy envelopes. They employed an interesting
approach in which classified units were voiceless regions of the speech signal. For each such
region, a set of features relating to normalized F0 and RMS energy values was extracted.
These features were then used in a decision tree classifier. In the first classification step, it was
decided whether there was a boundary or not. If yes, it was determined whether the boundary
corresponded to sentence, paragraph, or “article”. The authors reported a boundary detection
precision of 85 % at a recall of 84 %. For determining type of the boundary, they achieved a
precision 93 % and recall 88 %.
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A sentence boundary detection method based on prosodic features aligned with automati-
cally recognized vowels, consonants, and pauses (V/C/P) was introduced by Wang et al. [54].
They proposed the following technique. First, the V/C/P classification based on energy and
spectral features and tracked F0 was performed. Then, sentence boundary candidates were
found in the segmented speech signal according to pause durations. Subsequently, a set of
features corresponding to each boundary candidate was extracted. The feature set included
speaking rate (syllables per second), pause duration, and pitch-related features (F0 range,
F0 maximum and minimum, F0 onset and offset). These features were used in an AdaBoost
classifier. The achieved classification accuracy was 77.8%.

A multipass linear fold algorithm for sentence segmentation based on using discontinuities
in the F0 contour was proposed by Wang2 and Narayanan [55]. At first, F0 was measured
from the speech signal. Regions in which F0 was undefined (so-called pitch breaks) were
then sorted in the ascending order with respect to their durations. In the sorted pitch break
map, it was possible to recognize two clusters: the first one corresponded to most of unvoiced
regions of speech and interword boundaries; the second corresponded to sentence boundaries
and disfluencies. The two clusters were identified using a single approach smoothing the data
points with a two-piece linear function. All pitch breaks preceding the line break were then
excluded and the same algorithm was applied on the remaining data points. This procedure
was repeated until only a small group of sentence boundary candidates remained. Then,
sentence boundaries were identified in this candidate group by applying a set of heuristic rules
reflecting typical features of sentence boundaries and disfluencies. For example, disfluencies
more frequently occur close to sentence beginnings, sentences have approximately the same
length, sentence boundaries are typically not close to each other, pitch resets occur at sentence
boundaries, and so on. The method was tested on a subset of the Switchboard corpus and
a classification accuracy of 75.0 % was achieved. This accuracy corresponds to a precision of
P = 83.8 % at a recall of R = 92.8 %. The results are interesting because only pitch-based
features were employed; adding other prosodic features and textual information from an ASR
system should yield further improvement.

3.2.3 Text-Based Approaches

Several techniques only based on using “recognized words”3 have been proposed in the lit-
erature. Although I refer to these approaches as text-based, the term text is considered in
terms of unstructured ASR output. Hence, no features relating to text formatting (such as
capitalization or punctuation) are used in any of the methods overviewed in this section.

Gavalda et al. [56] was inspired by Palmer and Hearst’s method for sentence boundary
detection in standard text [57]. Their goal was to find clause boundaries in the speech tran-
scripts from the Switchboard corpus. Their features were based on “trigger” words (30 most
frequent words occurring at clause and sentence boundaries) and parts-of-speech. A multi-
layer perceptron with two neurons in the hidden layer was employed for classification. The
best results in terms of precision and recall (P = 84.5 %, R = 86.0 % and F = 85.2 %) were
achieved when the features were extracted from a window containing six surrounding words
(three words in each direction).

Beeferman et al. introduced an automatic punctuation system called Cyberpunc [58].
Their system was only focused on automatic insertion of commas, assuming predetermined
sentence boundaries. Thus, their setup largely differed from my sentence segmentation task.

2It is not the same person as Wang mentioned in the previous paragraph.
3However, note that although these methods have primarily been proposed for use in speech processing

systems, many of them have only been tested on true words, ignoring word errors in speech recognition.
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The system searched for the optimal locations of commas maximizing the overall probability
in the HMM framework. The authors achieved a precision P = 78.4 %, recall R = 65.6 %, and
F -measure F = 70.2 %, using the Wall Street Journal corpus.

Stevenson and Gaizauskas [59] reported some experiments with sentence segmentation
of transcripts from the Wall Street Journal corpus. They used a memory-based learning
algorithm. They used a bunch of text-related features including a probability that a current
word starts or ends a sentence. The achieved performance was only P = 36 and R = 35 when
case information was removed from testing transcripts. In contrast, the results significantly
improved (P = 78 and R = 75) when capitalization information was accessible for their system.
It implies that their approach is not very suitable for ASR conditions.

In order to aid automatic speech understanding, Gupta et al. [60] developed an automatic
system for splitting strings of recognized words into clauses. Moreover, their system was also
identifying edit disfluencies. In successive steps, the recognized text was divided into sentences,
cleaned of edit disfluencies, and split into clauses. The segmentation was viewed as a tagging
problem and a boosting based approach was employed. Their features included three words
and POS tags in both directions from the boundary of interest, and numbers of identical
words and tags in the analyzed window. The method was tested on reference transcripts from
the Switchboard corpus. For the clause segmentation subtask, they reported P = 63.8 %,
R = 58.5%, and F = 61.1%. They also compared their method with a baseline trigram model
and reported improved F -measure by 21.4 % absolute.

Same as Beeferman et al., Shieber and Tao [61] focused on automatic comma restoration
for English speech transcripts. However, in contrast with Cyberpunc, their method employed
parsing. They found that the presence of comma is correlated with a number of syntactic
subtrees having their left boundary at the same place. By adding this information into their
language model, the number of correctly annotated sentences raised from 47 % to 58 %.

Mrozinski et al. [62] employed a combination of word- and class-based N -gram LMs for
automatic sentence segmentation of speech. Instead of using standard Viterbi search algorithm,
they employed a procedure in which local probabilities were combined with matching recursive
paths by keeping track of N2 most probable paths leading from wi−N to wi. However, the two
search methods were not compared so that no conclusions about their efficiency could have been
drawn. The method was tested on broadcast news data as well as on spontaneous conference
lectures. They also showed that proper automatic sentence segmentation was essential to
achieve good results with automatic speech summarization systems.

Lee at al. [63] used text-based automatic punctuation restoration as part of their automatic
speech-to-speech translation system. In their approach, sentence boundaries were already
known, so only commas were predicted. They used a very simple method in which a comma
was recognized if its N -gram probability given the word context exceeded a fixed threshold.

A number of papers have been published on text-based segmentation of spoken Japanese.
However, given a specific syntactic structure of Japanese language (clause boundaries are
marked by conjugated forms of verb phrases or conjunctive particles, so various types of
boundaries may be identified quite precisely by referring to POS tags), it seems not to be
possible to easily port these methods to other languages. For example, Takanashi et al. [64]
developed a semi-automatic method for identification of clause boundaries in spontaneous
Japanese. Their approach was to detect boundaries using a set of conversion rules referring to
POS tags.

A sentence boundary detector based on the Structured Language Model (SLM) [65] was
developed by Mori et al. [66]. SLMs are LMs based on a combination of parsing and N -
gram models using a probabilistic parametrization of a shift-reduced parser. The idea behind
the SLMs is that the next word can be more accurately predicted from words on which it
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potentially depends rather than from simple N -grams. In the first step of Mori’s sentence
boundary detection method, sentence boundary candidates were found according to pause
durations (threshold 300 ms). These sentence boundary candidates were then classified using
SLMs. The authors reported a slight performance improvement compared to an N -gram model
testing on a Japanese radio lecture corpus.

A text-based sentence boundary detector for Japanese relying on using sequential depen-
dency analysis (SDA) combined with automatic chunking was presented by Oba et al. [67].
The proposed SDA method extracts a dependency structure of unsegmented word sequences
using a subsidiary mechanism of sentence boundary detection. To reflect local properties of
word sequences as well as their appropriateness to form a sentence, the SDA method was
combined with automatic chunking in the conditional random field framework. The method
was only tested on human transcriptions from the Corpus of Spontaneous Japanese, so it is
not clear how sensitive it is to word errors.

3.2.4 Approaches Combining Textual and Prosodic Cues

3.2.4.1 SRI-ICSI Approach Based on HMMs

In the past decade, a substantial amount of research on automatic sentence segmentation of
speech has been conducted by Shriberg, Stolcke, and their colleagues at SRI and later at the
International Computer Science Institute (ICSI). Their methods are based on the idea of direct
modeling of prosody [68]. In this approach, prosodic features relating to detected events are
extracted directly from the speech signal and ASR output, and the estimation of prosodic
model parameters is done via a machine learning algorithm. The prosodic model directly
outputs detected event posteriors. The direct modeling approach is in contrast with the
approaches utilizing prosodic information via some abstract prosodic labels (such as ToBI).
In those “indirect” approaches, prosodic classifiers are used to automatically recognize the
prosodic labels [69, 70], that are subsequently used as features in a downstream classifier [71,
72, 73].

The direct modeling approach has several advantages. First, building such models is less
time consuming since it does not involve any hand-labeling of prosodic events in training data.
In addition, it simply bypass potential problems with subjective perception of prosody by
human labelers. Moreover, this approach is not only labor saving but also yields good results.
It benefit from the fact that the prosodic model is optimized for detection of predicted events
rather than for automatic assignment of prosodic labels. Besides sentence segmentation of
speech, the direct modeling approach has also been applied to classification of dialog acts,
emotion recognition, disfluency detection, and speaker verification. A diagram of a system
based on the direct modeling approach is displayed in Fig. 3.1.

Shriberg, Stolcke et al. originally proposed to combine lexical and prosodic features in the
HMM framework [49]. The HMM-based approach is one of the approaches I employ in my
work. Since the combination approach itself will in detail be described in Chapter 7, along
with other used techniques, I only summarize the results achieved by this approach in this
section.

The SRI-ICSI group tested the HMM approach both in read-aloud and spontaneous speech
corpora [74, 49]. They utilized prosodic features relating to pause, phone, and rhyme dura-
tions, and pitch and energy. Their results demonstrated that the combined model employing
both lexical and prosodic features generally outperforms models utilizing just one information
source. They also showed that for testing on real ASR transcripts, word recognition errors gen-
erally cause more degradation for lexical than for prosodic features. For broadcast news data,
the overall BER was 3.3% in reference conditions (forced alignment of human transcripts) and
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Figure 3.1: Schematic diagram of the direct prosody modeling approach. White boxes indicate
processing in standard ASR systems, gray boxes indicate processing added in the prosody modeling
approach [68].

10.8% in ASR conditions (fully automatic transcripts). For the telephone speech corpus, they
reported BER = 4.0% in reference and BER = 22.2% in ASR conditions.

It was also found that usage of individual prosodic features is corpus-dependent. Though
pause duration was always the most used feature, other top features differed across corpora.
While F0 features prevailed for read-aloud speech, duration features dominated in the conver-
sational speech corpus.

More recent results of the same team using the HMM approach were published by Liu et al.
in [75]. However, the results are difficult to compare with the original experiments because: (1)
they only reported results in the NIST metric; (2) the experimental setup including a sentence
boundary definition differed from the original experiments. The reported NIST error rates
were 48.7% and 55.4% for Broadcast News, and 31.5% and 43.0% for telephone conversations,
respectively.

Hillard et al. [76] extended the HMM approach by leveraging multiple ASR hypotheses in
order to provide more robustness to ASR errors. Posterior probabilities for each hypothesized
word sequence were estimated via HMMs, and subsequently, the hypotheses were combined
using confusion networks to determine the overall most likely sequence of events. Moderate
but statistically significant improvement was reported for conversational speech. On the other
hand, for broadcast news no significant improvement was achieved.

The HMM approach with CART-style decision trees for prosody modeling was also adopted
by Kim and Woodland [77]. They experimented with automatic punctuation detection in
broadcast news speech. The authors measured performance of their system using modified
P ,R, and F . In their measure, a half score was given when a punctuation mark was located
correctly but recognized as a different type of punctuation. Two series of experiments were
performed. The first one was focused on automatic punctuation annotation in reference manual
transcripts. For this setup, they reported P = 76%, R = 80%, and F = 78%. In the second
series of experiments, punctuation generation was directly integrated into the ASR system by
adding punctuation marks as pseudo-words into the recognizer’s vocabulary (with acoustic
baseforms corresponding to silence). In this setup, prosodic information was also used for
ASR lattice rescoring. Automatic punctuation performance within this integrated system was
reported as P = 58%, R = 35%, and F = 44%. In addition, a small reduction in WER was
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achieved by using the prosodic rescoring.

3.2.4.2 VERBMOBIL Approach

VERBMOBIL was a research project funded by the German government in years 1996–2000.
The goal of this program was to develop a mobile automatic translator able to translate
spontaneous speech from a limited domain (appointment scheduling) in real-time. The target
languages were German, English, and Japanese. An essential subtask of the system was
to automatically detect various linguistic boundaries. I particularly describe the results of
VERBMOBIL herein in more detail because it was the first end-to-end application in which
prosody modeling was successfully employed.

From the viewpoint of this thesis, the most interesting part of the system is the prosody
module. The task of the module was to automatically annotate accents, sentence mood (ques-
tion vs. non-question), and acoustic-prosodic and syntactic-prosodic boundaries. For reference
annotation of syntactic and prosodic boundaries, a very complex annotation scheme distin-
guishing acoustic-prosodic, syntactic, syntactic-prosodic, and dialog act boundaries has been
developed [78]. Input to the prosodic module was a speech signal and a Word Hypotheses
Graph (WHG),4, while module output was a WHG annotated with the above mentioned
“prosodic information”. This prosodically annotated WHG was consequently used in other
VERBMOBIL modules (such as the syntactic analysis module or the semantic module). As
opposed to off-line segmentation experiments conducted by the SRI-ICSI group, VERBMOBIL
operated in real-time. On the other hand, it only worked with a much smaller vocabulary from
a limited domain.

The VERBMOBIL approach to dialog act segmentation (and classification) was based
on using multi-layer perceptrons for prosodic classification (MLPs), polygram language mod-
els [79], and an A∗-based search algorithm [80, 81]. The MLP classifier had two neurons in the
output layer, one for DA boundaries and one for other word boundaries. Output scores from
these two neurons were normalized in order to obtain posterior probabilities. The polygram
language model was a set of interpolated N -grams with varying N . The polygrams for bound-
ary detection modeled the probability P (wi−2, wi−1, wi, ei, wi+1, wi+2) where ei corresponds
to the classified boundary and wi−2, . . . , wi+2 to surrounding words. The optimal boundary
sequence was then found using the A∗-based search algorithm combining the scores from the
MLP and polygrams. This approach directly enabled them to join the DA segmentation with
DA classification. For German data, the authors reported R = 80% for DA boundaries, and
R = 96% for non-DA boundaries.

Gallwitz et al. from the same team proposed a method for simultaneous generation of
word hypothesis and linguistic boundaries [82, 83]. In this method, the language model of the
speech recognizer treated linguistic boundaries as pseudo-words, and the acoustic model was
augmented by special HMMs representing acoustic realizations of recognized boundaries (e.g.,
loud breath, filled pause, silence). In addition, a special HMM with one emitting state without
a loop corresponded to boundaries that were not acoustically marked. To combine spectral
and prosodic features, they employed a hybrid architecture that joined the MLP with semi-
continuous HMMs. It involved using a soft vector quantization based on a Gaussian codebook.
The output of the integrated system was an annotated WHG. The system was tested on a
spontaneous speech database and the results showed modest improvement in WER. More-
over, the authors evaluated detection of syntactic-prosodic boundaries. In comparison with a
prosody-only boundary detection model, recall improved from 75.1% to 88.2%, and precision

4In other words, it was an ASR lattice.
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improved from 75.3% to 78.5%. Unfortunately, a comparison with a system combining prosody
and language model was not reported.

3.2.4.3 Other Work Combining Textual and Prosodic Cues

Earlier than Gallwitz et al., Chen [84] used a combined approach of synchronous speech recog-
nition and punctuation generation. His target set of punctuation was quite broad, including
comma, full-stop, question mark, exclamation mark, colon, and semicolon. He found that
pauses in speech were closely related to punctuation, and thus decided to treat punctuation
marks as pseudo-words in the vocabulary. In his most successful experiment on a business
letter corpus, Chen achieved punctuation detection accuracy of 57%, and correct punctuation
placement (independent of punctuation type) accuracy of 83%.

Gotoh and Renals [85] presented a sentence boundary detector for broadcast news speech.
They used an N -gram language model in which a label ci indicating the presence of a sentence
boundary was assigned to each word wi. The only used feature was pause duration si. The
combination of the language and prosodic model was performed via an approximation in
the form P(s

m
1 , w

m
1 , c
m
1 ) =

∏m
i=1 PPM (wi, ci|si)λ · P (wi, ci|wi−1

i−N+1, c
i−1
i−N+1). This score was

maximized using the Viterbi search. On ASR data with WER = 26%, their model performed
sentence boundary detection at F = 70%.

The work of Gotoh and Renals was extended by Christensen et al. [86]. The followers
focused on automatic punctuation annotation in broadcast news speech. They used a richer
prosodic feature set including phone duration and pitch features. The finite state automaton
approach combining the prosody and language model was adopted. The results indicated that
pause duration had significant impact on full-stop detection, but only a little influence on de-
tection of other punctuation marks. Overall, F = 40% was the best result on an automatically
recognized broadcast news corpus with WER = 23%.

Huang and Zweig [13] investigated a maximum entropy (MaxEnt) based approach for au-
tomatic punctuation from speech. Their motivation for using MaxEnt was that it allows a
natural combination of lexical and prosodic features within a single model. The punctuation
detection task was viewed as a tagging problem in which one of the allowed punctuation sym-
bols (comma, period, question mark, and empty symbol) was assigned to each word. Their
lexical features were extracted from the context including wi, wi+1, wi+2, wi−1, wi−2, ti−1, ti−2

(where wx correspond to words, and tx correspond to punctuation marks) using special un-
igram and bigram feature templates. The lexical features were extended by pause duration
features measured with a precision of 10 ms. The third group of features combined word
identities and pause durations directly on the feature level. The method was tested on the
Switchboard database, both in reference and ASR conditions (WER = 20%). To achieve accu-
rate evaluation, automatic transcripts were manually punctuated. The results indicated that
commas could not be reliably detected using just pause information since they were heavily
dependent on lexical information. It was also shown that question marks were often confused
with periods. Using ASR output instead of human transcripts decreased overall F -measure
from 80% to 73%.

Srivastava and Kubala [87] focused on sentence segmentation of Arabic broadcast news.
They experimented with an MLP having input consisting of 47 prosodic features extracted
from a one-second window around the boundary of interest. For language modeling, a trigram
model combined with prosodic scores in a way similar to [86] was employed. The authors
reported “detection error rate” (sum of false alarms and false rejections) to be 50.38%.

In [88], Liu et al. compared generative and posterior probability models (namely an HMM
and MaxEnt) for sentence boundary detection in speech. Both models combined lexical,
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syntactic, and prosodic information. Features for the MaxEnt model involved word N -grams,
POS N -grams, class N -grams, chunking tags, speaker change flags. In addition, in order to
combine prosodic and lexical features in a single model, prosodic decision tree posteriors were
discretized in a cumulative fashion to form binary features. The methods were compared on
telephone coversations and broadcast news speech in both reference and ASR conditions. The
results indicated that the MaxEnt model slightly outperformed HMM in STT conditions, while
the HMM was better in STT conditions. The combination of the two approaches achieved
the best performance for all reported tasks. The MaxEnt model showed much better accuracy
than the HMM in dealing with lexical information. On the other hand, the HMM made more
effective use of prosodic features, which were more robust to word errors.

In [89], Liu et al. extended their work by using Conditional Random Fields (CRFs), which
combine the benefits of HMM and MaxEnt models. The features used for CRF training were
identical with the features used in the MaxEnt model. For conversational speech, the CRF
model was slightly superior to both the HMM and the MaxEnt model. The gain from using
CRFs was highest when only using the N -gram features were used. The differences among
individual models diminished when also other features were added. In contrast, the CRF
showed less gain on broadcast news data. When all features were used, the CRF performance
was identical with performance of the HMM. Across all conditions, the overall best results
were achieved by three-way voting among the classifiers.

Roark et al. [72] presented a sentence segmentation method based on reranking of N -best
lists. First, the N -best lists were generated based using a baseline system. Then, the lists
were reranked using a MaxEnt reranker. The features were mainly based on outputs from a
number of parsers, but the authors also used prosody in terms of automatically predicted ToBI
labels, N -gram scores, and some other features. The empirical results on conversational data
showed 2.6 % gain in NIST error rate for reference conditions, and a modest, yet statistically
significant improvement for ASR conditions.

For sentence boundary detection and classification in conversational telephone speech,
Tomalin and Woodland [90] exploited prosodic classifiers based on discriminatively trained
Gaussian mixture models. In their approach, fourgram LMs were combined with the prosody
model in a lattice-based 1-best Viterbi decoding framework using empirically determined gram-
mar scaling factors. The probabilities obtained from the prosody model were divided by event
priors, and the resulting likelihoods were placed on the arcs of initial lattices, which were then
expanded using the LMs in the HTK lattice tools [91]. The prosodic posteriors were generated
using two different approaches. The first approach was based on using CART-style decision
trees, the latter on the dicriminatively trained GMMs. For each SU subtype (statement, ques-
tion, backchannel, incomplete, no-boundary), GMMs were built using maximum likelihood
training. Then, the GMMs were reestimated using Maximum Mutual Information training.
The results indicated that the GMMs performed as well as decision trees, and, when both
models were interpolated, the NIST error rate dropped by 0.8% absolute over the decision tree
baseline.

Zimmermann et al. [92] presented a multilingual system for sentence segmentation of En-
glish and Mandarin broadcast programs. They tested several different models, including hidden
event LM, MaxEnt, decision trees, and BoosTexter5 [93], however, their comparison was only
complete for lexical and pause features because a richer prosodic feature set was only tested
with the BoosTexter model. The comparison showed that the best results were achieved when
the BoosTexter model was combined with the hidden event LM. The reported results were
NIST = 62.4% and F = 67.3% for English and NIST = 58.7% and F = 70.8% for Mandarin.

Matusov et al. [94] presented a sentence segmentation and punctuation prediction system
5BoosTexter model will be discussed in more detail in Section 7.3.
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tailored for spoken language translation. The method was based on a log-linear combination
of several independent models. The language model probability was factored into a product
of a segment start, segment internal, and segment end probability. The pause model reflected
normalized pause duration at the hypothesized word boundary. Other prosodic features were
not utilized, but the authors claimed these could be added with a separate scaling factor,
assuming they would provide a single posterior of a segment boundary. The authors also in-
cluded an explicit sentence length probability feature having a log-normal distribution with
parameters determined via a maximum likelihood estimate. Finally, a recursive search algo-
rithm was employed to determine the globally optimal sentence segmentation of the document.
The obtained results were slightly better than results achieved by the HMM approach trained
on the same data.

In a later paper [4], in order to couple the segmentation with the predictive power of
the phrase translation model, the same team introduced a novel feature – phrase coverage.
They also performed comma prediction to produce commas as “soft boundaries” constraining
reordering in the MT search. They concluded that the best translation results were achieved
when segmentation algorithms were directly optimized for translation quality.

Batista et al. [95] developed an automatic punctuation restoration module as part of a
Portuguese broadcast news transcription system. They focused on full stops and commas and
employed a MaxEnt approach. Their features captured word and POS information, pause
duration, and speaker changes. For sentence boundary detection, they reported P = 76%,
R = 69%, and F = 73% for reference, and P = 69%, R = 48%, and F = 56% for ASR
transcripts

Once again, there is also some specific work on Japanese. Shitaoka and his colleagues [96]
presented two methods for sentence boundary detection in spontaneous Japanese. The first
method was based on dependency information, the latter was based on SVMs viewing sentence
boundary detection as a text chunking problem. The latter method, which was found to
be superior, used the following features: morphological information of three preceding and
subsequent words (character strings, pronunciation, POS, inflection type, inflection form),
normalized pause duration, clause boundary information, and dependency probabilities of the
target bunsetsu.6 In a more recent paper, Akita et al. [97] adopted very similar approaches,
and tested them on real ASR output. Again, the SVM-based method performed better than
the statistical language model alone. As expected, the SVM-based method was also more
robust to ASR errors.

3.3 Chapter Summary

In this chapter, I have reviewed studies about perception of prosodic boundaries as well as
past work on automatic sentence segmentation of speech. First, I should point out the work
of Grosjean followed by the joint work by Carlson, Swerts, and Hirschberg. Their listening
tests showed that a significant amount of prosodic boundary markup is contained in the last
word before the boundary. This finding has important implications for automatic boundary
prediction systems since it suggests that good results may be achieved even if only local
prosodic features are used. Noticeable results were also presented by Fach, who showed that
most syntactic boundaries were in correspondence with prosodic boundaries in broadcast news
speech. However, although his results were interesting, the alignment of prosody and syntax
remains a debated area requiring further research.

A number of papers studied the phenomenon of preboundary lengthening. Some results

6Bunsetsu is a Japanese phrasal unit.
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of perception tests were contradictory. For example, while a positive correlation of strength
of boundary and lengthening was reported for broadcast speech, a negative correlation was
observed in spontaneous speech. Regarding pausing, it was reported that pauses are more
frequent in spontaneous conversations, in which they also often appear without a syntactic
motivation.

In the second section, I have presented a survey of automatic sentence segmentation sys-
tems categorized based on what knowledge sources have been used. Among the signal-based
approaches not relying on textual information, the multipass linear fold algorithm by Wang
and Narayanan deserves most attention. They achieved encouraging results only using pitch-
related features. The text-only based systems are apparently suboptimal since at least pause
information is essential to achieve good results. However, some of them, such as Cyberpunc,
are also worth mentioning since they introduced some ideas upon which more recent research
has been build.

Past work on automatic sentence boundary detection have shown that both lexical and
prosodic cues are important and should be combined. In this thesis, I largely build upon the
framework proposed by Shriberg and Stolcke. They introduced a “direct modeling” approach
in which prosodic features are extracted directly from the speech signal automatically aligned
with speech recognition output. They had originally proposed to combine lexical and prosodic
features in HMMs but later also used other combination approaches.

A mobile speech-to-speech translator VERBMOBIL was the first end-to-end application
in which prosody and language modeling was successfully combined. From the viewpoint of
this thesis, the most interesting part of the system is the prosody module. The task of the
module was to automatically annotate accents, sentence modalities, and acoustic-prosodic and
syntactic-prosodic boundaries. The VERBMOBIL approach to dialog act segmentation and
classification was based on using MLPs for prosodic classification, polygram language models,
and an A∗-based search algorithm.

I also got inspired by the MaxEnt approach as used by Huang and Zweig, and later, in
a different fashion, by Liu et al. Furthermore, same as Zimmermann et al., I also employ
the BoosTexter algorithm in my work. I also should highlight the work by Roark et al. Their
complex approach is particularly interesting by using parsing features for hypotheses reranking.
The parsing features should generally be helpful for sentence segmentation of speech, but their
drawback is that parsing performance is largely affected by ASR errors.

Finally, note that a lot of the work summarized in this chapter has only been tested on
manual transcripts. Even though such studies may provide interesting insights, the goal of this
thesis is to develop robust methods also working well with real ASR output that contains word
errors. Thus, my experiments in this thesis are evaluated using both human and automatically
generated speech transcripts.
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Thesis Objectives

From now on, ending a sentence with a preposition
is something up with which I will not put.

Winston Churchill

The three preceding chapters, outlining my motivation, important linguistic background, and
the state of the art in automatic sentence segmentation of speech, represented an introductory
part of the thesis. Before describing my own work, this chapter explicitly lists particular
objectives of this thesis. The objectives can be divided into two groups – Creation and analysis
of data resources and Development of automatic sentence-like unit segmentation systems.

Since a suitable English corpus has already been available, the data creation part of this
work only focuses on Czech. The objective of this part is the following:

1. Prepare and analyze Czech speech corpora with appropriate annotation of sentence-like
unit boundaries. In order to analyze difference between planned and spontaneous speech,
it was decided to create two distinct corpora – one in the domain of broadcast news
and the other in the domain of broadcast conversations. The employed annotation
scheme goes far beyond just marking sentence-like unit boundaries since it also includes
annotation of fillers and edit disfluencies. This work is described in Chapter 5.

In the experimental part, I deal with both English and Czech. Since my work in both lan-
guages builds upon similar modeling approaches, before presenting the experiments themselves,
I first describe the methods for prosodic feature extraction (Chapter 6), and the statistical
models used for automatic sentence segmentation (Chapter 7). The experiments focusing on
English were performed on the publicly available ICSI meeting corpus, whereas my experi-
ments with spoken Czech used the new corpora created as part of this thesis. The explicit
objectives in the experimental part are the following:

2. Explore dialog act segmentation of multiparty meetings in English. The automatic pro-
cessing of multiparty meetings is an area of growing interest. Since prior to this work,
this domain has not been well explored for sentence or dialog act segmentation, this
has been done as part of this thesis. Besides standard speaker-independent experiments
(Chapter 8), I have also focused on investigating speaker-specific modeling in this domain
(Chapter 9).

3. Develop and evaluate a baseline sentence unit segmentation system for Czech. In this
subtask, the goal is to design a sentence-like unit segmentation system and evaluate it
using the corpora created in Objective 1. This work is described in Chapter 10.

29





Chapter 5

Design, Creation, and Analysis of
Czech Speech Corpora with
Structural Metadata Annotation

Words are the coins making up the currency of sentences,
and there are always too many small coins.

Jules Renard

One of the main goals of this thesis was to create a sentence boundary detection system for
spoken Czech. However, at the time when this work started, no speech corpora with annotation
of sentence-like units necessary for training and testing Czech sentence segmentation systems
were available. Hence, such corpora had to be prepared as a very important part of this work.
I decided to create two corpora in two different domains: broadcast news (mostly read-aloud
speech) and broadcast conversations (mostly spontaneous speech). The first corpus was created
“just” by enriching an existing broadcast news corpus with structural metadata annotation,
whereas the second had to be created from scratch.

The annotation scheme I use is based on the LDC’s “Simple Metadata Annotation Specifi-
cation”. This structural annotation goes far beyond just labeling of sentence-like unit bound-
aries. Speech disfluencies, filler words, and some other phenomena were also annotated since
I wanted to create corpora useful for studying a broad spectrum of spoken language phenom-
ena. In this chapter, I also present a detailed analysis of the annotated corpora in terms of
structural metadata statistics.

This chapter is organized as follows. Section 5.1 describes the used audio data and briefly
outlines how the data were transcribed. Section 5.2 overviews approaches to annotating struc-
ture of spontaneous utterances and states the reasons why I chose to adopt the structural meta-
data annotation approach. Section 5.3 presents the structural metadata annotation guidelines
for Czech. Section 5.4 analyzes a number of structural metadata statistics relating to the two
annotated corpora. Section 5.5 summarizes the whole chapter.

5.1 Speech Data

5.1.1 Czech Broadcast News Corpus

The broadcast news (BN) speech data I used for this work were taken from the Czech Broadcast
News Corpus. This corpus was recorded at UWB and is publicly available from the Linguistic
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Table 5.1: Basic numbers about Czech Broadcast News corpus (BN) and Radioforum corpus (RF)

BN RF

Number of shows 342 52
Number of word tokens 234.2k 207.8k
Number of unique words 31.9k 25.3k
Duration of transcr. speech 26.7h 24.0h
Total number of speakers 284 94
— male speakers 188 77
— female speakers 96 17

Data Consortium (LDC) [98]. The corpus is spanning the period February 1, 2000 through
April 22, 2000. During this time, news broadcasts on 3 TV channels and 4 radio stations were
recorded. The whole corpus contains over 60 hours of audio stored on 342 waveform files,
which yield more than 26 hours of pure transcribed speech.1 The recordings do not contain
weather forecasts, sport news, and traffic announcements. The signal is single channel. It
was originally sampled at 44.10 kHz with 16-bit resolution, but for the official release, the
waveforms were downsampled to 22.05 kHz. Basic numbers about the BN corpus are listed in
Table 5.1. Details about corpus orthographic transcriptions were given in [99].

5.1.2 Radioforum – Czech Broadcast Conversation Corpus

The UWB speech research group has mainly gained its Czech spontaneous speech processing
experience within the MALACH project [100]. However, at the time this work started, the
testimonies of Holocaust survivors that comprise this corpus could not be freely distributed.
Hence, a new corpus was recorded to support broader research on the problem of spontaneous
Czech.

5.1.3 Audio Data

The newly recorded spontaneous speech database consists of 52 recordings of a radio discussion
program called Radioforum (RF), which is broadcast by Czech Radio 1 every weekday evening.
Radioforum is a live talk show where invited guests (most often politicians but also journalists,
economists, doctors, teachers, soldiers, crime victims, and so on) spontaneously answer topical
questions asked by one or two interviewers. The number of interviewees in a single program
ranges from one to three. Most frequently, one interviewer and two interviewees appear in one
show. The material includes passages of interactive dialog, but longer stretches of monolog-like
speech slightly prevail.

Although the corpus was recorded from public radio where standard (literary) Czech would
be expected, many speakers, especially those not used to talking on the radio, use colloquial
language as well. Literary and colloquial word forms are often mixed in a single sentence.
The usage of colloquial language, however, is not as frequent as in unconstrained informal
conversations.

1Because of copyright issues, only 286 of the 342 recorded shows yielding 22.8 hours of transcribed speech
could have been published at the LDC. However, I used all 342 recordings for all my experiments described in
this thesis.
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The recordings were acquired during the period from February 12, 2003 through June 6,
2003. The signal is single channel, sampled at 44 kHz with 16-bit resolution. Typical duration
of a single discussion is 33–35 minutes (shortened to 26–29 minutes after removing compact
segments of telephonic questions asked by radio listeners, which were not transcribed). Some
basic numbers about the corpus are presented in the third column of Table 5.1.

5.1.4 Speech Transcription

The recorded shows were manually transcribed based on detailed annotation guidelines. The
goal of the transcription was to produce precise time-aligned verbatim transcripts of the audio
recordings. The transcription guidelines for this Czech corpus were based on the guidelines
published in [99, 12]. However, the original guidelines were adjusted to better accommodate
specifics of the recorded spontaneous speech corpus. Some of the modifications were inspired
by the LDC’s “Guidelines for RT-04 Transcription” [101]. For example, in order to increase
inter-labeler consistency, the number of tags for labeling speaker and background noises was
significantly reduced. For the same reason, I also changed the rules for transcription of filled
pauses because the original rules had been too vague. The filled pause issue is discussed in
more detail below in Section 5.3.1.1.

Among others, the transcription guidelines instructed annotators how to deal with the
following phenomena:

• Speaker turns – a corresponding time stamp and speaker ID are inserted every time there
is a speaker change in the audio.

• Turn-internal breakpoints – to break up long turns, breakpoints roughly corresponding
to “sentence” boundaries within a speaker turn are inserted.

• Overlapping speech – an overlapping speech region is recognized when more than one
speaker talks simultaneously; within this region, each speaker’s speech is transcribed
separately (if intelligible).

• Background noises – [NOISE] tags are used to mark noticeable background noises.

• Speaker noises – speaker-produced noises are identified with one of the following tags:
[LOUD_BREATH], [COUGH], [LAUGHTER], [CLICK].

• Filled pauses – filled pauses produced by a speaker to indicate hesitation or to main-
tain control of a conversation are transcribed either as [EE-HESITATION] or as [MM-
HESITATION], based on their pronunciation.

• Interjections – certain interjections typically used as backchannels or to express speaker’s
agreement or disagreement are transcribed using the [MHM] (disagreement) and [HM]
(agreement or backchannel) tags.

• Unintelligible speech – regions of unintelligible speech are marked with a special symbol.

• Numbers – all numerals are transcribed as complete words.

• Foreign names – foreign names in the transcript are marked using special symbols; if
pronunciation of a foreign language name differs from that expected by Czech spelling
rules, it is added to the transcript as a comment.
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• Mispronounced words – mispronounced words (reading errors, slips of the tongue) are
transcribed in the spelling corresponding to their pronunciation in the audio (i.e., the
incorrect pronunciation is represented2) and marked with a special symbol.

• Word fragments – the pronounced part of the word is transcribed and a single dash is
used to indicate point at which word was broken off.

• Punctuation – standard punctuation (limited to commas, periods, and question marks)
is used to enhance transcript readability.

The verbatim transcripts of this corpus were created by a large number of annotators. To keep
them maximally correct and consistent, all submitted annotations were manually revised.

5.2 Annotation of Spontaneous Speech Structure

In the previous section, the creation of time-aligned verbatim transcripts was described. This
annotation is usually sufficient for training and testing standard ASR systems. However,
raw streams of words do not convey complete information because the structural information
beyond the words (metadata) is equally important as the words themselves. As mentioned in
the Introduction, structural information is critical to both increasing human readability of the
transcripts and allowing application of downstream NLP methods, which typically require a
fluent and formatted input.

This thesis is focused on automatic generation of rich speech transcripts3 which not only
contain words but also boundaries of sentence-like units. Thus, the key problem is how to
annotate sentence boundaries in speech. In principle, there are two basic options. The first
option is to use standard punctuation, whereas the other is to employ a special annotation
scheme tailored for spoken language. Although the former approach is quite convenient for
read speech, its convenience for spontaneous speech is at least questionable.

Because spontaneous utterances are not as well-structured as read speech and written
text, there exist a number of reasons why annotating structure by simply making reference
to standard punctuation is inadequate for many applications. First, there are no agreed-upon
rules for punctuating faulty syntactic structures, which are quite frequent in spontaneous
speech. Second, punctuation marks are ambiguous; commas may indicate several different
structural/syntactic events (e.g., clausal break, apposition, parenthesis, etc.). Third, even for
written text, the rules for applying punctuation are quite variable; for instance commas are op-
tional in many cases. Fourth, standard punctuation does not convey all structural information
contained in spontaneous speech. Spontaneous utterances are often incomplete or disfluent.
Since dealing with the specific spontaneous speech phenomena is crucial to spontaneous speech
understanding, more precise annotation of disfluencies and other structural phenomena is re-
quired. On the other hand, we must take into account that special annotation of spontaneous
speech phenomena is extremely labor-intensive and thus expensive.

5.2.1 Related Work on Spontaneous Speech Annotation

Several different annotation schemes has been presented for similar annotation tasks. Earliest
efforts include the Meteer manual for disfluency tagging of the Switchboard corpus [102]. A
detailed annotation scheme for the Trains dialog corpus was proposed by Heeman [103]. His

2Unlike English, this is possible in Czech since spelling rules are phonetically based.
3Besides sentence boundaries, such rich transcripts may also include speaker diarization (who speaks when),

disfluency annotation, or other structural information.
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annotation scheme included labeling of intonational boundaries within the ToBI framework,
identification of discourse markers, and a very detailed annotation of speech repairs.

Within the VERBMOBIL project, Batliner et al. [78] presented a syntactic-prosodic la-
beling system for large spontaneous speech databases called “M”. This annotation was only
based on word transcripts; the annotators did not have access to audio recordings. Using a
rough syntactic analysis, each word in a turn was assigned to one of 25 “M” classes. De-
pending on the target task, these 25 classes were grouped either into 3 main M classes (M3 -
clause boundary, M0 - clause internal, MU - boundaries that cannot be determined without
listening to audio or knowing particular pragmatic context), or into 5 syntactic classes (S0 -
no boundary, S1 - boundary after a particle, S2 - phrase boundary, S3 - clause boundary, S4 -
sentence boundary). An apparent drawback of this approach is that the annotation scheme is
very complex and requires experienced linguist annotators.

At the time I started my work on this task, there was no similar annotation system for
Czech. In addition, there was almost no published work focusing on syntax of conversational
Czech. The exception is a treatise by Müllerová [104]. This monograph describes syntactic
phenomena specific for conversational Czech, surveys various types of speech repairs, and
briefly discusses Czech discourse markers. Although Müllerová’s work is interesting, it does
not offer any clear clues to explicit annotation of sentence-like units in spoken Czech. The
definitions provided in this work are too vague to be applicable to NLP tasks; the author only
studies spoken Czech in terms of a qualitative linguistic description.

Müllerová argues that it is often impossible to decide whether neighboring syntactic con-
stituents correspond to a compound sentence or to a pair of independent syntactic structures.
She proposes to distinguish four types of syntactic boundaries: (1) overt sentence boundaries
without any valence ambiguity; (2) subordinate boundaries delimited by subordinate conjunc-
tions; (3) boundaries with ambiguous syntactic constituents (not clear whether linked to the
preceding or the following predicate); and (4) boundaries in regions with ill-formed syntactic
structure.

In addition to the above mentioned syntactic boundaries, Müllerová also defines content-
pragmatic units. She defines these units as syntactically and semantically coherent segments,
which correspond to elementary illocutionary acts. Boundaries between these units are rec-
ognized based on semantic and pragmatic features. Although this general definition of the
content-pragmatic units is in good agreement with our definition of SUs (presented below in
Section 5.3.3), the author herself admits that boundaries of these units are often ambiguous,
and, again, does not give any clear clues how to identify them with satisfactory consistency.

5.2.2 Structural Metadata Annotation Approach

For my work, I have decided to adopt the “Simple Metadata Annotation” approach [105], which
was introduced by the LDC as part of the DARPA EARS (Efficient, Affordable, Reusable
Speech-to-Text) program [106]. This annotation was defined for the EARS Metadata Ex-
traction (MDE) subtask [107]. The goal of MDE is to create automatic transcripts that are
maximally readable. This readability may be achieved in a number of ways: creating bound-
aries between natural breakpoints in the flow of speech; flagging non-content words like filled
pauses and discourse markers for optional removal; and identifying sections of disfluent speech.

The word “simple” in the name of the approach only emphasizes a contrast with an early
MDE definition known as “Full MDE”. Since a pilot annotation study had revealed a number
of problems with consistency of the “full” annotation, LDC developed the “simple” definition
that eliminated some annotation tasks entirely and simplified others. As a result, the current
MDE annotation can be performed by non-linguist annotators with reasonable consistency.
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I have chosen to adopt the simple MDE approach for the following reasons:

• Because of the EARS project, the MDE annotation has become widely accepted as an
annotation scheme for spontaneous speech.

• In comparison with other annotation schemes, the MDE system is relatively simple,
which makes annotator training easier.

• It is not domain- or style-dependent, so that it can directly be used for both broadcast
news and conversations.

• Speech transcripts segmented according to the MDE standard have already been suc-
cessfully tested in downstream NLP applications (speech summarization, information
retrieval, machine translation, etc.).

Although this thesis primarily focus on segmentation of speech into sentence-like units in
this work, we decided to create corpora with complete MDE annotation in order to support
future research of other spontaneous speech phenomena. Besides its importance to MDE
research, the MDE-annotated corpora may also be useful for linguistic analysis of spontaneous
Czech. In spite of the fact that the MDE annotation guidelines were primarily designed for
spontaneous speech, the same guidelines may also be used for annotation of broadcast news
corpora. Planned speech only makes the annotation easier since utterances that are difficult
to annotate are much less frequent. Thus, the same guidelines were used for both the RF and
BN corpus.

5.3 Structural Metadata Annotation for Czech

Originally, the structural MDE annotation standard was defined for English. When developing
structural metadata annotation guidelines for Czech, I tried to follow the LDC guidelines for
English as much as possible. However, it would not be correct to simply translate and copy all
conventions from one language to another. Individual rules must be adjusted to accommodate
specific phenomena of the target language. The language-dependent modifications are mainly
based on the description of syntax of Czech compound and complex sentences as given by [108].
I also used two other Czech syntax handbooks [109, 110].

In the following text, all illustrative examples are presented in Czech and then in their
English translations. Note that, because of significant differences between Czech and English,
it is often impossible to present a good verbatim translation. I tried to use English translations
that best illustrate the linguistic phenomena of interest. Also note that SU symbols in all
English translations are not displayed as based on the English MDE standard, but rather
illustrate their placement with respect to the Czech guidelines. Furthermore, the examples
do not contain standard punctuation but only SU symbols. All examples are typed in a
typewriter font. If an example represents a conversation, the speakers are distinguished using
capital letter IDs (A:, B:).

In all examples in this section, I use a notation that is very similar to the notation used in
the original English guidelines [105]. The notation is the following:4

Fillers:

word – “word” is a filler (discourse marker or explicit editing term)
{ word } – “word” is an Aside/Parenthetical

4In this introductory section, I just list the employed MDE symbols. Their meaning is explained below in
corresponding sections.
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Edit Disfluencies:

[ word ] * – “word” is a Deletable Region; * denotes an interruption point
word – “word” is the corrected portion of a disfluency

SUs:

/. – statement SU break
/? – question SU break
/- – incomplete SU break – arbitrarily abandoned
/∼ – incomplete SU break – interrupted
/& – coordination break
/, – clause break
⊘ – no break at a place where one might be expected

The remainder of this section is organized as follows. Section 5.3.1 describes annotation of
fillers, Section 5.3.2 presents annotation of edit disfluencies, and Section 5.3.3 is devoted to
annotation of syntactic-semantic units (SUs).

5.3.1 Fillers

Fillers are words, short phrases, or non-verbal hesitation sounds that do not alter the proposi-
tional content of the utterance in which they are inserted. Their characteristic feature is that
they do not depend on identities of surrounding words. In general, fillers are those parts of the
utterance which could be removed from its transcript without losing any “important” piece of
information. Four types of fillers are distinguished within the MDE system:

• Filled Pauses (FP),

• Discourse Markers (DM),

• Explicit Editing Terms (EET),

• Asides/Parentheticals (A/P).

Annotating fillers consists of identifying the filler words and assigning them an appropriate
label.

5.3.1.1 Filled Pauses

FP is a non-verbal hesitation sound produced by speakers (either intentionally or not) to in-
dicate uncertainty or to keep control of a conversation while thinking what to say next. In
general, FPs can appear anywhere in the flow of speech. By their definition, they make no con-
tribution to the semantic proposition of the utterance. Thus, FPs should not be confused with
certain interjections that function to express agreement or disagreement, or as backchannels
(such as English uh-huh). FP as a linguistic phenomenon was mentioned in Section 2.3.1.1.

An important (and also very interesting) fact about FPs is that they vary across languages.
For instance, FPs in American English are known as uh and um, while Japanese speakers use
ahh, ano, or eto, and French talkers most frequently vocalize a sound similar to euh [111].
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No thorough linguistic study on FPs has been conducted for Czech. Consequently, there
is no general agreement on how to transcribe them in text – their transcription differs corpus
to corpus. For instance, Kaderka and Svobodová [112] propose to distinguish ten non-verbal
sounds, six of which correspond to FPs5 (e, ee, eee, eh, ehm, em). The first three FPs from
this list differ only in length, the other three differ in phonetic makeup. My opinion is that to
distinguish six different FPs is too many.

When developing transcription rules for FPs, one must be aware of the fact that there
is always a trade off relation between transcription accuracy and consistency. If we choose
too many categories, annotators will not be consistent in their recognition. On the other
hand, too broad categories might cluster FPs that are wholly different both phonetically and
functionally.

In order to be able to design annotation guidelines for Czech FPs, I spent a lot of time
listening to Czech spontaneous speech recordings. Based on this experience, I decided to
distinguish the following two FP categories:

• EE – this FP category is most typically represented by sounds similar to Czech é, but
in my annotation guidelines, it also includes all hesitation sounds that are phonetically
closer to vowels than consonants – for example, sounds similar to Czech long vowel á
also may function as FPs. Also note that EEs are sometimes accompanied with a creaky
voice quality.

• MM – this FP category contains all hesitation sounds that are phonetically more similar
to consonants or mumble-like sounds. The most frequent hesitation sound from this
group is similar to mmm. Another not infrequent example of an MM is an FP resembling
a lengthened Czech consonant v. MMs typically pronounced with a closed (or almost
closed) mouth – openness of mouth is also a good feature distinguishing MMs from EEs.

Overall, EEs are significantly more frequent than MMs. Experience with annotation of the
two Czech corpora presented herein indicates that these two categories very well cover a vast
majority of all FPs occurring in spontaneous Czech. Moreover, our annotators felt comfortable
with using these two FP labels. Besides the positive experience, the number of recognized FP
categories is also in line with the number of FP categories in American English.

The only problematic instances of FPs in terms of this transcription approach are those
similar to emm. In such FPs, vowel-like and consonant-like components immediately follow
each other. Since such FPs are really rare in spontaneous Czech, I decided not to introduce
a special tag for them. However, I had to prepare instructions specifying their transcription.
Annotators were instructed as follows. Only the MM symbol is used when the vowel-like
component is much shorter than a dominant consonant-like component. By analogy, only the
EE tag is used when the vowel-like component is strongly dominant. When both components
are strong, the FP is transcribed using both symbols as EE MM. This notation is also used
when instances of EE and MM appear separated by a pause. An example of an FP-annotated
utterance follows.

To je EE jenom EE MM jeho sen /.

This is EE just EE MM his dream /.

Since I did not allow annotators to transcribe FPs using other words or symbols than
EE and MM, the MDE annotation of FPs was in principle performed during the verbatim
transcription stage. However, the annotators in the MDE annotation stage had the right to

5They do not discriminate between interjections altering content and hesitations in their guidelines.
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insert or change FP symbols. I find this two-pass annotation setup useful because FPs are
quite often missed by human transcribers.

Note that the presented novel approach to annotating FPs was only used for the RF corpus.
The verbatim transcripts of the BN corpus had been created earlier using an FP annotation
based on different guidelines. These guidelines paid only little attention to description of FP
types. The vast majority of FPs in this corpus were transcribed as ERs.6 Annotators could
also use another English FP transcription, UM, but this symbol occurs only several times in
the transcripts – apparently because FPs of this type are very rare in Czech.

5.3.1.2 Discourse Markers

DMs are words or phrases, such as the well-known “you know”, that function primarily as
structuring elements of spoken language. They do not carry separate meaning but signal such
activities as a change of speaker, taking or holding control of the floor, giving up the floor, or
beginning of a new topic. There exists a number of diverse definitions of DMs in the linguistic
literature. Within MDE, we are only interested in such DMs whose presence in the utterance
is unnecessary and whose cleanup do not lead to loss of “important” structuring information.
Thus, structuring units such as “Za prvé, . . . ” (“First, . . . ”) do not receive DM labels. If
multiple DMs occur in succession, each DM is tagged separately, rather than labeling one long
DM spanning over all successive DM instances. An example of DM annotation follows.

Tak já jako nevím /.

So I like don’t know /.

For any language, it is not possible to create a closed list of possible DMs. The of use DMs
is dependent on a dialectal variation and rhetorical style of a particular talker. The list of
popular DMs in Czech includes: dobře (well), jako (like), jaksi (sort of), no (well), podívejte
se (you see), prostě (simply), tak (so), takže (thus), tedy (then), víte (you know), víte co (you
know what), vlastně (actually), v podstatě (basically), among others.

Some of the frequent DM words and phrases also have other literal meanings, which some-
times makes identification of DMs more difficult. For example, it is often difficult to decide
whether the word takže serves as a DM or not. When annotating instances of this word, one
must analyze whether the speaker intented to express relation to his/her preceding proposi-
tion, or to mark a discourse boundary. Another ambiguous word is jako, as illustrated in the
following example. In the first sentence, it expresses a comparison, while in the second, it
functions as a DM.

Je rychlý jako blesk /.
vs.
To jako není nic neobvyklého /.

He is fast like lightning /.
vs.
It is like nothing unusual /.

Besides general DMs, the MDE annotation system also recognizes its special case – Dis-
course Response (DR). DRs are DMs that are employed to express an active response to what
another speaker said, in addition to mark the discourse structure. For instance, a speaker may
also initiate his/her attempt to take the floor. DRs typically occur turn-initially. Importantly,

6Er is a British variant of American uh.

39



Chapter 5. Czech Speech Corpora with Structural Metadata Annotation

DRs should not be confused with direct answers to questions. Distinction between DRs and
direct responses to questions is discussed below in Section 5.3.3.14. An example of a DR
follows.

A: Já bych to tak udělal /.
B: Hele já si tím nejsem tak jistej /.

A: I’d do it that way /.
B: See I’m not that sure about it /.

5.3.1.3 Asides/Parentheticals

Asides and parentheticals occur when the speaker utters a short side comment and then returns
to the original sentence pattern. Asides are comments on a new topic, while parentheticals are
on the same topic as the main utterance. For annotation purposes, asides and parentheticals
are not distinguished but treated as a single filler type. A/Ps are often prosodically marked.
Speakers usually pause or shift their intonation. Strictly speaking, A/Ps are not fillers, but
because as with other filler types, annotators must identify the full span of text functioning as
an A/P, they are included with fillers in the guidelines. An example of an A/P follows.

Potom k němu přišel { moment musím si vypnout telefon } s tím velkým
psem /.

Then he came to him { moment I must switch off my cell phone } with the
big dog /.

Some very common Czech words or short phrases that can be denoted as “lexicalized
parentheticals” (e.g., řekněme (say),myslím (I think)) are not annotated as A/Ps. They usually
lack the prosodic features that typically accompany A/Ps. In order to ensure a high IAA, a
preliminary illustrative list of those “lexicalized parentheticals” was prepared. In addition, the
maximal allowed length of a lexicalized parenthetical was limited to two words.

An important restriction of A/Ps within our MDE guidelines is that they cannot occur as
SU-initial or SU-final. Such grammatical parentheticals occurring not in the middle of an SU
but on their onset or end should rather be separated by an SU symbol (clausal break or an
SU-external break).

Je to sto hlasů i s tím ministrem /, jak jsme dneska četli /.

It’s one hudred votes including the minister /, as we read today /.

5.3.1.4 Explicit Editing Terms

Another type of fillers, EET, may only occur accompanying an edit disfluency. EETs are
explicit expressions by which speakers signal that they are aware of the existence of a disfluency
on their part. Basically, they can appear anywhere within the disfluency, but most frequently
occur right after the end of the reparandum. EETs are rather rare in actual conversational
language. Typical Czech EETs are e.g., nebo (or), či (or), spíše (rather), vlastně (actually),
or chtěl jsem říct (I wanted to say).

Tohle je naše [ koherentní ]* EE spíše konzistentní stanovisko /.

This is our [ coherent ]* EE rather consistent statement /.
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5.3.2 Edit Disfluencies

Edit disfluencies are portions of speech in which a speaker corrects or alters his/her utterance,
or abandons it entirely. Annotation of edit disfluencies within the MDE scheme respects their
structure described in Section 2.3.1, but individual phases of a disfluency are denoted using a
slightly different naming convention. Herein, the phases of an edit disfluency are referred to as
Deletable Region (DelReg, speaker’s initial attempt to formulate an utterance that later gets
corrected), interruption point (IP, the point at which the speaker breaks off the DelReg with
an EET, repetition, revision or restart), optional explicit editing terms (an overt statement
from the speaker recognizing the existence of a disfluency), and correction (portion of speech in
which speaker corrects or alters the DelReg). Whereas corrections were not explicitly tagged
within the English MDE project, I decided to label them in order to obtain relevant data for
further research of spontaneous Czech. Their labeling is not very time consuming and the
obtained data may be very useful – some typical correction patterns may be learned. An
example of an edit disfluency follows:

Naše děti milují [ kočku ]* EE vlastně psa pana Krause /.

Our children love [ the cat ]* EE actually the dog of Mr Kraus /.

Moreover, it often happens that a speaker produces several disluencies in succession, either
as serial or nested. In case of serial disfluencies, we simply mark the maximal extent of the
disfluency as a single DelReg with multiple IPs that are explicitly tagged.

Ale [ ta * myšl- * ten * ten zlej ]* ten podivnej pocit to se nedá
dobře popsat /.

But [ the * ide- * the * the bad ]* the strange feeling it can’t be
described well /.

Nested disfluencies (some component of the disfluency is disfluent itself) are more difficult
to annotate. To keep annotation as simple as possible, the MDE standard does not allow using
nested disfluency labels, so that all such disfluencies must be annotated using just simple,
non-nested DelRegs. The following example shows a correction that contains an additional
disfluency.

Přijel jsem [ do Brna ]* do [Plz- ]* Plzně dnes ráno /.

I arrived [ to Brno ]* to [Pil- ]* Pilsen today morning /.

Since Czech disfluencies have the same pattern as English, the rules about complex disfluencies
from [105] can basically be directly applied to Czech. Thus, I do not survey all particular rules
for annotating complex disfluencies herein because interested readers may consult the original
English guidelines.

5.3.3 SUs

Dividing the stream of words into sentence-like units is a crucial component of the MDE
annotation. The goal of this part of annotation is to improve transcript readability and
processability by presenting it in small coherent chunks rather than long unstructured turns.
Because speakers often tend to use long continuous compound sentences in spontaneous speech,
it is nearly impossible to identify the end-of-sentence boundary with consistency using only a
vague notion of a “conversational equivalent” of a written sentence – strict segmentation rules
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are necessary. Past experience with similar annotation problems indicates that acceptable
inter-annotator agreement (IAA) can only be achieved in the context of rules grounded in
“surface features”, i.e. mainly syntax and prosody. Semantic features have not proved to be
reliable.

One possible solution to the “conversational sentence” definition problem is to divide the
flow of speech into “minimal meaningful units” functioning to express one complete idea on
the speaker’s part. It means that we divide the stream of words wherever it is grammatically
possible and meaningful. The resulting units are either shorter or equally long as sentences in
standard writing. These smaller units also seem to be convenient for downstream automatic
applications. For example, speech translation applications usually prefer to process shorter
segments [113].

The target utterance units are called SUs within the MDE task. In the MDE def-
inition, the abbreviation SU may stand for one of the following possibilities: Senten-
tial/Syntactic/Semantic/Slash Unit. Every word within the discourse is assigned to an SU
(each word contained between two SU boundaries is considered part of the same SU), and all
SUs are classified according to their function within the discourse. The following list shows
the employed SU symbols (breaks) along with brief descriptions of their meaning:

• /. – Statement break – end of a complete SU functioning as a declarative statement
(Kate loves roses /.)

• /? – Question break – end of an interrogative
(Do you like roses /?)

• /, – Clausal break – identifies non-sentence clauses joined by subordination
(If it happens again /, I’ll try a new cable /.)

• /& – Coordination break – identifies coordination of either two dependent clauses or
two main clauses that cannot stand alone
(Not only she is beautiful /& but also she is kind /.)

• /- – Incomplete (arbitrary abandoned) SU
(Because my mother was born in Russia /, I know a lot about the /-
They must fight the crime /.)

• /∼ – Incomplete SU interrupted by another speaker
(A: Tell me about /∼ B: Just a moment /.)

In contrast to the English MDE, we do not use an SU symbol for backchannels because
both Czech corpora are single-channel. Therefore, backchannels that do not overlap with words
uttered by the dominant speaker, and thus can be captured in a single-channel transcript7,
are treated as a special type of a filler.8 In the illustrative examples below, I also use a special
symbol “⊘” which denotes “no break” at places where one might be expected. This symbol is
only used for illustration purposes herein, and does not occur in real MDE annotations.

The SU symbols may be divided into two categories: sentence-internal (/& and /,) and
sentence-external (others). Sentence-external breaks are fundamental and directly support
the SU research task. They are used to indicate the presence of a main (independent) clause.
These independent main clauses can stand alone as a sentence and do not depend directly on
the surrounding clauses for their meaning. Sentence-level breaks may also appear after a short

7Overlapping backchannels are treated as noises since they cannot be explicitly transcribed within the
dominant speaker turn.

8Since these non-overlapping backchannels are extremely rare in the corpus, I did not present their annotation
in a separate section.
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phrase that nonetheless functions as a “complete” sentence. In many cases, these breaks would
be represented in standard writing with end-of-sentence punctuation. Sentence-internal breaks
are secondary and have mainly been introduced to support IAA. However, it should be noted
that it is important to have these symbols in the MDE annotations since some future task
may require them to be automatically detected. Sentence-internal breaks delimit units that
are smaller than a main clause and cannot stand alone as a complete sentence. In standard
writing, these breaks often correspond to commas.

In SU annotation, the fundamental problem is to determine when to insert a new SU
boundary and when to place two segments within the same SU. External breaks are inserted
between SU boundaries, internal breaks (if exist) may further refine each SU. Besides a few
exceptions9, candidate locations for both sentence-internal and sentence-external SU labels are
usually boundaries between two adjacent clauses. Thus, the key problem is to recognize the
type of each clause boundary.

The above presented set of SU symbols corresponds to the original MDE standard. How-
ever, I did not use it as it was originally defined but introduced two significant modifications.
Both modifications are language-independent. First, the original set contains only one symbol
for incomplete SUs, but I propose to distinguish two types of incomplete SUs: /- — indicating
that the speaker abandoned the SU arbitrary; and /∼— indicating that the speaker was inter-
rupted by another speaker. This distinction of incompletes is very useful since their patterns
differ significantly in prosody, semantics, and syntax.

Second, in order to identify some “core boundaries” that could be both easier to detect
automatically based on prosodic cues, and also relevant for spontaneous discourse analysis, I
introduced two new symbols: //. and //? — the double slashes indicate a strong prosodic
marking on the SU boundary, i.e. pause, final lengthening, and/or strong pitch fall/rise. The
additional annotation refinement does not seem to cause a corresponding growth in annotation
complexity. A rule of thumb instructs annotators to use the double-slash SU symbols when in
doubt. IAA for this additional subtask is evaluated in Section 5.4.1. Note that, in contrast to
ToBI-like systems, our system only involves labeling prosodic boundaries on SU boundaries,
rather than on all word boundaries, which is much less time-consuming.

The proposed guideline modifications did not only include changes in the SU symbol set.
Another modification pertains to the pause threshold. In the English SimpleMDE V6.2 stan-
dard, in order to support IAA, the pause longer than 0.5 sec automatically induces the end
of a speaker turn and thereby requires a corresponding SU-external break. But the 0.5 sec
threshold is problematic because some speakers produce long pauses in places where other
speakers might produce filled pauses. Hence, I decided to drop the threshold rule and to rely
solely on syntax. Likewise, I do not require the presence of a noticeable pause after incomplete
(abandoned) SU breaks (/-) when syntax provides an overt evidence of incompleteness.

The following subsections provide descriptions of particular rules for SU annotation. To
keep the description reasonably long, I only present the most important examples – especially
those that emphasize differences between Czech and English. Full annotation guidelines may
be found at http://www.mde.zcu.cz.10

5.3.3.1 Short Stand-alone Phrases Not Containing Verbs

SUs do not necessarily have to contain a verb. Even though some phrases do not constitute
grammatically complete sentences, they may function as a complete utterance. To identify

9These are mentioned in the following sections.
10Unfortunately, the full guidelines are available only in Czech.
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them correctly, annotators must be sure that the phrases are not syntactically connected with
the previous SU.

Vítejte u Radiofóra /. Hosté Jan Novák poslanec a Pavel Kučera stínový
ministr obrany /.

Welcome to Radioforum /. Guests Jan Novák a deputy and Pavel Kučera a
shadow minister of defense /.

These stand-alone phrases often occur following a question – talkers sometimes repeat the
question’s topic to establish common ground before answering.

A: Jsou pro vás Glasgow Rangers těžkým soupeřem /?
B: No Rangers /. My jsme s losem spokojeni /.

A: Are Glasgow Rangers a tough opponent for you /?
B: Well Rangers /. We are satisfied with the draw /.

Another examples are headline news in broadcast news data which should also be annotated
as individual SUs even if they do not form a complete clause.

Mušaraf neoficiálním vítězem pákistánských prezidentských voleb /.
Německo ochromeno stávkou železničářů /. Madelaine Albrightová
v exkluzivním interview pro Českou televizi /.

Musharraf the unofficial winner of Pakistan’s presidential vote /.
Germany paralyzed by rail strike /. Madelaine Albright in an exclusive
interview for the Czech TV /.

All these rules are identical to the corresponding English rules.

5.3.3.2 Juxtaposition of Clauses

In general, juxtaposition means an absence of linking elements in a group of words that are
listed together. As juxtaposition of an “introductory clause”, we understand a connection
of two main clauses that cannot be classified using any of the standard semantic relations
defined by normative Czech grammar (copulative, disjunctive, etc.). The second clause is
syntactically and semantically determined by the preceding clause, but there is no formal
syntactic relationship. Thus, it is a kind of parenthetical clause in terms of grammar. In
most of the cases, such clauses could be connected using the Czech conjunction “že (lit. that)”
without any change of meaning. In English, this phenomenon does not have a separate rule
since, unlike Czech, dropping of the conjunction that is standard. Czech guidelines instruct
annotators to separate the clauses in juxtaposition using a clausal break.

Já vím /, vy to nemáte rád /.

I know /, you don’t like it /.
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5.3.3.3 Quotations

Since no quotation marks are used within the MDE annotation, direct or indirect quotations
impose clausal breaks. The quote and its attribution typically form a single SU. This rule is
identical to the corresponding English rule.

Půjdu tam /, řekl David /.
Martin řekl /, že tam nepůjde /.

I’ll go there /, David said /.
Martin said /, that he wouldn’t go there /.

If the quote is long and the quoted portion of the utterance contains several sentences, addi-
tional SUs are recognized, as shown in the following example:

Ale premiér řekl /, nikdy jsem ho neviděl /. Já toho člověka vůbec
neznám /. Tahle aféra je směšná /.

But the prime minister said /, I have never seen him /. I don’t know
that man at all /. This affair is ridiculous /.

5.3.3.4 Idiomatic Expressions

Similarly to English, frozen idiomatic expressions are not separated by any SU symbols even
if they contain multiple finite verbs.

To je ⊘ prašť ⊘ jako uhoď /.

It is ⊘ hit ⊘ or punch /.

5.3.3.5 Independent Subordinate-like Clauses

A complete SU may also be composed of stand-alone independent clauses starting with sub-
ordinate conjunctions. In these cases, the subordinate conjunctions basically functions as
particles rather than conjunctions.

Protože toto je opravdu jednoduché /.

Because this is really easy /.

5.3.3.6 Parcelation

In spontaneous speaking, speakers often do not precisely plan the structure of their utterances
in advance. As a result, we sometimes observe discontinuous appending of additional utterance
constituents. The talker composes several successive elliptic utterance units, which typically
have separate focal accents. This phenomenon is referred to as parcelation in Czech litera-
ture. If this parcelation is strong (which is typically recognized from short pauses between
constituents), the utterance is segmented into multiple SUs.

Chceš s ním mluvit /? Sama /? Beze svědků /?

Do you want to speak with him /? Alone /? Without witnesses /?
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5.3.3.7 Appositions

Apposition is a grammatical construction in which two elements are placed side by side, with
one element serving to define or refine the other. In standard Czech writing, these constituents
are typically separated by a comma, however, in the MDE annotation, we do not separate them
by any SU breaks.

Daniel Mach ⊘ ředitel místní školy ⊘ je můj přítel /.

Daniel Mach ⊘ the local school principal ⊘ is my friend /.

In most cases, noun phrases form appositions. However, based on the broad definition
of appositions (as defined by Vladimír Šmilauer), verbs, adverbs, or even clauses may form
appositions, too. If a clause embedded in another clause appears in a apposition, we separate
it by a clausal break.

Řeka se kroutí /, tedy tvoří meandry /, blízko u lesa /.

The river twirls /, thus it forms meanders /, close to the wood /.

I should also mention special introductory phrases such as “to jest ( lit. that is)” or “to
znamená ( lit. it means)” (i.e., frozen phrases containing a finite verb), which frequently
accompany clausal appositions. In terms of MDE, these phrases should not be understood as
clauses but rather as introductory particles. As a result, they do not motivate any SU breaks.
An illustrative example follows.

Řeka se kroutí /, to znamená ⊘ tvoří meandry /, blízko u lesa /.

The river twirls /, it means ⊘ forms meanders /, close to the wood /.

In contrast to the previous examples, if a clause that seems to be appositional is not
embedded in another clause and may stand alone, it should be annotated as an independent
SU. This is in agreement with the rule of thumb for problematic decisions – “segment wherever
it is possible!”.

Důkazy byly takové /, že soudy je osvobodily /. To znamená zbavily je
toho obvinění /.

There were such evidence /, that the court set them free /. It means
they found them not guilty /.

5.3.3.8 Anacolutha

An anacoluthon in spoken language can be defined as an abrupt change of syntax within
an utterance. In other words, an utterance begins in a way that implies a certain logical
resolution, but concludes differently from the form grammar leads us to expect. An example
of an anacoluthon in Czech is a disagreement between subject and predicate within a clause.
Although anacolutha can also be used as a purposeful stylistic virtue, they more frequently
occur as a consequence of an unintentional grammatical fault in conversational language. In
the Czech corpora, anacolutha often occur in the vicinity of parentheticals and asides, as shown
in the following example.
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Pokud se skupina států {a nejsou to jenom Spojené státy je to také
Velká Británie a další} rozhodnou použít sílu /, tak ...

If the group of states {and it’s not just the United States it’s also
Great Britain and others} decide to use power /, then ...

In the example above, to match the singular subject “skupina (group)”, Czech grammar strictly
requires to use the singular “rozhodne (decides)” instead of the plural “rozhodnou (decide)”.
However, the speaker got confused by using a plural form in the parenthetical, and continued
to use the plural form in the completion of the original message.

Annotators were instructed not to use any special annotation for these “small” anacolutha,
pretending that grammar in the disturbed utterances is correct. However, note that anacolutha
should not be confused with edit disfluencies.

5.3.3.9 Tag Questions

Tag questions are short phrases added to the end of a statement in order to appeal to the
listener to give feedback. In terms of MDE, the statement plus the added phrase form a single
SU that should be labeled as interrogative. The added phrase is separated from the preceding
statement using a clausal break. This rule is identical to the corresponding English rule.

To si děláte legraci /, že jo /?

You must be joking /, aren’t you /?

However, if intonation gives a clear clue that the added phrase does not function as a
question, the whole SU is labeled as a statement and the added phrase is labeled as a DM.

Přišli tam včera jo /.

They came there yesterday yeah /.

5.3.3.10 Embedded Questions

When a question is embedded in a larger carrier clause, SU type is assigned according to the
function of the whole utterance, and not according to the embedded question. Embedded
questions most frequently occur in quoted direct speech. This rule is also identical to the
corresponding English rule.

Zeptala se /, přidáš se k nám (?) /.

She asked /, will you join us (?) /.

5.3.3.11 Incomplete SUs

When a speaker’s utterance does not express a complete thought, an incomplete SU is recog-
nized. Boundaries of the incompletes are labeled with either “/–” or “/∼”. If the utterance
is interrupted and cut short by another speaker, then the “/∼” symbol is used. On the other
hand, if the speaker abandons his/her utterance arbitrarily, the SU is annotated as “/–”. It
implies that “/∼” may only occur at a turn boundary, whereas “/–” may also occur as turn-
internal. In standard text, “/–” may correspond to ellipses (. . . ). The first example illustrates
the use of “/∼”:
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A: Pokud vložíte dostatek peněz do /∼
B: Ale to není jen otázka peněz /.

A: If you put enough money into /∼
B: But it is not just a matter of money /.

The second example illustrates the use of “/–”:

Jeho boty vypadaly jako /- On je divnej kluk /.

His shoes looked like /- He is a weird guy /.

5.3.3.12 Distinguishing Incomplete SUs and Restart Disfluencies

Incomplete SUs are sometimes difficult to distinguish from restart disfluencies, which do not
receive incomplete SU labels, but are annotated as DelRegs. The distinction between these
two phenomena within the MDE standard is based on the following rules. In comparison with
the original MDE standard for English, the rules for Czech are slightly more complex.11 Our
experience indicates it does not lead to a significant decrease of IAA, and the accuracy of
annotation is increased.

1. Restart disfluency may never appear as turn-final. In such cases, the incomplete utter-
ance is always identified as an incomplete SU.

2. If the speaker immediately restructures the interrupted utterance and continues speaking
on the same topic, restart disfluency is recognized. On the other hand, if he/she does
not return to the incomplete message, an incomplete SU is recognized.

3. Incomplete SUs of the “/–” type must always contain either one or more SU-internal
breaks (/& or /,), or “useful information” that is not repeated in the same turn. However,
this does not mean that the occurrence of an SU-internal break within an incomplete
utterance automatically implies the use of “/–”. When the SU-internal break occurs in
a very short introductory phrase such as “víte /, že (you know /, that)”, it is possible to
annotate it as a DelReg (if other necessary conditions are met).

5.3.3.13 Turns with Missing Onsets

Turns whose onsets are missing in the verbatim transcripts, or whose onsets are transcribed
within the immediately preceding overlapping speech section, are annotated in the same way
as if their onsets were present. Note that the overlapping speech regions in the verbatim
transcripts were not used for MDE annotation, and thus they do not contain any MDE symbols.
An example of such a turn follows. The first line in the example corresponds to an overlapping
speech region (both A and B speak), in the second line, the speaker B continues the utterance
that was started in the overlapping region.

A: Překvapil vás. B: Na druhou stanu překvapil ∼ (OVERLAP)
B: ∼ i mě /. Já jsem k tomu už názor vyjádřil /.

A: He surprised you. B: On the other hand he surprised ∼ (OVERLAP)
B: ∼ me as well /. I have already stated my opinion on this /.

11In the original MDE standard, incomplete SUs are only recognized if “a speaker is interrupted or when the
speaker trails off, failing to complete the utterance within a turn”. Thus, incomplete SUs can only occur at the
end of a speaker’s turn.
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5.3.3.14 Direct Responses Expressing Agreement or Disagreement

Direct responses to questions expressing speaker’s agreement or disagreement such as ano
(yes), ne (no), jo (yeah), m-hm (uh-huh) typically form a complete SU.

A: Bude to hotové do přištího týdne /?
B: Ano /. Pevně v to doufám /.

A: Will it be finished by next week /?
B: Yes /. I strongly hope so /.

If a subordinate clause having an explanatory function is attached to words expressing
agreement or disagreement, a clausal break is used.

A: Zkusíte to /?
B: Ne /, protože už je příliš pozdě /.

A: Will you try that /?
B: No /, because it’s too late now /.

One must also be aware of the fact that words that often express agreement or disagreement
may also function as discourse markers. The discriminative rule for these ambiguities says that
both agreement and disagreement words must always be preceded by a question. Otherwise, a
DM is recognized. Although this simplification is not absolutely accurate in terms of discourse
analysis, it was introduced in this simplified form in order to support IAA. The use of this
rule is illustrated in the following example presenting a part of a fictitious dialog.

A: Myslím /, že se to stane /.
B: Ano /?
A: Ano /. Ten příkaz už je podepsaný /.
B: Ano tak to je problém /.
A: Ano ⊘ je to opravdu nepříjemné /.
B: Takže oni přijdou /? a jo ⊘ odnesou všechno /?
A: Ano /. Je mi to líto /.

A: I guess /, that this will happen /.
B: Yes /?
A: Yes /. The order has already been signed /.
B: Yes so it’s a problem /.
A: Yes ⊘ it is really bothersome /.
B: So will they come /? and yeah ⊘ take everything /?
A: Yes /. I am sorry /.

Note that nonverbal sounds such as uh-huh may also function as direct responses to yes/no
questions. In that case, they also form a complete SU.

A: Je to v pořádku /?
B: HM /. Pojďme dál /.

A: Is it ok /?
B: Uh-huh /. Let’s move on /.
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5.3.3.15 Subordinate Clauses within Complex Sentences

Dealing with complex and compound sentences represents one of the most important parts
of the MDE annotation. This section describes annotation of complex sentences that contain
some kind of subordination. Subordinate clauses cannot themselves constitute a complete SU
because they depend on the rest of the sentence and thus may not stand on their own; they
are semantically linked to their main clauses. Subordinate clauses are separated by clausal
breaks within MDE.

Já ti tu adresu dám /, když mi zavoláš /.

I will give you the address /, if you call me /.

If there is not just a single subordinate clause but two subordinate clauses dependent on the
same independent clause and joined by coordination, a coordination break is used to separate
these two dependent clauses. An SU-external break cannot be applied since neither of these
subordinate clause can stand on its own without changing meaning of the whole statement.

Já ti tu adresu dám /, když mi zavoláš /& nebo pošleš email /.

I will give you the address /, if you call me /& or send me an email /.

Unlike English, relative clauses are separated by clausal breaks in the Czech MDE. This
adjustment reflects Czech syntax which requires to separate relative clauses by commas, re-
gardless whether they are restrictive or not. If we did not use clausal breaks for relative clauses,
the MDE transcripts would be less transparent for the annotators.

Daniel /, který se narodil v Praze /, miluje Karlův most /.

Daniel /, who was born in Prague /, loves the Charles bridge /.

5.3.3.16 Compound Sentences

Compound sentences consist of two ore more main (independent) clauses joined by coordi-
nation. As described above, the goal is to divide the compound sentences within a spoken
discourse into “minimal meaningful units” functioning to express a complete idea. It means
that we split independent clauses into two complete SUs every time they can stand alone
(i.e. they do not depend on each other for completion of an idea). The potential break point
is the interword boundary right before the coordinating conjunction as shown in the following
example.

Adam hraje tenis /. a Robert cvičí jógu /.

Adam plays tennis /. and Robert practices yoga /.

However, not all cases are that clear as the one in the example above. In some cases,
coordinated main clauses cannot be split into two independent SUs. In such cases, a coordi-
nation break is used instead of an SU-external symbol. In English MDE, this situation most
frequently arise when the second coordinate clause has a dropped subject. In English, subject
dropping is only allowed in the second clause of a compound sentence when both clauses share
the same subject. It implies that such compound sentences cannot be divided into two SUs be-
cause coordinated main clauses with dropped subjects do not form syntactically encapsulated
units, and thus cannot stand alone. See the difference in the following illustrative example.
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I love volleyball /. but I hate playing with beginners /.
vs.

I love volleyball /& but hate playing with beginners /.

However, this rule cannot be applied to Czech. In contrast with English, Czech subjects
(pronouns) can be dropped every time they are “understood” from context and/or from the
form of a conjugated verb (predicate). Thus, since the conjugation of the verb includes both
person and number of the subject, it is possible to say for instance just “Běžím /.” which
means “(I am) running /.” This phenomenon of subject dropping is typical for highly inflective
languages.

For the above stated reason, subject dropping in the coordinated clause does not imply
the use of the coordinating break alone, as is the case for English. Instead, we separate the
coordinated clauses with an SU-external break, even if the subject is present in the first clause
and dropped in the second clause:

Robert do práce šel pěšky /. ale domů jel vlakem /.

Robert walked to work /. but (he) took the train home /.

In the Czech MDE, a coordination break is used for separation of coordinated main clauses in
the following cases:

1. The compound sentence is structured with a non-continuous expression such as sice –
ale (though – but), buď – nebo (either – or), or nejen – ale i (not only – but also).

Ona je nejenom krásná /& ale také je laskavá /.

Not only she is beautiful /& but also she is kind /.

2. The second coordinate clause is elliptical and cannot stand alone.

Katka miluje kosatce /& ale Eva tulipány /.

Katka loves irises /& but Eva tulips /.

3. There exists a subordinate clause that is dependent on both main clauses.

Když byl hotov /, zavřel okno /& a sedl si na postel /.

When he was finished /, he closed the window /& and sat on the bed /.

4. Main clauses are joined by the syntactically primarily coordinating yet semantically often
rather subordinating conjunction neboť (for).

Šli jsme se koupat /& neboť bylo krásné počasí /.

We went swimming /& for the weather was great /.

The rule No. 1 was adopted from the English MDE. The rules No. 2 and 3 are not explicitly
mentioned in the English guidelines, however, the correct annotation of these phenomena
should be the same as for Czech. The last rule in the list is specific for Czech.
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5.3.3.17 Coordinate Questions

When two questions are coordinated within a compound sentence, both of them receive the
question label.

Půjde Robert do divadla /? a Adam zůstane doma /?

Will Robert go to the theater /? and will Adam stay at home /?

However, it is very common to drop an auxiliary verb in the second interrogative clause, which,
in contrast, induces the use of a coordination break.

Bude Robert v divadle /& a Adam doma /?

Will Robert be in the theatre /& and Adam at home /?

5.3.3.18 Compound Predicates

Another important fact influencing the Czech MDE is that Czech syntax discriminates between
compound sentences sharing a single common subject and simple sentences with compound
predicates (i.e. compound predication in a simple sentence). The compound predicate is de-
fined as a “tight unit” of two or more predicate verbs predicating on the same subject. On
the other hand, if the predicate verbs do not form such a “tight unit”, a compound sentence is
recognized. Unfortunately, there is not absolute agreement in the literature on the exact bor-
derline between compound predicates and compound sentences. For the MDE purposes, I only
recognize those compound predicates that can be identified based on unambiguous features.
Within Czech MDE, the compound predicate is recognized if:

1. The predicate verbs share a common constituent (e.g., object).

Nacpal /& a zapálil si dýmku /.

He filled /& and lit up his pipe /.

2. The predicate verbs joined by a copulative conjunction have the same or very similar
meaning.

Naši hosté často slaví /& a radují se /.

Our guests often rejoice /& and celebrate /.

While compound predicates did not motivate any SU breaks according to the initial version
of the annotation guidelines, the current version instructs annotators to separate parts of
compound predicates by a coordination SU break. A preliminary analysis showed that the
redefined annotation rule supported IAA.

5.3.4 Technical Aspects of MDE Annotation

The two Czech MDE corpora were annotated just by two annotators. Since Czech syntax is
quite complex, naive annotators could not be employed; at least some linguistic education is
necessary and such annotators are quite difficult to find. The small number of labelers slowed
down the annotation process, but, on the other hand, it supported annotation consistency.
Moreover, the submitted annotations were checked by the author of this thesis. The MDE
annotations of the easier BN corpus were checked on the basis of a random sample, while for
the more difficult RF data, all submitted annotations were carefully revised.
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To ease the annotation process, a new annotation software has been developed. It was
designed to reflect the particulars of the Czech annotation task. As with LDC’s MDE Anno-
tation Toolkit [114], the Czech tool allows annotators to highlight relevant spans of text, play
corresponding audio segments, and then record annotation decisions. The screen of this tool
is shown in Appendix A. The screenshot also shows a longer stretch of the MDE annotated
Czech data.

5.4 Analysis of Czech Structural Metadata Corpora

This section presents and discusses some interesting statistics about structural metadata in
the two MDE annotated Czech corpora. It is organized as follows. The first subsection is
devoted to IAA on the Czech MDE annotation task. The following three subsections report
particular corpus statistics relating to fillers, disfluencies, and SUs, respectively. The numbers
are compared with available corresponding numbers relating to English MDE corpora (mostly
taken from [115]). However, note that while these comparisons are interesting, they do not
allow to draw fundamental conclusions about structural differences between spoken Czech and
English since there is not a perfect match in genre and speaking style. The Czech BN corpus is
compared with the English BN MDE corpus, and the RF corpus with the English CTS corpus.
Quite a good match is expected for BN data, but when comparing Czech broadcast conversa-
tions with English telephone speech, one must also take into account significant differences in
the speaking styles. Broadcast conversations are more formal and less interactive.

5.4.1 Inter-Annotator Agreement on Czech MDE Annotation

This section focuses on testing annotation reliability in terms of IAA. If we employ good
annotators and the annotation task is well-defined in the guidelines, different annotators should
consistently generate similar annotations. To estimate annotation consistency, we typically use
a random corpus sample that is independently labeled by two or more human annotators and
measure the degree of IAA on this sample [116].

In general, it is not convenient to directly measure the percentage of judgments on which
the annotators agree when coding the same data independently. The absolute agreement
numbers do not yield values that give a good notion about the quality of annotation since
some agreement is always due to chance. Therefore, we should measure agreement above
chance in order to receive meaningful IAA numbers. To this end, we can employ the K
(kappa) statistic [117] which is considered to be a standard measure of agreement in many
annotation tasks related to language processing. This agreement measure is defined as

K =
Ao −Ae
1−Ae

(5.1)

where Ao denotes the observed agreement and Ae the expected (chance) agreement. The
interpretation of K is not completely straightforward. We must be aware of the fact that
measuring IAA is not equivalent to hypothesis testing, so that there is no theoretic cut-off
value as well as no clear probabilistic interpretation. K evaluates the magnitude of agreement
rather than compares two hypotheses. In the original paper presenting this method [117],
Carletta claims that for tasks like content analysis, K > 0.8 is considered to be good reliability,
and 0.67 < K < 0.8 allows to draw tentative conclusions.

For Czech MDE, we tested IAA on three recordings from the more difficult RF corpus.
These recordings were dually-annotated by two experienced annotators. The total duration
of these recordings was 86 minutes, the total number of tokens was 13k. For SU breaks, we
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Table 5.2: Frequencies of filled pauses

BN RF

% of words followed by FPs 0.5% 3.8%
Proportion of EEs N/A 93.1%
Proportion of MMs N/A 6.9%

got K = 0.88 taking into account all SU types (both internal and external). For the key
task annotation – “SU-boundary” vs. “no SU-boundary” – we got K = 0.92. For filler and
disfluency labels, we got overall K = 0.85. Given the complexity of this annotation task, these
numbers seem to be very well acceptable. Unfortunately, we could not compare our IAA with
IAA for the English MDE since the numbers for English are not publicly available.

We also measured IAA for the additional Czech MDE annotation subtask – labeling of
prosodic strength of SU boundaries. Measuring IAA on “/. vs. //.” on the same dually-
annotated recordings, the following consistency values were achieved. If the two annotators
agreed on using a statement break after a particular word, they also used the identical symbol
(/. or //.) in 86.9 % of the cases. In terms of the kappa statistics, we got K = 0.69 when
only taking into account the words followed by a statement break (i.e. ignoring all words with
no statement label). For comparison, for “/. vs. //. vs. other”, we obtained K = 0.85.

5.4.2 Statistics about Fillers

Table 5.2 reports numbers relating to occurrences of FPs. As expected, FPs are significantly
more frequent in conversational than in broadcast news data. Another important observation
is that EE FPs are much more frequent than MMs – they represent more than 93 % of FPs.
Note that this comparison is only available for the RF corpus since the Czech BN corpus uses
different rules for transcription of FPs (cf. Section 5.3.1.1). For comparison, 2.2 % of words
is followed by an FP in the English CTS corpus, and 1.4 % in the English BN corpus. A
relatively smaller number of FPs in English CTS data might be explained by three different
factors. First, transcribers of the English database could have missed a number of FPs since
some of them are less audible and telephone data are more noisy. Second, Czech syntax is
more complex than English, thus speaking in Czech represents a more complex mental process
which may cause a higher number of hesitations. Third, talkers may hesitate by voice more
when speaking in public. In private conversations, people often do not care about being
grammatically correct, which makes speech planning easier. On the other hand, the larger
percentage of FPs in English BN data is caused by the fact that these data contain a larger
proportion of speech having a relatively higher level of spontaneity. Commercial TVs and
radios are in minority in the Czech BN corpus, and broadcast news on Czech public radio and
TV channels has significantly less interactive style than typical American broadcast news.

Table 5.3 shows numbers of words labeled as DMs or DRs. As with FPs, this kind of fillers
is more common in conversational speech – just 0.1 % of words is labeled as a DM or a DR
in the BN data. An interesting statistic to observe is the proportion of DMs and DRs. In
the RF corpus, “non-DR” DMs prevail, whereas the DR subtype covers over 53 % of all DMs
in the BN corpus. The explanation for this observation may be the following. DMs are not
frequently used by anchors in the studio, they are more typical for local reporters referring on
actual events directly from their venues. These reporters typically react on questions coming
from the studio and their interactive replies contain a number of DRs. English MDE data
contain a higher number of DMs than Czech data – 4.4 % in CTS and 0.5 % in BN speech.
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Table 5.3: Proportions of discourse markers and discourse responses

BN RF

% of words in DMs and DRs 0.1% 1.6%
Proportion of DMs 46.7% 73.3%
Proportion of DRs 53.3% 26.7%

Table 5.4: Most frequent discourse markers (overall, in the RF corpus, and in the BN corpus)

DM Overall BN RF DM Overall BN RF

tak 17.0% 32.8% 15.8% tedy 5.7% 4.1% 5.8%
no 13.2% 25.4% 12.2% jako 5.0% 7.8% 4.8%
prostě 12.9% 4.5% 13.6% čili 4.8% 0.8% 4.8%
vlastně 7.1% 3.7% 7.4% ano 3.8% 2.9% 3.9%
jaksi 7.0% 2.5% 7.4% teda 2.9% 2.0% 2.9%

Table 5.4 shows ten most frequent DMs in the Czech data. The most frequent DM was
tak (so) followed by no (well) and prostě (simply). The DM tak was first in both corpora
(but more dominant in the BN corpus), while no came second in the spontaneous corpus, and
prostě came second in the news corpus. Note that all frequent DMs consist of just one word.
The table indicates that most significant difference are in DMs as prostě, vlastně (actually),
and jaksi (somehow), which are more frequent in the RF corpus. The reason is that DMs of
the DR subtype prevail in the BN corpus, while the three mentioned DMs typically occur as
turn-internal. Another interesting observation is that DMs containing a verb are much less
frequent in Czech than in English. Although there exist some Czech equivalents of the popular
English DM you know (such as víte or víte co), only a minority of speakers really use them.

Table 5.5 displays frequencies and average lengths of A/Ps and EETs. A/Ps are relatively
frequent in the RF corpus, containing 1.5 % of all uttered words. On the other hand, A/P
structures are quite rare in planned speech; they cover just 0.2 % of words. For comparison,
English CTS data contain only 0.3% of A/Ps, which supports the hypothesis that A/Ps are
more frequent in conversational Czech than in conversational English. The statistics also
indicate that A/Ps in conversational speech are on average approximately one word longer.

As expected, EETs were really rare. In total, they include just 0.08 % of words in the RF
data and 0.01 % in the BN data. These numbers are pursuant to English MDE corpora where
EETs represent 0.05 % and 0.02 % of words, respectively. Since average lenghts of EETs are
1.2 and 1.1 words, respectively, it is possible to ratiocinate that one word EETs are strongly
dominant. Table 5.6 shows the most frequent Czech EETs. For both corpora, we can observe
that by far the most frequent EET is nebo (or); it represents more than two thirds of all EET
instances. The second most frequent EET is respektive (let’s say, respectively).

The total proportions of filler words (i.e. sum of all FPs, DMs, A/Ps, and EETs) signifi-
cantly differ between the two Czech corpora. While they represent just 0.79 % of all words in
the BN corpus, they cover 6.97 % of words in the spontaneous RF corpus. For English MDE
corpora, this total filler percentage is 9.2 % for CTS, and 2.1 % for BN data.

5.4.3 Statistics about Edit Disfluenscies

Statistics relating to edit disfluencies are presented in Table 5.7. As with fillers, disfluencies
were much more frequent in the spontaneous corpus, where 2.8 % of words were labeled as
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Table 5.5: Statistics about A/Ps and EETs

BN RF

% of words in A/Ps 0.2% 1.6%
Average length of an A/P (in words) 5.4 6.2
% of words in EETs 0.01% 0.08%
Average length of an EET (in words) 1.1 1.2

Table 5.6: Most frequent explicit editing terms (overall, in the RF corpus, and in the BN corpus)

EET Overall BN RF EET Overall BN RF

nebo 69.6% 66.7% 69.9% vlastně 1.9% 0.0% 2.1%
respektive 3.7% 6.7% 3.4% prostě 1.9% 0.0% 2.1%
tedy 3.1% 0.0% 2.7% pardon 1.9% 6.7% 1.4%
teda 2.5% 0.0% 2.7% ne 1.9% 0.0% 2.1%

within a DelReg. The corresponding percentage in Czech BN speech was just 0.2 %. Likewise,
edit IPs were ten times more frequent in the RF corpus than in the BN corpus. In the
compareable English corpora, edit disfluencies were more frequent. DelRegs covered 5.4 % of
words in CTS, and 1.5 % in the English BN data. Again, the explanation for this is in different
speaking styles.

Another interesting numbers refer to occurrences of corrections and EETs within edit dis-
fluencies. The proportion of DelRegs having a correction is dependent on the frequency of
restart disfluencies since this disfluency type does not contain a correction. Because restarts
are typical for spontaneous speech, the relative number of DelRegs having corrections is ac-
cordingly smaller in the RF corpus. As expected, EETs were very rare in both corpora. Only
approximately 4 % of disfluencies contain an EET. The next statistics in Table 5.7 express
average lengths of DelRegs and their corrections. It is possible to see that short disfluencies
predominate; their average length is around 1.5 word in both corpora. Another interesting
observation that should be pointed out is that corrections have almost the same average length
as DelRegs.

Furthermore, notable statistics are those referring to the total portion of data marked for
the potential automatic cleanup. This number is obviously correlated with the complexity of
the MDE task for a particular corpus. Hence, I summed words in DelRegs and fillers and
compared the two Czech MDE corpora. As expected, the results were largely unequal – 9.8 %
for the RF corpus while just 1.1 % for the BN corpus. For comparison, it was 17.7 % for the
English CTS and 3.8 % for the English BN corpus.

Unlike previous work, I also analyzed DelRegs and corrections in terms of which parts of
speech they typically contain. To my best knowledge, this is the first analysis studying the POS
content of speech disfluencies in any language. Both Czech corpora were tagged using a state-
of-the-art automatic morphological tagger based on the averaged perceptron method [118]. Of
the positional Czech morphological tags12, I only used the first positions that correspond to the
POS information. For either Czech corpus, I computed three POS distributions corresponding
to the whole corpus, DelRegs, and corrections, respectively.

The relative frequencies of particular POSs are shown in Figure 5.1. The top chart repre-
sents the BN corpus, the bottom chart the RF corpus. POS on the x-axis are sorted according

12The positional Czech tagset is described in Section 10.4.1.3 on page 121.
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Table 5.7: Statistics about edit disfluencies

BN RF

% of words followed by Edit IPs 0.2% 2.0%
% of words within DelRegs 0.3% 2.8%
% of DelRegs having Correction 94.6% 83.8%
% of DelRegs having EET 3.5% 4.0%

Average length of DelRegs (in words) 1.4 1.6
Average length of Corrections (in words) 1.5 1.6
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Figure 5.1: Relative frequencies of Czech POS in all data, DelRegs, and corrections in the BN (top)
and the RF corpus (bottom). (POS legend: N – Nouns, V – Verbs, P – Pronouns, D – Adverbs,
J – Conjunctions, A – Adjectives, R – Prepositions, C – Numerals, T – Particles, I – Interjections)

to their frequencies in the RF corpus. The blue bars show that the corpora differ in overall
POS distributions. The BN corpus contains significantly more nouns and adjectives, while the
conversational corpus shows distinctively higher relative numbers of pronouns, adverbs, and
conjunctions, and a slightly higher proportion of verbs. These observations may be clarified
by differences in speaking styles. Broadcast news data consist of sentences that were prepared
to be as informative as possible, and thus contain a lot of nouns and adjectives. On the other
hand, conversational language is characterized by a more complex way of locution. A higher
number of complex and compound sentences logically implies a higher number of conjunctions,
while numerous discourse markers having the form of adverbs cause the higher proportion of
that POS type.

Despite the differences in overall POS distribution, both corpora show similar changes in
the distribution when only the words in DelRegs are taken into account. The proportion
of nouns, pronouns, and prepositions is increased, while verbs, adverbs, and adjectives are
less frequent in comparison with the general distribution. The increased number of nouns
in DelRegs is not surprising. Speech disfluencies more frequently occur in more informative
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Table 5.8: Relative frequencies of SU symbols (both SU-internal and SU-external)

SU break BN RF SU break BN RF

/. 6.7% 15.1% /- 0.0% 0.4%
//. 60.2% 28.9% /∼ 0.6% 2.7%
/? 0.3% 0.7% /& 2.9% 6.7%
//? 1.3% 3.4% /, 28.1% 42.2%

regions of utterances and nouns usually carry information more densely than, for instance,
verbs. A higher frequency of prepositions is consequent because prepositions are dependent
on nouns.

Interesting variances may also be observed between DelRegs and their corrections. The
most prominent difference is in the higher rate of adjectives within corrections. This fact
indicates that speakers often put in the adjectives omitted in DelRegs. We can also observe
slightly higher frequencies of verbs and adverbs. On the contrary, nouns, conjunctions, and
prepositions are less common than in DelRegs. The difference in the proportion of prepositions
is only visible in the BN corpus.

5.4.4 Statistics about SUs

Relative frequencies of all SU symbols (both SU-external and SU internal) are displayed in
Table 5.8. This table shows that both corpora significantly differ in SU distributions. The
symbol “/,” is most frequent in the RF corpus, whereas “//.” is strongly dominant in the BN
corpus. This indicates that complex and compound sentences are more common in spontaneous
conversations, while prearranged broadcast news typically consist of statements with simpler
clause syntax.

Another substantial findings relate to differences between relative frequencies of single- and
double-slash SU-symbols. Overall, the double-slash symbols are more frequent. The contrast
is more distinctive in BN data, where “//.” is almost ten times more frequent than “/.”. This
fact is not surprising since sentence boundaries are usually attentively prosodically marked by
professional newscasters. In the RF corpus, “//.” is approximately twice as frequent as “/.”.

The statistics about incomplete SUs indicate that incompletes are much more common in
conversational speech. Furthermore, incomplete SUs interrupted by another speaker (/∼) are
more frequent than arbitrarily abandoned statements (/–). The latter type of incompletes
almost never appears in broadcast news.

Table 5.9 shows average lengths of all, complete, and incomplete SUs in both Czech cor-
pora. The numbers indicate that SUs in the conversational corpus are slightly longer. For
comparison, the English CTS corpus has mean SU length 7.0 words and the English BN corpus
12.5 words. The average SU length for broadcast news corpora is similar for both languages,
whereas the average SU lengths in the the compared spontaneous corpora strongly differ. The
average segment length in conversational data is largely affected by backchannels. There is
a large number of short backchannel SUs in the English telephone corpus, while backchannel
SUs are not taken into account for the single-channel Czech RF corpus.

Table 5.10 reports average lengths of particular SU subtypes. These numbers indicate
several interesting findings. First, statement SUs are longer than interrogative SUs. Further-
more, double slash SUs (i.e., SUs with a strong prosodic marking at their boundaries) are
significantly longer than corresponding one slash SUs. Note that this difference in length is
more prominent for the BN data.
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Table 5.9: Average length (in number of words) of complete and incomplete SUs

BN RF

All SUs 13.0 14.5
Complete SUs 13.0 14.7
Incomplete SUs 10.2 11.9

Table 5.10: Average length (in number of words) of individual SU subtypes

SU type BN RF SU type BN RF

/. 7.8 12.6 //? 9.9 12.6
//. 13.7 16.1 /– 11.3 15.2
/? 8.7 11.5 /∼ 10.2 11.4

In addition, I also analyzed what happens with the average SU length when single slash
symbols are not considered to be SU-external but rather SU-internal boundaries. This hy-
pothetical modification of the SU boundary definition lead to increase of average “//.” SU
length from 16.1 to 21.9 words for the BN data, and from 13.7 to 14.6 words for the RF
corpus. The mean length of double slash interrogative SUs rose from 12.6 to 15.7 words, and
from 11.3 to 13.2 words, respectively. Note that these increases in length are more prominent
for spontaneous speech data where double slash boundaries are less frequent.

5.5 Chapter Summary and Conclusions

In this chapter, I have described the creation of Czech speech corpora annotated with struc-
tural metadata. Two corpora from two different domains were created – one in the domain
of broadcast news (mostly read-aloud speech) and the other in the domain of broadcast con-
versations (mostly spontaneous speech). The first corpus was created by enriching an existing
corpus with the structural metadata annotation, while the second was built from scratch – it
had to be recorded and manually transcribed first.

The structural metadata annotation was based on the LDC’s “Simple Metadata Annota-
tion Specification”, originally defined for English. The original guidelines were adjusted to
accommodate specific phenomena of Czech syntax. Moreover, I proposed and used a novel
approach to transcribing and annotating filled pauses in Czech, distinguishing vowel-like (EE)
and consonant-like (MM ) sounds. In addition to the necessary language-dependent modifi-
cations, I applied some language-independent modifications refining the original annotation
scheme. The refinements included limited prosodic labeling at sentence unit boundaries and
distinction of two types of incomplete units.

Furthermore, I have presented a comparison of Czech broadcast news and broadcast conver-
sations in terms of MDE statistics relating to fillers, edit disfluencies, and SUs. The comparison
is useful for evaluation of complexity of the Czech MDE task in the two genres. Moreover,
it provides interesting data about domain-specific speaking styles. It also shows some cross-
linguistic differences because I not only compared the two Czech corpora with each other, but
also with the available numbers relating to existing English MDE corpora.

Among others, the comparison shows that the total proportion of filler words (i.e., the
sum of all FPs, DMs, A/Ps, and EETs) is significantly higher in the RF corpus (6.97 % of
words) than in the BN corpus (0.79 %). Likewise, edit disfluencies are much more frequent in
the RF corpus (2.8 % of words within DelRegs in the RF and 0.2 % in the BN). I also found
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that DelRegs and their corrections show differences in POS distributions in comparison with
the general POS distribution. Regarding SU symbols, I observed that clausal breaks are more
frequent in the RF corpus, which indicates that complex sentences are more common in talk
shows than broadcast news. Furthermore, I found that SUs in the conversational broadcast
data are on average longer by 1.5 words than SUs in broadcast news.

In order to have more data for training and testing automatic systems for spontaneous
Czech, the RF corpus is currently being extended by 20 additional talk show recordings.
After this extension, the RF corpus should yield over 33 hours of transcribed and MDE an-
notated broadcast conversation speech. I should also mention that both Czech MDE corpora
are planned to be made publicly available – their publication at the LDC is currently being
prepared.

Speech corpus development is a very time-consuming and labor-intensive process which
cuts down the time available for other research tasks. However, I hope that all the effort put
into it paid off and the corpora created as part of this work will be of benefit for the spoken
language processing community. Besides their importance to automatic structural metadata
extraction research, the two new MDE corpora should also be useful for training ASR systems
as well as for linguistic analysis of read-aloud and spontaneous Czech. Finally, note that the
corpora described in this chapter were used for automatic SU segmentation experiments that
are described in Chapter 10.

60



Chapter 6

Prosodic Features for Classification

The power of speech is not in words, but in the oration.
Srijit Prabhakaran

The previous chapter was devoted to the creation of data resources. This chapter begins the
thesis part concerning the automatic sentence segmentation system development. First of all,
I take a closer look at the use of prosodic features. Some important qualitative aspects of
prosody were described in Section 2.2. This chapter focuses on methods for extraction of
prosodic features for automatic classification. Thus, prosody is viewed in terms of a quan-
titative description herein. In this chapter, rather than giving an exhaustive enumeration of
all employed prosodic features, I describe motivations and general techniques used for their
design and extraction. The overall number of designed features is quite high – a complete list
of all implemented features, along with their brief descriptions, is given in Appendix B.

The prosodic features for sentence segmentation of speech reflect breaks in temporal, into-
national, and loudness contours, and are inspired by linguistic knowledge. To use prosody in
automatic systems effectively, all of the prosody processing must be performed automatically.
In the employed approach, prosodic information is obtained from a combination of the speech
signal and speech recognition output, which is used to provide word and phone alignments. All
employed features are designed to be automatically extractable, without need for any human
labeling. First, a huge set of potentially useful features was extracted, which, after initial
investigations, was pared down to a smaller set by eliminating redundant features.

Most of the implemented prosodic features were inspired by [49, 119, 120]. The prosodic
features can be grouped into broad feature classes based on the prosodic quality they are
designed to capture – pause, pitch, duration, and energy. In addition to the pure prosodic
features, the automatic classifiers also have access to a limited number of “other” features,
capturing important phenomena such as speaker change or overlap. Since these features are
usually incorporated into the prosody model for machine learning purposes, their description
is also included in this chapter.

The remainder of this chapter is structured as follows. Section 6.1 depicts feature extraction
regions. Section 6.2 describes pause features. Section 6.3 is devoted to pitch preprocessing and
pitch features. Section 6.4 presents duration features, Section 6.5 describes energy features,
and Section 6.6 overviews “other” features. Section 6.7 presents the method used for feature
space reduction. Finally, Section 6.8 summarizes the chapter.
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Figure 6.1: Prosodic feature extraction region spanning the previous, the current, and the following
word

6.1 Feature Extraction Regions

As in previous work on automatic sentence segmentation, I have only used local prosodic
features. The reasons for this decision are quite straightforward. As mentioned in Section 3.1,
a number of linguistic studies based on listening tests showed that most of important prosodic
information is coded locally. Moreover, the local features are much easier to extract. Although
in principle one may consider longer regions, it is not obvious how such long range prosodic
features should be designed. This problem exceeds the scope of this thesis, however, it is
definitely an interesting direction for possible future research.

All prosodic features employed in this work were extracted on the word level, i.e. the
features are associated with particular interword boundaries. However, the classifiers do not
only have access to features relating to the boundary after the current word, but to capture
local prosodic dynamics, the classifiers also use features associated with boundaries after the
previous and the following word. The feature extraction region is depicted in Fig. 6.1. Typi-
cally, one feature describes prosodic information contained in the word before the referential
boundary, or captures prosodic differences between the two words across the boundary. Word
boundary timestamps are obtained using an automatic speech recognizer. Throughout this
thesis, I use the following notation. Names of the features relating to previous words are pre-
fixed with “p.”, names of the features relating to following words with “f.”, and the features
relating to current words have no prefix.

6.2 Pause Features

Pauses signal breaks in prosodic continuity, so they are very important indicators of sentence
unit boundaries. Intuitively, if the pause between the current word and the following word
is long, it is more likely that the current word is followed by a sentence boundary. Pause
features are quite robust in the face of speech recognition errors since, in principal, their value
is only dependent on correct speech/non-speech segmentation. Pause durations can easily be
extracted from automatic word alignments. If there is no pause at the boundary, which is
the most frequent case in continuous speech, the pause duration feature is output as zero. I
do not only use the pause duration at the actual boundary; the pauses at the preceding and
the following interword boundary may be important as well. Their duration may indicate
short backchannels or reflect whether speech right before the boundary was just starting up or
continuous in a longer region. The question is whether the pause features should be normalized
per speaker or not. My preliminary experiments showed that raw durations perform better.
This finding is in agreement with [49].
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6.3 Pitch Features

As mentioned in Section 2.2, perceived pitch is a psychoacoustic quantity that cannot be
directly measured from the speech signal. Instead, we measure the fundamental frequency of
the glottal tone (F0), which is its correlate. It is the frequency at which vocal chords oscillate
when producing voiced sounds. On the other hand, unvoiced regions of speech do not contain
this periodic component.

6.3.1 Pitch Tracking

Several methods for measuring F0 from the speech signal have been proposed. One of the
popular methods is the RAPT algorithm (Robust Algorithm for Pitch Tracking) [121]. This
method employs Normalized Cross Correlation Function (NCCF) to generate pitch period
candidates. This function is more robust to quick F0 changes than the formerly frequently
used autocorrelation function. The NCCF is defined as

φi,k =

∑m+n−1
j=m sjsj+k√
emem+k

, k = 0,K − 1; m = iz; i = 0,M − 1 (6.1)

where m is the sample number, i is the index of the current frame, k is the index of the delay,
z the frame shift, M the total number of frames, and n is the size of the analyzed window.
The normalization factor ej is defined as

ej =
j+n−1
∑

l=j

s2l (6.2)

φi,k ranges in 〈−1, 1〉, values close to 1 signal that the delay kT is an integer multiple of the
period 1

F0
.

The idea of the RAPT method is the following. First, the input signal is downsampled and
the peaks (areas of interest) are found in this coarse version of the signal. The values of the
NCCF are then computed from the original signal only in these areas of interest. All peaks
found in this stage are then viewed as F0 candidates for the current frame. Finally, by using
a dynamic programming method, we either select the most probable candidate value or mark
the frame as unvoiced. The selection of the most probable candidate also takes into account
typical properties of F0 curves.

6.3.2 Octave Error Correction

Despite the fact that the RAPT algorithm is quite robust, it is, as well as other pitch tracking
methods, prone to octave errors. For instance, noise and/or a creaky or gaspy voice may
cause tracking errors. In such cases, the algorithm often outputs halved or doubled F0 values.
Reasons for the halving (subharmonic) errors are the following. If the signal is T -periodic,
it is also 2T , 3T , etc. -periodic. The NCCF values for the multiples of T (subharmonic
components) may be high and confuse the tracking algorithm. These errors are frequently
caused by a creaky voice quality.

The doubling (harmonic) errors have the following reasons. If the componentM dominates
in the energy of the speech signal, the correlation score for the period T/M becomes high.
For example, if this harmonic component is equal to the first formant frequency, it causes a
resonance effect and this component is amplified. The doubling errors have M = 2.

Most of these errors are successfully detected during the RAPT’s dynamic programming
stage, especially if the speech signal is not noisy. However, the pitch tracking algorithm output
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Figure 6.2: LTM model for F̂0

usually still contains a number of halved/doubled values so that postprocessing techniques
should additionally be applied. For example, a postprocessing algorithm called de-step filter
was introduced by Bagshaw [122]. This simple method is based on the assumption that F0

values of two contiguous frames may differ at most by 75%, while the first value of a voiced
region may change arbitrarily with respect to the last value of the previous voiced region.
Since I have not employed this technique, I do not describe it here in detail, but interested
readers may consult the above cited publication.

For this work, I have adopted a pitch postprocessing technique that is based on using a
speaker’s longterm F0 distribution. Sönmez et al. showed that correct F0 values approximately
have a lognormal distribution [123]. The measured pitch containing octave errors can be
modeled using the Lognormal Tied Mixture (LTM) model with three Gaussian components.
Individual components correspond to halved, accurate, and doubled F0 values, respectively. It
is assumed that all three components have the same variance and their mean values are shifted
by log 2 in the log domain. The model is illustrated in Fig. 6.2. In a mathematical notation,
the LTM model can be expressed as

log(F̂0) ∼ LTM(µ, σ, λ1, λ2, λ3) = λ1 · N (µ− log 2, σ2) + λ2 · N (µ, σ2)+
+λ3 · N (µ+ log 2, σ2)

(6.3)

In addition, the model must satisfy the constraints λi ≥ 0, i = 1, 2, 3 and
∑3
i=1 λi = 1.

The parameters of the model are estimated using the Expectation-Maximization (EM) algo-
rithm [13]. The F0 values marked as halved or doubled may be replaced by interpolated values,
or, alternatively, multiplied by 2 or 1

2 , respectively. The borderline between the halved and
the accurate component corresponds to speaker’s baseline F0 [49]. This value is important for
normalization of F0 values, as will be described below.

6.3.3 Automatic Pitch Contour Stylization

F0 contours consist of two components – macroprosodic and microprosodic. The macroprosodic
component represents F0 changes intented by the speaker. On the contrary, the microprosodic
component is not purposely controlled by the speaker, but is influenced by the local segmental
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(phonetic) content. Since we are only interested in the intentional prosody, it is advisable to
remove microprosody before analyzing the pitch contour. First, the measured pitch is usually
filtered by a median filter. The median filtering is similar to low pass filtering, but unlike
ordinary low pass filters, the median filter preserves the integrity of sudden transitions to a
different level in the signal. A typical size of the median window for pitch filtering is 5 or 7.

The median filtered contours are typically further processed – stylized. The pitch stylization
methods are inspired by the ’t Hart’s idea of the “close copy”. The basic idea is to replace the
measured pitch contour by a contour consisting of line fits perceptually undistinguishable from
the original contour. For TTS systems, D’Alessandro and Mertens introduced a perceptually-
based stylization method [124]. Their method was based on so-called glissandos, which are
defined as audible pitch differences. In another approach, Hirst and Espesser interpolated pitch
contours by quadratic splines [125]. Later work of the same authors extended the approach
and introduced a more complex algorithm called MOMEL [126].

The stylization by quadratic splines may be convenient for some TTS-related tasks. How-
ever, for tasks related to sentence segmentation, it is more convenient to smooth the contour by
lines since slopes of the smoothing lines may themselves be important features for classification.
Within the VERBMOBIL project, Batliner and his colleagues interpolated all measured F0

values within a voiced region by a single line using linear regression in the log domain [11]. In
this thesis, I have adopted a more sophisticated method in which the pitch contour is stylized
by a piece-wise linear (PWL) function [127].

In order to get the stylized contour, it is necessary to determine coordinates of the nodes
connecting the line fits in each voiced region. The number of nodes may either be determined
from the duration of the voiced region, or chosen to warrant local smoothness of the stylized
contour. In this work, I used the latter option, with a fixed minimum length of a region. For a
voiced region to be modeled by K line segments, the free parameters are (xk, yk)Kk=0, excluding
the x-coordinates x0 and xk which are given by the edges of the voiced region. The stylization
function is then given by

g(x) =
K∑

k=1

(akx+ bk)I [xk−1<x≤xk] (6.4)

where ak is the slope bk the intercept of the line defined by the node (xk, yk). The coordinates
of the nodes are determined by minimizing the Mean Square Error between the stylized contour
and the measured F0 values

MSE
(

(xk, yk)Kk=0

)

=
1
T

T∑

t=1

(F0(t)− g(t))2 (6.5)

The minimization can be performed numerically, e.g. using the Nelder-Mead simplex
method [128]. An example of the stylized pitch contour is displayed in Fig. 6.3. A diagram of
the whole pitch preprocessing procedure is shown in Fig. 6.4.

6.3.4 Pitch Normalization

Raw, unnormalized F0 values do not convey information about their relative positions within
the pitch register of the current speaker. For instance, the same F0 value may represent a rela-
tively high pitch value for one speaker (a male speaker with a deep voice), but a relatively low
pitch value for another (a female speaker with a high voice). Likewise, absolute F0 differences
do not convey accurate information about linguistically meaningful pitch rises and falls since
the magnitudes are dependent on the pitch range of the actual speaker. Thus, some form of
pitch normalization is necessary.
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Figure 6.3: Raw and stylized F0 contours

Figure 6.4: Scheme of pitch preprocessing for feature extraction

A convenient reference value for the pitch normalization is the F0 baseline, mentioned
at the end of Section 6.3.2. The baseline for a particular speaker corresponds to the lowest
pitch value in the non-halved mode. It is the point at which the probability of an accurate
pitch is equal to the probability of halving within the LTM model. Using the notation from
Section 6.3.2, the baseline (BL) value can be computed as

BL = exp

(

µ− 1
2

log 2 +
(log λ1 − log λ2) σ2

log 2

)

[Hz] (6.6)

Past work also investigated using F0 toplines and means for normalization, but these val-
ues proved to be by far less convenient [49]. The use of baselines for normalization is also
in agreement with the findings of Rietveld and Vermillion [129], who showed that listeners
best estimate the speaker’s pitch register from low tones. The low tones show more stable
frequencies than high tones.
F0 values can be normalized with respect to the baseline value using various approaches. I

have implemented the following normalizations – linear difference, linear ratio, log difference,
and log ratio. The use of logarithms, in addition to linear differences and ratios, is motivated
by the fact that humans perceive pitch changes logarithmically. All four types of normalized
pitch features are available to the machine learning algorithms, the most useful normalization
form is determined in the feature selection phase (described below in Section 6.7).

Note that this form of pitch normalization assumes that speakers are recurring and the
identity of the actual speaker is known at the time of feature computation. For some applica-
tions, this condition does not represent an additional problem (e.g., meetings with participants
recorded by head-worn microphones), while for others, employment of an automatic speaker
identification and tracking system is required. Since the state-of-the-art speaker diarization
systems perform with diarization error rates (defined as percentage of missed speech + per-
centage of false alarm speech + percentage of speech by mislabeled speakers) in the range
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of 10–20% (depending on the target domain), a slight degradation of the normalized pitch
features may be expected.

6.3.5 Pitch Feature Types

The implemented pitch features may be grouped into three broad classes according to prosodic
phenomena they aim to capture – pitch range, pitch reset, and pitch slope. The group of range
features reflects the pitch range of a single with respect to the speaker’s global F0 statistics.
These features are based on computation of minimum, maximum, mean, first, and last F0

values within a single word. While some raw pitch features were also implemented, to achieve
good results with a speaker-independent system, the above mentioned F0 normalization is
necessary.

The second set of features was designed to capture the pitch reset phenomenon. Typi-
cally, we compare F0 values in the last voiced region before the interword boundary with the
corresponding values in the first voiced region after the boundary. The computed features
comparing the current and the following word included the ratio and the difference between
the two values, both in the linear and the log domain.

The final group of pitch features looks at the slopes of the stylized F0 segments. It ei-
ther captures melodic trends in the word before the interword boundary, or it checks trend
continuity across the boundary. For the latter subgroup, it is expected that discontinuous
(“broken”) trajectories would tend to indicate boundaries, regardless of the absolute difference
in F0 values across adjacent words. Implemented slope features include the first and the last
slope in the word, and the difference between the last slope before the boundary and the first
slope in the word following the boundary.

6.4 Duration Features

Another important prosodic cues to sentence boundaries in speech are changes in the speaking
rate. Duration features primarily aim to capture the phenomenon of preboundary lengthening,
which was mentioned in Section 3.1. A variety of duration features can be computed using
hypothesized time marks from the speech recognizer. The implemented duration features
relate to three different basic units – phonemes, rhymes, and words.

6.4.1 Duration Normalization

Similarly to pitch features, feature normalization techniques have to be applied. It is obvious
that raw phoneme durations are inapplicable since every phoneme has a different standard
duration. For example, Czech consonant r is on average almost twice shorter than another
Czech consonant c. Likewise, Czech “short”1 vowel a is on average 1.8 times shorter than its
“long” counterpart á.

Two basic normalization techniques were applied. The first was using the z-score, which
transforms a random variable into a random variable having normalized Gaussian distribution
with zero mean and unit variance. Thus, zdur for an unit u is defined as

zdur(u) =
dur(u)− µdur(u)
σdur(u)

(6.7)

1Czech phonology discriminates between short and long vowels, which form minimal pairs. The length is an
important distinctive feature since it differentiates various word meanings. The vowel length is independent of
the stress.
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where µdur(u) is the mean and σdur(u) the standard deviation of the duration of the phoneme u.
The alternative method only uses the mean durations for normalization, avoiding potential

errors caused by noisy estimates of standard deviations. The normalized duration is then
expressed as

normdur(u) =
dur(u)
µdur(u)

(6.8)

If the unit u represents a single phoneme, it is possible to apply the above stated formulas
directly. On the other hand, if we are interested in the duration normalization of longer
units, such as rhymes or words, it is not possible since there is not enough data to reliably
estimate statistics µdur and σdur for the larger units. Thus, it is necessary to capture the
normalized duration using duration statistics of particular phonemes contained in the larger
unit. Disregarding the influence of coarticulation, it is possible to approximate µdur(w) of a
larger unit w = (p1, p2, . . . , pN ) consisting of phonemes pi as

µdur(w) =
N∑

i=1

µdur(pi) (6.9)

Another issue is the computation of larger unit z-scores. One possibility how to perform it is
to make a simplifying assumption that phoneme durations are independent random variables
and approximate the standard deviations using the well-known formula

σ2
dur(p1+p2) = σ2

dur(p1) + σ2
dur(p2) (6.10)

I have chosen an alternative approach which does not estimate σdur(w), but computes z-score
of a larger unit as an average of z-scores of individual phones. This approach seems to be
more robust. Then, the formula for the computation of the z-score becomes

zdur(w) =
1
N

N∑

i=1

dur(i)− µdur(i)
σdur(i)

(6.11)

For all normalized duration features, both speaker-independent and speaker-specific nor-
malized versions were extracted. The former versions use data from the whole speech corpus,
whereas the latter versions only use data of the particular speaker for normalization.

6.4.2 Duration Feature Types

On the phone level, only vowel duration features were implemented. Vowels contribute much
more to the overall speaking rate than consonants. In addition, they are also more robust
against ASR errors. A number of various vowel features was computed. Intuitively, the
most important feature is the normalized duration of the last vowel before the boundary.
However, other vowel features were also extracted. For instance, the longest normalized vowel
in the words reflects lengthening of prefinal syllables in multisyllabic words. In addition, vowel
duration maxima, minima, and averages were computed, as well as a number of other duration
statistics for individual vowels in the word.

Rhyme duration features are motivated by the fact that preboundary lengthening particu-
larly affects the nucleus and coda of syllables. Moreover, unlike syllable-based features, which
represent a possible alternative, the rhyme-based features do not require an automatic syllab-
ifier. Similarly to phoneme-based features, both speaker-independent and speaker-dependent
normalizations were performed. The normalizations were carried out using the method for
normalization of larger unit durations described in the previous section.
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Word-level features reflect durations of whole words. Again, the same normalization tech-
niques were applied. An interesting issue is the use of raw, unnormalized word durations.
We should be very careful when employing them. Although they usually aid performance of
the prosodic classification, they correlate with lexical features that should be modeled in a
language model. For example, certain frequent short sentences (especially backchannels) have
small set of words, so raw durations may capture those words rather than prosody.

6.5 Energy Features

Energy features aim to capture loudness patterns. It is expected that talkers tend to begin
their utterances aloud and gradually taper off. Since loudness is a psychoacoustic quantity,
which cannot be directly measured from the speech signal, we use the short term RMS (Root
Mean Square) energy instead. The RMS is defined as

RMS =

√
√
√
√

1
K

K∑

k=1

s2k (6.12)

where sk denotes the signal samples and k = 1, . . . ,K indices of the samples in the window.
The problem with the energy-based features is that they are less reliable because of the

channel variability. Moreover, there is also some redundancy because of correlation with
pitch features – they are generated using the same physiological mechanisms during speech
production. Thus, it is often very difficult to get some gain from using them.

The used energy features represent mean, minimum, and maximum RMS values in a single
word. These values were extracted using two approaches. The first approach only uses values
from the voiced frames, while the second uses all RMS values. The normalized variants of
these features were computed by dividing the raw values by mean RMS values for the current
turn.

6.6 Other Features

Some additional automatically extracted features are also included. These features describe
phenomena such as turn-taking or speaker overlaps. Although they are not inherently prosodic,
they are put into the group of prosodic features for modeling purposes. Since they may
influence prosodic quantities, it can be advantageous for prosodic classifiers to have access to
them in order to model possible interactions.

For example, turn-related features include the flags indicating whether the current word
is the first or the last word in the current turn. This information is extremely important
for the prosodic classifiers since pause durations as well as other important features are not
defined at turn boundaries. It is obvious that speaker changes are strong indicators of sentence
boundaries. Another turn feature records the time elapsed from the start of the turn.

When dealing with multi-channel data, it is also possible to add speaker overlap features.
Overlaps are frequent in natural conversations. In a study of overlap in two-party and multi-
party conversations, it was shown that 30% to 50% of all speech spurts (regions of speech
in which a particular speaker does not pause for more than half a second) include at least
one frame of concurrent speech by another speaker [130]. Since talkers not holding the floor
predict the end of the current speaker’s turn and often start speaking before the current speaker
finishes, overlap information might be helpful in automatic sentence segmentation.
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The implemented overlap features include the number of speakers on other channels over-
lapping with the current word as well as the number of spurt-initial, spurt-internal, and spurt-
final overlaps, where the spurt position is meant with respect to speakers on other than the
current channel. The spurt-position-based features aim to capture information that says in
which phase of their spurt the overlapping speakers are at the moment. All overlap features are
implemented as integer-valued (number of overlapping features) but may easily be converted
into binary features indicating whether an overlap occurs or not.

6.7 Feature Selection

As mentioned above, the overall feature set was designed to be as exhaustive as possible. A
number of features are highly correlated, differing only in the normalization approach. Because
of the greedy nature of some statistical classifiers, using large feature sets may yield suboptimal
results. Furthermore, redundant features negatively affect computational efficiency and result
interpretability. Thus, a feature space reduction is desirable. The feature selection method
used in this work is motivated by prosodic knowledge. To reduce the feature space, I first
combined similar features into groups, and then selected the features from each group that
were most frequently used in a first set of decision trees.

Individual features were grouped according to their prosodic category (pause, pitch, du-
ration, energy, other) and the reference word (previous, current, following). Moreover, the
feature capturing pause duration after the current word was included in each group. Past ex-
perience has indicated that this feature is essential and always selected for the final feature set.
It also functions as a catalyst during the selection process because without it, duration, pitch,
and energy features are much less discriminative. In addition, all F0 subsets were analyzed
in two versions. The first one contained just normalized features, while the second contained
both normalized and raw values. This bifurcation was proposed in order to avoid masking
effects of some good normalized features by the greedy raw features. Thus, for example, one
feature subset included pause after the current word plus all normalized pitch features relating
to the word following the boundary of interest. Another example of a feature group could be
the set comprised of pause plus all duration features referring to the current word.

Subsequently, a set of decision tree classifiers was trained from each subset using an ensem-
ble sampling approach (described below in Section 7.1.4.3) and average relative feature usage
across the trees was inspected. All features that showed greater usage than an (empirically
estimated) threshold were passed on to form a new feature set containing prosodic features of
all categories. This subset, already much smaller than the huge original set, was further pared
down by eliminating redundant features using the leaving-one-out approach.

6.8 Chapter Summary

This chapter has described prosodic features employed in this thesis. I use local features ex-
tracted from the window spanning the previous, the current, and the following word. The
prosodic features can be divided into groups based on what quantities they capture – pause,
pitch, duration, energy, and “other”. Pause features are essential for automatic sentence seg-
mentation since pauses are the strongest indicators of sentence boundaries. They are also very
robust since their extraction only relies on speech/non-speech segmentation.

On the other hand, pitch-related features are largely dependent on accurate F0 contour
preprocessing. The preprocessing steps involve a removal of halved and doubled values based on
an LTM model, median filtering, and pitch contour stylization by a piece-wise linear function.
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The implemented F0 features capture pitch ranges, pitch resets, and slopes of the stylized
contour.

Duration features primarily aim to capture the phenomenon of preboundary lengthening.
The implemented duration features relate to three referential units – phonemes, rhymes, and
words. The features are normalized with respect to phone duration means and standard
deviations. Energy features aim to capture loudness patterns – talkers often tend to gradually
taper off toward utterance unit boundaries. The features are computed based on the short
term RMS energy and normalized to the mean RMS value of the actual turn. The group
of “other” features involves features capturing phenomena such as turn-taking or speaker
overlaps. Although these features are not prosodic, they are put into the group of prosodic
features for modeling purposes.

Because the overall set of implemented features is really huge, a feature space reduction
is needed before using the prosodic feature set in statistical classifiers. The feature selection
method used in this work is based on searching for the best features in smaller groups of
features capturing similar prosodic phenomena. The best features from each group are passed
on to form a new feature set containing prosodic features of all categories. This subset is further
pared down by eliminating redundant features on the basis of the leaving-one-out approach.
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Chapter 7

Statistical Models for Sentence
Segmentation of Speech

As we must account for every idle word,
so must we account for every idle silence.

Benjamin Franklin

In this thesis, I examine three statistical approaches to sentence segmentation of speech –
a hidden Markov model (HMM), a maximum entropy (MaxEnt) model, and a boosting-based
model called BoosTexter. All three approaches rely on both textual and prosodic information.
The approaches are interesting to compare. They not only employ different machine learning
methods but also combine the two basic knowledge sources in different ways.

The HMM-based approach uses two independent models that are combined on the score
level during testing. The BoosTexter approach builds one integral model that combines the two
information sources on the feature level already during training. The MaxEnt-based approach,
in the variant used here, lies somewhere in between the previous two. During training, the
machine learning algorithm combines textual features with thresholded prosodic posteriors
obtained from an independent prosodic classifier. The different views on the knowledge source
combination are not only interesting to compare but also may be of benefit for a subsequent
model output combination. The different models are likely to be at least partly complementary,
and thus their combination may yield superior performance.

This chapter provides a detailed description of the three above mentioned modeling ap-
proaches. Its remainder is organized as follows. Section 7.1 presents the HMM approach,
Section 7.2 overviews the MaxEnt approach, and Section 7.3 describes the boosting-based
approach. Section 7.4 gives a brief summary of the whole chapter.

7.1 HMM-Based Approach

This approach to sentence segmentation, which was introduced by Shriberg and Stolcke, com-
bines lexical and prosodic model within the hidden Markov model (HMM) framework. Lexical
information is modeled by an N -gram language model, prosodic information is represented
by posteriors output by an independent prosodic classifier. During testing, both knowledge
sources are combined within an HMM.

This section is structured as follows. Subsection 7.1.1 summarizes N -gram modeling tech-
niques, Subsection 7.1.2 overviews fundamentals of hidden Markov models, Subsection 7.1.3
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describes the HMM-based hidden event language model, Subsection 7.1.4 presents the prosodic
model based on decision trees, and Subsection 7.1.5 explains the combination of prosodic and
language models.

7.1.1 N-gram Language Models

In many language processing problems, we need to estimate the probability P (W ) of a word
string W consisting of words w1, w2, . . . , wT . These probabilities are typically estimated using
a statistical language model (LM). In general, the LM distribution P (W ) should depend on
syntactic, semantic, and pragmatic properties of the target language, however, it is usually
approximated by so-called N -gram models in real-world applications.

The N -gram models can be formalized as follows. Using the Bayes’ chain rule, the proba-
bility P (W ) may be computed as

P (W ) = P (w1, w2, . . . , wT ) = P (w1)
T∏

i=2

P (wi|wi−1
1 ) = P (w1)

T∏

i=2

P (wi|w1, . . . , wi−1) (7.1)

However, such a model would have too many parameters and it would be basically impossible to
estimate them robustly. That is why we use simplified models that assume that the occurrence
of the word at position i only depends on the N − 1 previous words. This simplification may
be formalized as follows

P (wi|w1, w2, . . . , wi−1) ≈ P (wi|wi−N+1, wi−N+2, . . . , wi−1) (7.2)

For example, if we assume that the current word depends on two preceding words, we use so-
called trigram probabilities P (wi|wi−2, wi−1). By analogy, we can define bigram P (wi|wi−1)
and unigram P (wi) probabilities.
N -gram probabilities of orders greater than one can be estimated using the maximum

likelihood approach as

P̂ (wi|wi−N+1
i−1 ) =

C(wii−N+1)

C(wi−1
i−N+1)

(7.3)

where the function C(·) returns the number of occurrences of its argument in training data.
However, this approach fails when C(wii−N+1) = 0 or even C(wi−1

i−N+1) = 0. In the former
case, the probability1 P (wi|wi−N+1

i−1 ) would be zero, in the latter case, it would be undefined.
To overcome this problem, we use so-called smoothing techniques. The term “smoothing” refers
to the fact that after its application we get a flatter distribution in which zero probabilities
are replaced by non-zeros and non-zero probabilities are lowered. The smoothing methods not
only prevent zero probabilities but also increase overall model robustness. There are two basic
smoothing strategies: interpolation and back-off.

The interpolation smoothing methods mix the highest order N -gram distribution with
lower order N -gram distributions that suffer less from data sparseness. A weighted sum of the
N -gram distributions is used. In the mixture, the lowest order distribution, zerogram, has a
specific uniform distribution in which all words from the vocabulary have a probability equal
to the reciprocal of the vocabulary size 1

|V | . For example, for a trigram model, we get

PIP (wi|wi−2, wi−1) = λ0
1
|V | + λ1P (wi) + λ2P (wi|wi−1) + λ3P (wi|wi−2, wi−1) (7.4)

1To simplify the notation I will use P (·|·) instead of P̂ (·|·) in the remainder of this thesis.
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The interpolation weights λi > 0, i = 0, 1, 2, 3 satisfying the condition
∑3
i=0 λi = 1 are

estimated using so-called held-out data, i.e. data that we hold out from the training set from
which we extract the N -gram counts. The λs are usually computed via the Expectation-
Maximization (EM) algorithm or Powell search [128]. Note that the interpolation do not
necessarily have to be fixed numbers; some interpolation-based smoothing methods define the
weights as functions of the word history.

While the interpolation approach always uses probabilities from lower order N -gram mod-
els, the back-off approach exploits information from the lower order N -gram estimator only if
it does not have non-zero count for the higher order N -gram. For instance, if the model has a
corresponding (smoothed) trigram probability, it solely relies on it. By contrast, if this trigram
probability is zero, the model backs-off to bigrams. The central idea of back-off smoothing
is to distribute the overall probability mass between seen and unseen events. Most back-off
methods use for this purpose the Good-Turing estimate.

According to the Good-Turing estimate, it is necessary to distribute among unseen N -
grams the same portion of the probability mass as corresponds to N -grams that have only
been seen once (so-called singletons). Hence,

P0 =
n1

N
(7.5)

where n1 is the number of singletons and N the overall number N -grams. Furthermore, for
N -grams occurring exactly r-times, we pretend they occurred r∗-times

r∗ = (r + 1)
nr+1

nr
(7.6)

Using the probability notation, we get

PGT (x) =
r∗

N
(7.7)

where x is an N -gram occurring r-times. The basic back-off smoothing (so-called Katz back-
off) may be for trigrams written as follows

PKatz(wi|wi−2, wi−1) =

{
C∗(wi−2,wi−1,wi)
C(wi−2,wi−1) for C(wi−2, wi−1, wi) > 0

α(wi−2, wi−1)PKatz(wi|wi−1) for C(wi−2, wi−1, wi) = 0
(7.8)

where α(wi−2, wi−1) is a normalization factor satisfying the constraint that all probabilities in
the distribution sum up to 1.

Nowadays, the most popular smoothing technique is the Kneser-Ney method [131]. It is
based on a simple technique called absolute discounting. In absolute discounting, the higher
order distribution is created by subtracting a fixed discount D ≤ 1 from each non-zero count

Pabsolute(wi|wi−2, wi−1) =

{
C(wi−2,wi−1,wi)−D
C(wi−2,wi−1) if C(wi−2, wi−1, wi) > 0

α(wi−2, wi−1)Pabsolute(wi|wi−1) if C(wi−2, wi−1, wi) = 0
(7.9)

The Kneser-Ney method extends the absolute discounting model by a more sophisticated
way of handling the back-off distribution. The intuition behind it is that words appearing in a
higher number of different contexts are also more probable to occur in an previously unseen con-
text. Nowadays, the Kneser-Ney method is usually not used based on the formula introduced
in the original paper. Chen and Goodman [132] showed that modified, interpolated version of
the smoothing algorithm, which uses three different discount parameters D1, D2, D3+ rather
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than a single discount D for all non-zero counts, performs better. The modified smoothing
formula may be expressed as follows:

PKN (wi|wi−1
i−N+1) =

C(wii−N+1)−D(C(wii−N+1))
∑

wi
C(wii−N+1)

+ λ(wi−1
i−N+1)PKN (wi|wi−1

i−N+2) (7.10)

where

D(c) =







0 if c = 0
D1 if c = 1
D2 if c = 2
D3+ if c ≥ 0

(7.11)

To make the sum of the distribution equal to 1, we use

λ(wi−1
i−N+1) =

D1N1(wi−1
i−N+1, ·) +D2N2(wi−1

i−N+1, ·) +D3+N3+(wi−1
i−N+1, ·)

∑

wi
c(wii−N+1)

(7.12)

where

N1(wi−1
i−N+1, ·) =

∣
∣
∣

{

wi : C(wi−1
i−N+1, wi) = 0)

}∣
∣
∣ (7.13)

N2(wi−1
i−N+1, ·) and N3+(wi−1

i−N+1, ·) are defined by analogy.

Another useful technique is referred to as Witten-Bell smoothing [133]. While empirical
results by Chen and Goodman [132] suggest that this method does not perform as well as
other common smoothing techniques (especially for small training sets), in some specific cases
it represents a good option. For instance, if no singletons appear in training data, we cannot use
the methods based on the Good-Turing discounting. Such a situation often comes up when we
use class-based language models. The Witten-Bell method also proved to be robust to various
irregularities in training data since it is more conservative in subtracting the probability mass.
The idea of the Witten-Bell discounting is to calculate the probability of seeing a new word
based on the number of different words that follow a certain word history. The smoothed
model is defined recursively as

PWB(wi|wi−1
i−N+1) = λ(wi−1

i−N+1)P (wi|wi−1
i−N+1) + (1− λ(wi−1

i−N+1))PWB(wi|wi−1
i−N+2) (7.14)

To calculate the parameters λ(wi−1
i−N+1), we use the number of unique words that occur follow-

ing the history wi−1
i−N+1. This count, which is denoted as N1+(wi−1

i−N+1, ·), is formally defined
as

N1+(wi−1
i−N+1, ·) =

∣
∣
∣

{

wi : C(wi−1
i−N+1, wi) > 0)

}∣
∣
∣ (7.15)

Using this notation, the probability mass corresponding to unseen N -grams is given by

1− λ(wi−1
i−N+1) =

N1+(wi−1
i−N+1, ·)

N1+(wi−1
i−N+1, ·) +

∑

wi
C(wii−N+1)

(7.16)

A more detailed survey of LM smoothing techniques may be found in [132, 134, 135, 13,
136], among others.
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7.1.2 Hidden Markov Models

Hidden Markov Model (HMM) is a sequence classifier representing a probabilistic function of
a Markov process. HMMs are very popular classifiers in many different tasks ranging from
part-of-speech tagging and speech recognition to bioinformatics and musical score following.
One of the reasons for the HMM popularity is the fact that there exist very efficient methods
of HMM training and testing.

The general task of sequence classification is to assign a label to every element of the
observed sequence. The HMM, given the sequence of elements, computes a probability distri-
bution over all possible labels, and consequently finds the most probable label sequence. The
model has the following components:

• O = o1, o2, . . . , oN — an observation sequence (discrete or continuous valued);

• S = s1, s2, . . . , sN — an underlying sequence of states;

• S = s0, sN+1 — special start and end states not associated with observations;

• A = a01, a02, . . . , ann — a transition probability matrix where aij represents a probability
of moving from state i to state j, satisfying the condition

∑N
j=1 = 1;

• B = bi(ot) — a set of observation likelihoods expressing the probability that an obser-
vation ot is generated by state i.

The word “hidden” in the name of the model refers to the fact that we do not directly ob-
serve the state sequence that the model passes when generating the observation sequence, but
only its probabilistic function. A first-order HMM makes two strong simplifying assumptions.
First, the probability of the following state is only dependent on the directly preceding state

P (si|s1, s2, . . . , si−1) ≈ P (si|si−1) (7.17)

Second, the probability of the output observation oi depends only on the particular state si
that generated the observation.

P (oi|s1, s2, . . . , si, . . . , sn, o1, o2, . . . , oi, . . . , on) ≈ P (oi|si) (7.18)

There are three fundamental methods for HMMs. First, we need a method to compute
the likelihood of an observed sequence O given an HMM and its parameteres (A,B). This
likelihood can be efficiently computed using the Forward algorithm (or alternatively, using
its reversed version, the Backward algorithm) which is based on dynamic programming. A
combination of the two algorithms, the Forward-Backward algorithm, can be used to estimate
probabilities of the hidden state values given the output sequence.

Second, we need a method to find the best hidden state sequence S given an observation
sequence O, and an HMM and its parameters (A,B). The best state sequence is usually
decoded using the Viterbi algorithm. Finally, we need a method to estimate HMM parameters
(A,B) given an observation sequence O (i.e., training data). For this purpose, we can use
the Baum-Welch algorithm, which is a special case of the Expectation-Maximization (EM)
algorithm and enables training of HMM parameters in an unsupervised approach. More details
on these HMM algorithms are given in [134, 136], among others.
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7.1.3 Hidden Event Language Model

For modeling of textual information within the HMM-based segmentation approach, the Hid-
den Event Language Model (HELM) [137] has been proposed. In most tasks, the role of the
language model is to predict the next word given the word history. In contrast, the goal of
language modeling in the sentence segmentation task is to estimate the probability that a sen-
tence boundary occurs in an observed word context. Because the sentence boundaries are not
explicitly present in the speech signal, they are called “hidden events”. LetW denote the given
word sequence w1, w2, ..., wi, ..., wn and E the sequence of interword events e1, e2, ..., ei, ..., en.
Then, the HELM describes the joint probability of words and hidden events P (W,E) in an
HMM. In this case, the HMM hidden variable is the type of the event (including “no-event”).
The states of the model correspond to word/event pairs, the observations are the words (with
the possibility of adding another observations such as prosodic feature vectors as discussed
below). Note that, in contrast to HMM taggers, words appear in both the states and the
observations.

Because we typically have training data annotated with event labels, the HMM model can
be trained using a supervised approach; using Baum-Welch algorithm is not necessary here.
For training, words and event labels are merged into a single data stream. Then, standard
N -gram techniques are used to estimate HMM transition probabilities. In other words, event
labels are treated in the same way as words during training. The absence of any hidden event
in a interword boundary may be marked either explicitly (by a special label) or implicitly
(by the absence of any event label). The latter approach seems to be more convenient since
explicit “no-event” labels shorten the considered word context. As opposed to the typical way
of N -gram model estimation, we do not split the training data into sentences before using
them in training. Such splitting would evidently hurt the sentence boundary prediction ability
since the model would not be aware of typical word sequences occurring across the sentence
boundaries.

The most probable event sequence is identified with respect to individual word boundary
classifications, rather than by finding the highest probability sequence of events [88]. Thus,
we use

êi = argmax
ei

P (ei|W ) (7.19)

To obtain hidden event posteriors, standard HMM algorithms may be employed. The forward-
backward algorithm is typically used for decoding, the alternative is to use the Viterbi algo-
rithm. Note that the forward-backward algorithm is more accurate here since we are looking for
the most likely event at each interword location, rather than finding the most probable event
sequence. An implementation of the HELM is available as part of the SRILM toolkit [138].

7.1.4 Prosodic Model Based on Decision Trees with Ensemble Bagging

The aim of the prosodic model in the sentence unit segmentation task is to use prosodic
features to provide sentence boundary probabilities for each interword boundary. The prosodic
posteriors P (E|X) may either immediately be used to make final decisions about the sentence
boundaries, or, more typically, may later be combined with posteriors from a language model.
To obtain the prosodic posteriors, CART-style decision trees [139] are employed.

In general, we can employ any statistical classifier, such as neural network or Gaussian
mixture model, but decision trees offer several advantages. Not only that they yield good
results, but also can handle both continuous and categorical features, as well as features with
undefined values. The undefined feature values frequently occur at the edges of acoustic
segments since many prosodic features refer to preceding or following words. An additional
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advantage of decision trees is that the trained models are easy to interpret by humans. This
facility helps us understand how individual prosodic features are used to make a particular
decision. Another advantage is that decision trees do not require data normalization or scaling
since they do not make any assumptions about the data distribution.

7.1.4.1 CART-style Decision Trees

The decision tree is a classifier in the form of a tree structure in which each node is either a leaf
node indicating the value of the target class and its probability, or a decision node specifying
a test to be carried out on a single attribute-value, with one branch and sub-tree for each
possible outcome of the test. The tree model is “grown” by splitting the source data set into
subsets by asking one question at a time of the available features. The feature queried in
each question, as well as the threshold value in the question (e.g., “Is pause at the boundary
in question longer than 250 ms?”), is that which best discriminates the target classes at that
node in the tree. The splitting process is repeated on each derived subset in a recursive manner
until a stopping condition (the maximum depth of the tree or the minimum number of samples
in the leaf node) is met.

In the CART algorithm, the predictive values of single features at a particular node are
measured using the Gini index of diversity which is based on squared probabilities of mem-
bership for each target category in the node. It is defined as

IG(i) = 1−
m∑

j=1

f(i, j)2 =
∑

j 6=k

f(i, j)f(i, k) (7.20)

where m is the number of target classes, and f(i, j) denotes the probability of getting the
value j in the node i. That is, f(i, j) is the proportion of data samples assigned to the node i
for which the correct class is j. The criterion is equal to zero when all samples in the node fall
into a single target category. To avoid overfitting, various pruning and smoothing techniques,
such as cost-complexity pruning, may be applied. In the testing phase, for each sample X, the
decision tree estimates the posterior probability of each of the events E, yielding P (E|X). An
example of a decision tree is shown in Fig. 7.1.

7.1.4.2 Bagging

A drawback of decision trees is their instability [140]. It means that small changes in input
training data may cause large changes in output classification rules. This problem may be
mitigated by using aggregating methods. The aggregating methods generate a number of ver-
sions of classifiers, which are then combined to make final predictions. A popular aggregating
method, which is frequently used with decision trees, is bagging2 [141]. It is a powerful machine
learning technique that takes advantage of the instable behavior of classifiers such as decision
trees. The method is based on averaging predictions of multiple classifiers that are trained on
a number of datasets obtained by sampling with replacement from the original training set
(so-called bootstrap sampling).

Using a formal notation, this aggregating scheme may be described as follows. Let
Y = {y1, . . . , yM} be set of target classes and T a training set consisting of data T =
{(xn, yn), n = 1, . . . , N} where yn ∈ Y corresponds to a class label. First, the bagging proce-
dure creates a sequence of K training datasets (bags) {Tk}, k = 1, ..,K that are obtained by
random sampling with replacement from T , and contain the same number of samples as T .

2The word bagging is an acronym for Bootstrap Aggregating.

79



Chapter 7. Statistical Models for Sentence Segmentation of Speech

pause.after < 4.5:

| word.dur < 0.265:

| | p.pause.after < 124:

| | | word.dur < 0.215: 0.909 0.09104 N

| | | word.dur >= 0.215: 0.7797 0.2203 N (non_leaf)

| | p.pause.after >= 124:

| | | vowel.75_dur < 0.055: 0.7442 0.2558 N (non_leaf)

| | | vowel.75_dur >= 0.055: 0.4762 0.5238 S (non_leaf)

| word.dur >= 0.265:

| | f.word.dur.norm < 0.625:

| | | f.f0.slope.first < -0.035: 0.5686 0.4314 N (non_leaf)

| | | f.f0.slope.first >= -0.035: 0.4028 0.5972 S (non_leaf)

| | f.word.dur.norm >= 0.625:

| | | f0.ratio.last_min__baseline < 1.275: 0.5514 0.4486 N (non_leaf)

| | | f0.ratio.last_min__baseline >= 1.275: 0.692 0.308 N (non_leaf)

pause.after >= 4.5:

| pause.after < 70.5:

| | pause.after < 18.5:

| | | word.dur < 0.255: 0.5749 0.4251 N (non_leaf)

| | | word.dur >= 0.255: 0.369 0.631 S (non_leaf)

| | pause.after >= 18.5:

| | | pause.after < 36.5: 0.3235 0.6765 S (non_leaf)

| | | pause.after >= 36.5: 0.1928 0.8072 S

| pause.after >= 70.5: 0.03217 0.9678 S

Figure 7.1: Example of a CART-style decision tree for sentence segmentation (only top 4 levels listed)

Then, let ϕ(x, T ) be a procedure that builds a decision tree from data T and outputs posterior
probabilities of target classes. Then, the final “bagged” posteriors are computed as an average
of ϕ(x, Tk) over k

ϕA(x, T ) =
1
K

K∑

k=1

ϕ(x, Tk) (7.21)

For a largeN , the bags Tk are expected to have 63.2% of the examples of T , while the remaining
samples are expexted to be duplicates.

Besides addressing the instability problem, bagging also decreases classifier variance and
makes the resulting predictor more robust to noise in training data. In addition, since training
of a individual decision tree is independent of each other tree training, it can be efficiently
implemented using parallel machines to decrease the overall training time.

7.1.4.3 Ensemble Bagging

When training a sentence boundary classifier, we have to deal with the problem of imbalanced
data. Sentence boundaries occur much less frequently than “non-boundaries”; their proportion
is ranging approximately from 7 to 20 %, depending on the particular domain and language.
The skewed distribution of training data may cause decision trees to miss out on inherently
valuable features that are dwarfed by data priors. One solution to this problem is to train
classifiers on data randomly downsampled to equal class priors [49]. During testing on (the
imbalanced) test data, the resulting posteriors are adjusted to take into account the original
class priors. Note that this adjustment is only necessary when using the prosody model alone
because the “downsampled” posteriors can be used directly when combined with the HELM,
as described below in Section 7.1.5.

The problem of the downsampling approach is that it does not utilize all available data from
the majority class. However, it is possible to perform the downsampling in a smarter way –
in combination with bagging. To take advantage of all available data, we can apply ensemble
sampling instead of simple downsampling. Ensemble sampling is performed by randomly
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splitting the majority class into int(R) non-overlapping subsets, where R is the ratio between
the number of samples in the majority and minority classes. Each subset is joined with all
minority class samples to form int(R) balanced sets. Then, we apply bagging on each of these
newly formed balanced sets. This combination of bagging and ensemble sampling makes up a
method called ensemble bagging.

It was shown that this technique is very powerful in addressing the imbalanced dataset
problem in the sentence segmentation task [142]. Hence, ensemble bagging was employed in
all our experiments with decision trees. I used 25 bags per ensemble which was found to be
a reasonable trade-off between the training time and performance. The number of ensembles
varies according to ratios between the event priors in individual tasks. In the datasets used
in this work, this number ranges from 5 to 13. For my experiments with CARTs, I used the
tree growing algorithm as implemented in the IND package [143] along with a set of my own
wrapper scripts performing higher-level machine learning algorithms.

7.1.5 Combination of Language and Prosodic Model

Shriberg and Stolcke proposed to combine prosodic and lexical features in the HMM framework
under assumption of conditional independence of word identities and prosodic features [49].
The integrated HMM then models the joint probability distribution P (W,X,E), where W
denotes observed words, X observed prosodic features, and E hidden events. During classifi-
cation, we try to find the event sequence Ê with the maximal posterior probability given W
and X

Ê = argmax
E

P (E|W,X) (7.22)

For P (E|W,X), it holds

P (E|W,X) =
P (X|W,E)P (E|W )

P (X|W )
(7.23)

If we make a simplifying assumption that prosodic features only depend on events E, and
not on word identities W , we may substitute P (X|W,E) by P (X|E). It is necessary to
note that this assumption is not always fully true because of several reasons. First, the
prosodic features are partly influenced by particular phonetic content of individual words. This
problem can be mitigated by proper feature normalization, however, can hardly be completely
eliminated. Second, there also exists some indirect, and difficult to capture, relation between
prosody and meaning [68]. Moreover, strictly speaking, even after applying the assumption of
independence on word identities, real prosodic features are still dependent on word alignment
since some prosodic features depend on phone or word boundary information for extraction
or normalization. However, despite these facts, the simplifying assumption of independence is
considered to be acceptable. Equation (7.23) may thus be rewritten as

P (E|W,X) ≈ P (X|E)P (E|W )
P (X|W )

=
P (E|X)P (E|W )

P (E)
· P (X)
P (X|W )

(7.24)

Because the fraction P (X)
P (X|W ) does not depend on E, we may search for Ê using the following

proportion

P (E|W,X) ∝ P (E|X)P (E|W )
P (E)

(7.25)
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Furthermore, if the prosodic classifier was trained on data downsampled to equal priors P (E)
(cf. Section 7.1.4), we can use

P (E|W,X) ∝ P (E|X)P (E|W ) (7.26)

Assuming that prosodic observations are conditionally independent of each other given the
event type, P (E|X) can be computed as

P (E|X) =
∏

i

P (ei|xi) (7.27)

As a result, Ê can be found by treating prosodic features as state emissions with the
probability P (xi|ei) incorporated into the HELM. Thus, we obtain the following formula for Ê

Ê = argmax
E

P (E|W,X) = argmax
E



P (W,E)

(
∏

i

P (ei|xi)
P (ei)

)λ


 (7.28)

Note that for searching for the maximum, P (W,E) and P (E|W ) are equivalent since P (W )
is constant. Moreover, P (ei) in the denominator may be omitted if the prosodic model was
trained on data with equal priors (as proposed in Section 7.1.4.3). λ is an exponential scaling
factor estimated using held-out data, which allows us to weight relative contributions from
the two models. The use of the scaling factor is advisable since we combine scores from two
probabilistic models of a different type.

7.2 Maximum Entropy Approach

As described above, the HMM-based model is generative. Its supervised training method max-
imizes the joint word/event pair sequence likelihood P (W,E) on the training text; prosodic
likelihoods are obtained from an independent classifier and integrated into the model during
testing. Thus, the HMM-based model training algorithm does not guarantee that the correct
event posteriors needed for classification are maximized. There is a mismatch between the
training criterion and the use of the model for testing. On the contrary, Maximum Entropy
(MaxEnt) is a discriminative model, which is trained to directly maximize the posterior bound-
ary label probabilities. On the other hand, a drawback of MaxEnt is that it only makes local
decisions, whereas HMM classifies the entire input sequence.

MaxEnt belongs to the exponential (or log-linear) family of classifiers, i.e. the features
extracted from the input are combined linearly and then used as an exponent. The Max-
Ent framework enables a natural combination of features relating to different data streams
within a single model. MaxEnt models are very popular in many NLP tasks, such as machine
translation, POS tagging, chunking, or word sense disambiguation.

7.2.1 General Method

Generally speaking, the classification problem is defined as a prediction of class y ∈ Y in a
context x ∈ X . The classifier k : X → Y is implemented using a conditional probability
distribution P (y|x). Furthermore, we define a context predicate3 as a logic function

cp : X → {0,1} (7.29)

3Context predicates are often called “features” within the MaxEnt framework.

82



7.2. Maximum Entropy Approach

returning 1 if “useful information” occurs in the context x ∈ X . The set of context predicates
cp1, . . . , cpm has to be defined by the system designer in advance. Furthermore, a set of binary
indicator functions is defined

f : X × Y → {0,1} (7.30)

for which it holds

fcp,x′(x, y) =

{

1 if x = x′ ∧ cp(y) = 1
0 otherwise

(7.31)

In the context of the sentence segmentation task, one such feature function might be

fcp,x′(x, y) =

{

1 if wordi = “today” ∧ wordi+1 = “I ” ∧ yi = SU
0 otherwise

(7.32)

where SU denotes a sentence unit boundary.
The idea of MaxEnt is that the model should follow empirical constraints we impose on it,

but beyond these constraints, it should make as few assumptions as possible. The empirical
constraints are given by the training data, i.e.

E(fi(x, y)) = E′(fi(x, y)) (7.33)

where E(·) denotes expectation and E′(·) its empirical estimate. The model finds a probability
distribution that satisfies these constraints and has the maximum conditional entropy

H(P ) = −
∑

x

P (x)P (y|x) logP (y|x) (7.34)

Berger et al. [144] showed that the solution to this constrained optimization has an exponential
form corresponding to a multinomial logistic regression model

P (y|x) =
1
Z(x)

exp

(
∑

i

αifi(x, y)

)

(7.35)

where

Z(x) =
∑

y

exp

(
∑

i

αifi(x, y)

)

(7.36)

is the normalization factor ensuring that
∑

y p(y|x) = 1.
The MaxEnt model is trained by finding parameters α∗i that maximize the likelihood

product over the training data

α∗i = argmax
αi

N∏

j=1

P (yj |xj) (7.37)

where N denotes the number of samples in the labeled training set. A number of various
numerical optimization algorithms has already been employed to solve this weight estimation
problem. In all my experiments with the MaxEnt models, I employ the Conjugate Gradi-
ent Ascent method as implemented in the MegaM model optimization toolkit written by Hal
Daumé III [145]. This method is very efficient for binary classification tasks, as is automatic
sentence segmentation. Note that this optimization technique cannot be used for multiclass
problems. The reason is that for multiclass classification, explicit construction and inver-
sion of the Hessian matrix, which is an inherent part of the optimization algorithm, becomes
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impossible. Thus, for multiclass tasks such as automatic punctuation, one has to use an alter-
native method. For instance, L-BFGS (Limited Memory Broyden-Fletcher-Goldfarb-Shanno)
method [146] uses an iteratively built approximation to the true Hessian.

An important feature of MaxEnt models is that they are prone to overfitting. To overcome
this drawback, we typically use smoothing with Gaussian priors that penalize large weights.
This technique aims to force weights to have Gaussian distribution with the mean µ = 0 and
the variance σ2. The value of σ2 is typically empirically optimized on development data. The
application of the smoothing method changes the optimized likelihood function from (7.37) to

α∗i = argmax
αi

N∏

j=1

P (yj |xj)
∏

αi

1
√

2πσ2
i

exp

(

− α
2
i

2σ2
i

)

(7.38)

In log space, where the optimization is usually performed, the objective function becomes

α∗i = argmax
αi

N∑

j=1

P (yj |xj)−
∑

αi

α2
i

2σ2
i

(7.39)

More detail on general MaxEnt models may be found in [147, 148, 136], among others.

7.2.2 Textual Features for MaxEnt

To encode textual features for use in the MaxEnt model, it is necessary define some feature
templates. The textual features I used correspond to N -grams available to the HELM plus
an additional binary feature indicating whether the word before the boundary of interest is
identical with the following word. This additional feature aims to capture word repetitions.

Given the word sequence wi−3 . . . wi . . . wi+3 where wi refers to the word before the bound-
ary in question, the N -gram templates were the following:

• Unigrams – U0: wi, U1: wi+1

• Bigrams – B0: wi−1wi, B1: wiwi+1

• Trigrams – T0: wi−2wi−1wi, T1: wi−1wiwi+1, T2: wiwi+1wi+2

• Fourgrams –
F0: wi−3wi−2wi−1wi, F1: wi−2wi−1wiwi+1, F2: wi−1wiwi+1wi+2,
F3: wiwi+1wi+2wi+3

In other words, all N -grams containing the word right before the current boundary (wi) are
included. The only exception is the unigram capturing the word right after the boundary
(wi+1). If some words from the analyzed window were undefined because of coinciding with
text boundaries, they were replaced by a special symbol for the feature extraction purposes.
Note that although I also list fourgram features here, these have not been found to be useful
in any of the tasks described in this thesis. Given the amount of data available for training in
the individual tasks, they have never yielded improvement over the trigram model.

As already mentioned above, unlike the HELM, the MaxEnt model has the ability to handle
mutually dependent or overlapping textual features. A single MaxEnt model does not have to
only rely on words, but we can also add parallel features relating to other textual knowledge
sources. For instance, we can run the training text through a part-of-speech tagger, generate
parallel features based on those tags, and pass them to the learning algorithm together with
the word-based features. Note that particular textual features used in individual classification
tasks are described in special sections of the respective chapters, for example in Section 8.5.1
in the following chapter.
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7.2.3 Prosodic Features for MaxEnt

A problem associated with using MaxEnt models for sentence segmentation is that it is not
straightforward how to efficiently use continuous (prosodic) features. Although the MaxEnt
features fi may generally be real-valued, continuous are typically not used directly since combi-
nation of real- and binary-valued features in a single MaxEnt model may cause many problems.
To this end, continuous features are usually converted into binary features via thresholding.

In the approach used here, prosodic features are not embedded into the MaxEnt model
directly. The MaxEnt model is powerful in combining different sources of textual knowledge,
but not expected to achieve superior performance when dealing with many (originally) real-
valued features coming from a single knowledge source. This hypothesis was supported by
experiments performed in [149]. Thus, it looks more natural to estimate prosodic posteriors
using an independent classifier (in our case the bagged decision trees) and then to encode the
posteriors via thresholding, as proposed in [88].

Since the presence of each feature in a MaxEnt model raises or lowers the final probability
by a constant factor, it is reasonable to encode the prosodic posteriors in a cumulative way.
This approach is more robust than using interval-based bins since small changes in prosodic
scores may influence at most one feature. I have experimented with various gaps between
adjacent thresholds and found that 0.1 is a convenient value. Thus, I got the following sequence
of binary features – p > 0.1, p > 0.2, p > 0.3, . . . , p > 0.9.

The prosodic posteriors for training samples were estimated using a cross-validation
method. My preliminary experiments showed that using decision trees trained on the same
data for which we generate the posteriors led to biased estimates and consequently hurt Max-
Ent performance. Hence, the training set was divided into 5 non-overlapping subsets and
CARTs for each of the subsets were trained only using other 4 subsets. In testing, models
trained on all training data are used to generate the posteriors.

Note that some binary non-prosodic features that because of the HMM architecture had to
be grouped with prosodic features in the HMM approach may naturally be handled separately
within the MaxEnt framework. The speaker change feature is a good example of such features.

For illustration, the following example shows three data samples corresponding to three
consecutive words from the training data. The MaxEnt features shown in the example capture
word N -grams and thresholded prosodic posteriors. The first value in each sample corresponds
to a class label (S – sentence boundary, N – no boundary). The following space-separated
character strings correspond to binary features written in the so-called Bernoulli format, i.e. all
present features are assumed to have value one and any non-present feature is assumed to have
value zero.

N U0_anything U1_like B0_or_anything B1_anything_like T0_syllables_or_anything
T1_or_anything_like T2_anything_like_that

N U0_like U1_that B0_anything_like B1_like_that T0_or_anything_like
T1_anything_like_that T2_like_that_but pros_gt_0_1

S U0_that U1_but B0_like_that B1_that_but T0_anything_like_that
T1_like_that_but T2_that_but_but pros_gt_0_1 pros_gt_0_2 pros_gt_0_3
pros_gt_0_4 pros_gt_0_5 pros_gt_0_6 pros_gt_0_7 pros_gt_0_8
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7.3 Boosting-Based Approach (BoosTexter)

Besides their positive properties, the two above presented approaches also have some disad-
vantages. In the HMM approach, the combination of prosodic and lexical models makes strong
independence assumptions, which are not fully met in actual language data. Moreover, the
HMM training method maximizes the joint probability of data and hidden events, but a crite-
rion more closely related to classification error would be the posterior probability of the correct
hidden variable assignment given the observations. The drawbacks of HMM may partly be
eliminated by using the MaxEnt model, however, the MaxEnt model itself also shows some
setbacks. As described in the previous section, lexical and prosodic features are not combined
directly but via thresholding of prosodic posteriors generated by an independent prosodic clas-
sifier. Thus, I have explored yet another approach in which prosodic and textual features are
integrated into a single model based on boosting.

7.3.1 General Method

Similarly to bagging, the principle of boosting is to combine many weak learning algorithms
to produce an accurate classifier. However, whereas in bagging, weak classifiers are trained
independently of each other, in boosting, each weak classifier is built based on the outputs
of previous classifiers, focusing on the samples that were formerly classified incorrectly. The
algorithm generates weak classification rules by calling the weak learners repeatedly in series
of rounds. The method maintains a set of importance weights over training data samples and
labels. The weights are used by the weak learning algorithm to find a weak hypothesis with
“moderately low” error by forcing the weak learner to focus on “more difficult” samples from
the training data. The general boosting method can basically be combined with any classifier.

In the sentence segmentation approach described here, an algorithm called BoosTexter [150]
was employed.4 This machine learning technique was initially designed for the task of text
categorization. It combines weak classifiers having a basic form of one-level decision trees
(stumps) using confidence-rated predictions. The test at the root of each tree can check for
the presence or absence of an N -gram, or for a value of a continuous feature. Hence, the
approach allows a straightforward combination of lexical and prosodic features in a single
statistical model. Moreover, another positive property of BoosTexter is that it is very robust
to overtraining. In parallel with [92], the BoosTexter method was newly applied to the sentence
segmentation task as part of this work (as published in [151]).

The particular boosting method implemented in BoosTexter is based on a boosting algo-
rithm called AdaBoost.MH. Using the same notation as in Section 7.1.4.2, its basic principle
may be described as follows [150, 152]. The learning algorithm assigns M weights (i.e. one
weight for one of the target classes, in the sentence segmentation taskM = 2) to each instance
of training data (xn, yn). Let this distribution over training samples and labels be called Di
and the set of labels Ln = {ln1, . . . , lnM}. In the first round, the distribution is uniform.
On each iterative step i, the weak learner uses Di to generate a hypothesis hi,n(xn, ln). The
sign of hi,n(xn, ln) indicates whether the label ln is assigned to xn or not, and the magnitude
|hi,n(xn, ln)| is the confidence of the prediction. The distribution Di is updated to increase
the weight of misclassified sample-label pairs

Di+1(n, l) =
Di(n, l) exp (−αiCn(l)hi,n(xn, l))

Zi
(7.40)

4An open source reimplementation of the original BoosTexter algorithm called icsiboost is available from
http://code.google.com/p/icsiboost/.
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where

Zi =
N∑

n=1

∑

l∈Y

Di(n, l) exp(−αiCn(l)hi,n(xn, l)) (7.41)

is the normalization factor, Cn(l) is a function

Cn(l) =

{

1 if l = yn
−1 if l 6= yn

(7.42)

indicating whether l is a correct label for xn, and αi is the weight of a weak classifier. In
general, αi ∈ R. For binary problems, the original AdaBoost implementation use

αi =
1
2

log
(

1− ei
ei

)

(7.43)

where ei is the weighted error of classifier hi. However, the AdaBoost.MH with real predictions
employed in this thesis uses

αi = 1 (7.44)

Finally, the resulting hypothesis is output as

f(xn, ln) =
I∑

i=1

αihi,n(xn, ln) (7.45)

where I denotes the total number of training iterations. The resulting BoosTexter scores may
be converted into posterior probabilities using a probability calibration method. I employ
Friedman’s logistic correction [153]

p(yn|xn) =
1

1 + exp (−2 · f(xn, ln))
(7.46)

which showed good results when used with boosted stumps. In the particular BoosTexter
implementation, where the output scores are divided by sum

∑I
i=1 αi, the equation (7.46)

becomes

p(yn|xn) =
1

1 + exp (−2I · fBT (xn, ln))
(7.47)

7.3.2 Prosodic and Textual Features for BoosTexter

For training the classifier, I use exactly the same set of prosodic features as for prosodic
classification by decision trees. Also the form of all features was the same, i.e. no feature
scaling or any other preprocessing operation was necessary. Similarly to CARTs, BoosTexter
is also able to handle features that may take undefined values.

On the other hand, textual features for BoosTexter were extracted in the same way as for
the MaxEnt approach (cf. Section 7.2.2). Thus, all N -grams containing the word before the
boundary of interest, plus the unigram right after the boundary, and a binary flag indicating
whether the two words across the boundary are identical or not, were extracted. Similarly to
MaxEnt, BoosTexter may handle dependent and overlapping features so that textual features
used in a single learning procedure do not have to rely only on a single data stream but parallel
knowledge sources may naturally be combined.
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7.4 Chapter Summary

In this chapter, I have described three modeling approaches to sentence segmentation of speech
– HMM, MaxEnt, and BoosTexter. The models differ in the ways they combine textual and
prosodic cues. The HMM-based approach uses two independent models that are combined on
the score level during testing. The MaxEnt-based approach combines binary textual features
with thresholded prosodic posteriors obtained from an independent prosodic classifier. The
BoosTexter approach builds one integral model that combines the two information sources
on the feature level during training. In addition to the used machine learning techniques, I
have also described how individual approaches encode lexical and prosodic features. The three
modeling approaches presented herein are evaluated in experiments reported in the following
chapters.
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Chapter 8

Dialog Act Segmentation of
Multiparty Meetings in English

Never interrupt me when I’m trying to interrupt you.
Winston Churchill

Well-timed silence hath more eloquence than speech.
Martin Fraquhar Tupper

An area of growing interest in the spoken language technology community is the automatic
processing of multiparty meetings. Important tasks in this domain include automatic meet-
ing browsing, summarization, information extraction and retrieval, and machine transla-
tion [154, 155]. As in other domains, the downstream applications require input segmented
into meaningful units. The goal of the work described in this chapter is to develop a segmen-
tation system for the meeting domain, investigate usefulness of various textual and prosodic
features, and compare performance of the three modeling approaches described in the pre-
ceding chapter. Unlike previous work, which has generally examined the use of prosody for
DA segmentation of meetings using only pause information, I also explore the use of prosodic
features beyond pauses, including duration, pitch, and energy features. The ICSI meeting
corpus is used for all experiments herein.

This chapter is organized as follows. Section 8.1 describes the used corpus, Section 8.2 sur-
veys related work in the meeting domain, Section 8.3 defines the particular task, and Section 8.4
presents the experimental setup. Sections 8.5, 8.6, and 8.7 report results of the experiments
based on using only textual information, only prosodic information, and a combination of both
information sources, respectively. Section 8.8 presents a system combining all three modeling
approaches, and Section 8.9 summarizes all experiments and draws conclusions.

8.1 Speech Data

8.1.1 Particularities of Meeting Speech

Natural meetings represent very difficult data for automatic processing. They typically contain
regions of high speaker overlaps, emotional speech, abandoned or interrupted utterances, and
complicated speaker interactions. These frequent phenomena pose a number of challenges for
researchers in the speech processing community. The following example illustrates overlapping
speech as occurs in meetings.
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Channel 1 : Well now we should discuss the, uh Yeah, the plan

Channel 2 : the next year plan

Channel 3 : Oh... I see

. . . : . . . . . . . . .

8.1.2 ICSI Meeting Corpus

In this work, I use the ICSI Meeting Corpus [156] which is publicly available from LDC. It
is a collection of data from 75 natural meetings that occurred at the International Computer
Science Institute (ICSI) in Berkeley, CA, USA. In total, it yields approximately 72 hours
of multichannel conversational speech data sampled at 16 kHz with 16-bit resolution. All
meetings were recorded using both head-worn wireless microphones and several desktop mi-
crophones. In all experiments described in this chapter, I only used data from the close-talking
microphones.

Most of the recorded face-to-face meetings were regularly scheduled weekly group appoint-
ments. Meetings of the following types were recorded:

• Even Deeper Understanding (Bed) – discussing NLP and neural theories of language (15
meetings)

• Meeting Recorder (Bmr) – on the ICSI Meeting Corpus (29)

• Robustness (Bro) – discussing robust ASR methods (23)

• Network Services & Applications (Bns) – internet architectures and standards (3)

• One time only meetings (varies) – miscellaneous other meetings (5)

In the whole corpus, there appear 53 unique speakers – 13 females and 40 males, 28 native
speakers of English and 25 nonnative speakers. Note that the number of nonnative speakers
of English is quite high, however, many of them are fluent when speaking in English. Average
number of participants per meeting was about 6. A unique five-character tag was assigned to
each speaker in the corpus. First letter stands for sex (f for female or m for male), the second
letter is either e for native speakers or n for nonnative speakers. The first two characters
are followed by a unique three digit number. For instance, one of the native male speakers is
me013.

Each of the near-field channels was manually transcribed on the word level. In addition to
the full words, transcripts also contain other information such as filled pauses, backchannels,
contextual comments (e.g. while whispering) and non-lexical events such as laughter, breath,
lip smack etc. Overall, the corpus transcripts yield 773k words.

8.1.3 Dialog Act Markup

In addition to the word transcripts, the ICSI corpus was hand-annotated for Dialog Acts
(DAs) [157, 158]. This companion set of DA-level annotations is called the Meeting Recorder
Dialog Act (MRDA) corpus. The labeling included marking of DA segment boundaries, mark-
ing of DA types, and marking of correspondence between DAs. The MRDA annotation scheme
defines five main dialog act types as well as a number of their subtypes. The main DA classes
are the following:
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• statement (59.0% of DAs in the corpus) – such as “I agree.”.

• question (6.4%)– such as “Do you agree?”.

• backchannel (13.3%) – is a short positive comment, such as “uh-huh” or “yeah”, to the
other speaker to encourage further talk or to confirm that one is listening.

• floor-grabber/holder (7.2%) – indicates that the talker wants to start (“okay”, “yes, but”)
or keep talking (“so”, “uh”).

• disruption (14.1%) – is an incomplete statement or question such as “but there’s a –”.

DA segmentation rules within the MRDA guidelines were designed to separate speech
regions having different discourse functions. The annotators should not only pay attention to
textual features but also to pauses and intonational grouping. However, note that DA units
as defined in MRDA differ from the SUs used in the MDE corpora described in Chapter 5.
The MRDA segmentation rules instruct annotators to split utterances on a clausal level to
maximize the amount of information derived from DAs. This means that sometimes even
grammatically subordinate clauses may form a complete DA, which is in contrast with the
SU definition. Typical examples of such grammatically subordinate DAs are clauses beginning
with conjunctions as because or although. An illustrative example of a DA-segmented utterance
follows (DA boundaries are marked by “/.” tags).

well so I wouldn’t be too concerned about it with respect to that /.

although we should clear with American down course /.

but these results are based on data which haven’t had be uh haven’t had the

chance to be reviewed by the subject /.

so I don’t know how that stands /.

Besides standard DA boundaries, a pipe bar (|) was used to distinguish utterances that
are prosodically one unit but contain multiple DAs. An example of such case may be the
utterance “yeah | that’s right” when pronounced as one prosodic unit. This setting enables
researchers to decide whether to split or not split at the pipes in dependence on the task of
their research.

8.2 Related Work on Segmentation of Meetings

The first sentence segmentation study in the meeting domain was conducted by Baron et
al. [159]. The authors focused on disfluency detection and automatic punctuation in meetings
using the standard HMM approach. Since they used an older version of the ICSI meeting
corpus and a different definition of sentence-like unit boundaries, the results cannot be di-
rectly compared with more recent work on the same data. For a three-way classification task
(sentence boundary/IP/other), their experimental results showed that in the meeting domain,
similarly to other spontaneous speech domains, a combination of lexical and prosodic models
outperforms a lexical model alone.

The study by Ang et al. [160] mainly aimed to provide baseline performance rates for DA
segmentation and classification in the meeting domain. For DA segmentation, the authors
combined lexical and pause features in the HMM framework. As expected, it was shown that
prosodic information (they only used pause duration) is less degraded by ASR errors. For DA
classification, a MaxEnt approach was employed.
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Zimmermann et al. [161] got inspired by [80] and used an A*-based algorithm to perform
DA segmentation and classification simultaneously. Their method was based solely on lexical
features. The heuristic search used a probabilistic framework based on DA-specific N -gram
models. During A* search, an optimal path through the input word sequence was found. The
nodes of the search graph corresponded to inter-word boundaries, whereas the edges carried
labels indicating the DA type and spanned one or more consecutive words. Even though the
system did not use pause information, it outperformed [160] in classification of backchannels
and questions.

In a more recent paper [162], the same authors employed a combination of a word-based
hidden event HMM and a MaxEnt model jointly modeling words and pause duration. In con-
trast to previous work [49, 160] which modeled pause duration independently from surrounding
words, they modeled word boundary types based on both the pause duration and surrounding
words. The novel approach resulted in a modest error rate reduction.

Cuendet et al. [163] focused on adaptation of sentence segmentation models trained on
conversational telephone speech to meeting style conversations. Their models relied on lexical
and pause features. They used the ICSI meeting corpus, but only focused on meetings of one
type (“Bed”). Several different adaptation approaches including data concatenation, logistic
interpolation, boosting adaptation, and out-of-domain confidences as an extra feature, were
tested. The authors also analyzed adaptation performance in dependence on the amount of
used in-domain data. The experimental results showed that boosting adaptation and logistic
interpolation were the best performing approaches when only small adaptation data were used.
For larger adaptation data sets, the logistic interpolation approach showed the best results.

8.3 Segmentation Task for Meetings

This section defines the sentence-like units into which we segment the meeting data. Although
the original manual transcripts of the ICSI corpus do contain punctuation, and thus sentence
boundaries, the punctuation is highly inconsistent. Transcribers were instructed to focus on
transcribing words as quickly as possible; there was not a focus on consistency or conven-
tions for marking punctuation. As a result, different transcribers used different approaches to
punctuation annotation.

Hence, rather than using the inconsistent first-pass punctuation, we decided to employ
special DA segmentation marks from the MRDA annotation project. In this annotation pass,
labelers carefully annotated both dialog acts and their boundaries, using using a set of seg-
mentation conventions for the latter (as described in Section 8.1.3). Thus, we define the target
units as dialog acts. Consequently, the task is automatic dialog act segmentation of multiparty
meetings.

Since the class of DA boundaries involves boundaries of all five MRDA types, it includes
boundaries of both complete and incomplete DAs. Also note that, in line with [160], we
decided to split at the pipe bar boundaries, creating a slightly larger number of total DA
segments. Note that splitting here makes it slightly more difficult to see significant gain from
using prosodic cues since such splits occur within prosodic units.

Formally speaking, DA segmentation can be viewed as a two-way classification problem
with “DA-boundary” and “Non-DA-boundary” as the target classes. For a given word sequence
w1w2...wi...wn, the task of DA segmentation is to determine which interword boundaries cor-
respond to a DA boundary.
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8.4 Experimental Setup

For the DA segmentation experiments herein, I used 73 out of the total 75 available meetings.
The remaining two meetings were excluded because of their very different character from the
rest of the data. The 73 meetings were split into a training set (51 meetings, 539k words),
a development set (11 meetings, 110k words), and a test set (11 meetings, 102k words). In
the experiments to follow, classification models are trained on the training set, tuned on the
development set, and evaluated on the test set. The test set contains unseen speakers, as well
as speakers appearing in the training data as it is typical for the real world applications.

For all experiments, two different test conditions were considered: human-generated ref-
erence transcripts (REF) and speech recognition output (ASR). Recognition results were ob-
tained using the state-of-the-art SRI CTS system [164], which was trained using no acoustic
data or transcripts from the analyzed meeting corpus. To represent a fully automatic system,
I also used automatic speech/non-speech segmentation, although manual segmentation was
available as well. Word error rates for this difficult data are still quite high; the employed
speech-to-text system performed at WER = 38.2% (on the whole corpus).

To allow performance evaluation on the ASR hypotheses, it is necessary to have some
“reference” DA boundaries for the ASR words. Their generation is not straightforward since
true words and ASR hypotheses often differ in the number of words they contain. To this end,
the reference setup was aligned to the ASR hypotheses based on the minimum edit distance.
DA boundaries for the ASR words were then taken from the corresponding aligned reference
words with the constraint that two aligned words could not occur further apart than a fixed
time threshold. Since the ASR hypotheses tend to miss short backchannels that are usually
followed by a DA boundary, the boundaries are less frequent in the ASR hypotheses (13.9% of
words) than in the reference transcripts (15.9%). The DA boundary alignment for an erroneous
ASR hypothesis is illustrated in the following example.

REF:

you could do it about you /. right /. sure /. I mean different among classes /.
because it’s it has a high rate energy /. somewhere around sixty must be /.

ASR:

could what about you /. sure /. or mean different him pluses /.
because it’s it doesn’t high rate angie /. there are sixteen mostly /.

I use BER (defined in Eq. (3.1) on page 18) as the main performance measure for evaluation
of my experiments. In addition, I always show chance error rate which corresponds to BER
achieved when all interword boundaries in test data are classified as within-DA boundaries.
To ease a performance comparison across test conditions, I also report NIST error rate (3.2)
and F -measure (3.5) for the best model in each section.

Differences between individual models are tested for statistical significance using the Sign
test [50]. For all statistical tests in this thesis, I take p < 0.05 as a standard level of sig-
nificance. However, I do not only report whether a tested difference is significant or not,
but also present p-values of all significant improvements. In addition, I also explicitly present
p-values falling between 0.05 and 0.10 since differences with p-values close to 0.05 may be inter-
preted as “marginally significant”. All differences with p > 0.10 are referred to as statistically
insignificant.
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8.5 DA Segmentation Based on Textual Information

In this section, I focus on an effective utilization of information contained in the recognized
words. Well-tuned language models (LMs) are not only important for applications where they
are combined with a prosody model, but also for the applications in which we do not have
access to, or cannot exploit, prosodic information. The LM evaluation is twofold; I search
both for a convenient representation of textual knowledge (i.e., convenient textual features)
and a suitable modeling approach.

I do not only explore simple word-based models, but also utilize textual information beyond
word identities, as captured by word classes and part-of-speech (POS) tags. In general, it is
also possible to use chunking (or even full-parsing) features. Chunking features may slightly
increase performance for well-structured English speech such as broadcast news [149], but my
preliminary investigations showed that, because of poor chunking performance on meeting
data, these features rather hurt DA segmentation accuracy on meeting speech. Hence, I did
not use them in this work.

8.5.1 Textual Features

The following sections describe individual groups of employed features. Since I do not only use
LMs based on a single knowledge source but also LMs based on their combinations, it should
be noted how the parallel features are combined. While MaxEnt and BoosTexter allow us
to combine overlapping features from parallel textual knowledge sources directly, the current
implementation of HELM is not able to build the HMM trellis based on two parallel token
sequences, just as are words and part-of-speech tags. To overcome this problem, I have used
each LM separately and then combined the outputs via posterior probability interpolation.
The interpolation weights were tuned using the development set.

8.5.1.1 Words

Word features simply capture word identities around possible sentence boundaries. They
represent a baseline feature set for the experiments herein.

8.5.1.2 Automatically Induced Classes

In language modeling, we always have to deal with data sparseness. In some tasks, it is
possible to mitigate this problem by grouping words with similar properties into word classes.
The grouping reduces the number of model parameters to be estimated during training. We
assume a mapping function

r : V → C (8.1)

assigning a class ci ∈ C to every word wi from the vocabulary V , i.e., ci = r(wi). In general,
one word could belong to more than one class, however, such mapping would cause problems
for decoding. Thus, I assume that every word wi only belongs to a single class ci.

Automatically induced classes (AIC) are derived in a data-driven way. Data-driven meth-
ods typically perform a greedy search procedure to find the best fitting class for each word
given an objective function. The clustering algorithm I used [165] minimizes perplexity of the
induced class-based N -gram with respect to provided word bigram counts. The DA bound-
ary token is excluded from class merging, however, it affects the clustering procedure since it
occurs in bigram histories.

Initially, each word is placed into its own class. Then, the classes are iteratively merged
until the desired number of clusters is reached. The resulting classes are mutually exclusive,
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i.e., each word is only mapped into a single class. In every step of the algorithm, the overall
perplexity is minimized by joining the pair of classes maximizing the mean mutual information
of adjacent classes

I(c1, c2) =
∑

c1,c2∈C

P (c1, c2) log
P (c1, c2)
P (c1)P (c2)

(8.2)

The crucial parameter of the word clustering algorithm is the number of target classes. The
optimal number was empirically estimated on the development data by evaluating performance
of models with a different granularity. I started with a 500-class model and then was gradually
decreasing the number of classes by 25 in each iteration. The optimal number of classes was
estimated as 100.

I have also tested a model that mixes AICs and frequent words. In this approach, the
frequent words are excluded from class merging; they form their own one-word classes. This
approach can be viewed as a form of back off; we back off from words to classes for rare words
but keep word identities for frequent words. However, I have tested various numbers of the left
out words in combination with individual class granularities, but have never achieved better
results than for the 100 classes with no excluded words.

8.5.1.3 Parts of Speech

The AICs reflect word usage in our datasets, but do not form clusters with a clearly in-
terpretable linguistic meaning. In contrast, part-of-speech (POS) tags describe grammatical
features of words. POS tagging is one of the most explored tasks in NLP. In many cases,
several different POS categories may correspond to a particular word form. For instance, En-
glish word monitor may either be a noun (as in “The monitor is battery operated.”), or a verb
(“Brokers monitor emerging markets everyday.”). The goal of POS tagging is to automatically
disambiguate such ambiguities. The task can formally be defined as follows:

φ :W → T, φ(wi) = ti; ti ∈ τ, i = 1, . . . , Nw (8.3)

where W denotes input text consisting of Nw words wi, T is a sequence of tags ti, and τ a set
of all possible tags.

For the tests herein, the POS tags were obtained by using the TnT tagger [166] with a
POS model tailored for conversational English. The tagger was trained using hand-labeled data
from the Switchboard Treebank corpus. To achieve a better match with speech recognition
output used in testing, punctuation and capitalization information was removed before using
the data for tagger training [149].

Besides pure POS-based models, I also tested mixed POS models (POSmix). In contrast
with AICs, mixing of frequent words and POS of infrequent words yielded an improvement.
The reason is that while the automatic clustering algorithm takes into account bigram counts
containing the sentence boundary token and thus is aware of strong sentence boundary in-
dicators, POS classes are purely grammatical. By keeping the frequent words we also keep
some strong sentence indicators. Optimizing the model on our development data, I ended up
with 500 most frequent words being kept and not replaced by their POS tags. In terms of
a relative frequency, the cutoff value for not replacing the word by its POS was 1.87 · 10−4

(i.e., 101/539k).

8.5.2 Experimental Results

Table 8.1 presents experimental results for all three models (HMM, Maxent, and BoosTexter),
all feature sets (words, AIC, POS, and POSmix, and training and test conditions. The models

95



Chapter 8. Dialog Act Segmentation of Multiparty Meetings in English

Table 8.1: DA segmentation error rates for LMs with various textual features [BER %].
REF=Reference human transcripts, ASR=Automatic transcripts, AIC=Automatically Induced Classes,
POS=pure POS-based model, POSmix=infrequent words replaced by POS tags and frequent words
kept. The best results for each model are displayed in boldface.

Model Used Features Train/Test Setup

REF/REF REF/ASR ASR/ASR

Chance — 15.92% 13.85% 13.85%

HMM Words 7.45% 9.41% 9.50%
AIC 7.58% 9.70% 9.78%
POS 10.62% 12.06% 11.85%
POSmix 7.65% 9.57% 9.59%
Words+AIC 7.11% 9.25% 9.18%
Words+POSmix 7.23% 9.25% 9.31%
Words+AIC+POSmix 7.02% 9.12% 9.12%

MaxEnt Words 7.50% 9.38% 9.38%
AIC 7.42% 9.44% 9.37%
POS 10.52% 11.79% 11.80%
POSmix 7.26% 9.23% 9.25%
Words+AIC 7.19% 9.25% 9.21%
Words+POSmix 7.27% 9.27% 9.25%
Words+AIC+POSmix 7.15% 9.24% 9.16%

BoosTexter Words 7.70% 9.52% 9.49%
AIC 7.61% 9.50% 9.53%
POS 10.87% 12.03% 11.13%
POSmix 7.68% 9.45% 9.46%
Words+AIC 7.50% 9.42% 9.40%
Words+POSmix 7.66% 9.44% 9.45%
Words+AIC+POSmix 7.46% 9.40% 9.40%

for segmentation of human transcripts were trained on reference words. For testing on ASR
data, I tried to use both true and recognized words for training, and compared performance
of the respective models.

8.5.2.1 Results in Reference Conditions

In reference conditions, the best models based on a single textual feature group were MaxEnt
for mixed POS and AICs, and HMM for words. On the other hand, the models only using POS
information performed poorly. A comparison of POS and POSmix shows that grammatical
properties of words are not sufficient indicators of sentence boundaries and information pro-
vided by some frequent cue words is necessary to achieve satisfactory performance. In terms of
a modeling approach comparison, it is interesting to observe that the generative HMM model
is better in dealing with word information, while the discriminative MaxEnt model better cap-
tures class information (both AIC and POSmix). The BoosTexter model always performed
worse than the other two models.

The results also indicate that an improvement is achieved when word information is com-
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bined with class information. For all models, the best results are obtained when all three
information sources are combined. Using the Sign test, the improvements over baseline word-
based models are statistically significant at the levels of p < 10−23, p < 10−18, and p < 10−5

for HMM, MaxEnt, and BoosTexter, respectively. Of the three statistical models, HMM was
the best performing, achieving BER = 7.02%. Using other evaluation metrics, this result cor-
responds to NIST = 44.09% and F = 76.88%. The difference between HMM and Boostexter
is significant at p < 10−13, and the difference between HMM and MaxEnt at p < 0.02. Of
the other two models, MaxEnt outperformed BoosTexter (BER : 7.15% vs. 7.46%). This
difference is significant at p < 10−9.

The interpolation weights of the combined HMM model were estimated as 0.36, 0.39, and
0.25 corresponding to words, AIC, and POSmix, respectively. Thus, the largest weight is
given to the AIC-based model. However, when interpreting the weight distribution, we must
take into account that some word-based features are also contained in the POSmix model.
Hence, the word-based feature weights are distributed between the two submodels. We can
also observe that when only two types of features are employed, words plus AIC perform better
than words plus POSmix. Once again, these results were expected since word and POSmix
features are partly overlapping and thus the combination of word and AIC features is more
complementary.

8.5.2.2 Results in ASR Conditions

As in reference conditions, MaxEnt for mixed POS was the best single model in the ASR-based
tests. On the other hand, unlike reference conditions, MaxEnt was also the best model for
capturing word information. The combination of all three knowledge sources was helpful once
again, the best performing combined model was HMM (BER = 9.12%, NIST = 65.81%, and
F = 62.78%), while BoosTexter was the worst. Both HMM and MaxEnt show a significant
outperformance of the BoosTexter model (p < 10−5 and p < 10−4). In contrast, the difference
between HMM and MaxEnt is not significant. Improvements of individual models contain-
ing all available features over the baseline word-based models are significant at p < 10−10,
p < 10−17, and p < 0.02 for HMM, MaxEnt, and BoosTexter, respectively.

A comparison of models trained on clean and erroneous data shows the following. While
for HMM and BoosTexter, the error rates were almost the same, for the MaxEnt model, I got
better results when training on automatic transcripts. However, even for the MaxEnt model,
the difference in BER (9.16% vs. 9.24%) is only significant at p < 0.08.

The interpolation weights of the combined HMM model in ASR conditions were estimated
as 0.33, 0.35, and 0.32. As in REF conditions, AICs had the largest weight. In comparison
with REF conditions, the POSmix submodel got a slightly larger weight, while the other two
submodels got accordingly lower weights.

An interesting finding was that the MaxEnt approach was slightly better than HMM for
all individual feature types, but slightly worse when all feature types were combined. Hence,
I decided to test whether it could be caused by the model combination approach. In HMM,
we interpolate three independent models, while for MaxEnt, all feature types are accessible
during a single model learning procedure. Thus, I trained three independent MaxEnts for
words, AICs, and POSmix and interpolated them. However, I did not get better results than
for the original MaxEnt model.
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8.6 DA Segmentation Based on Prosodic Information

The preceding section described experiments with language models, whereas in this section, I
focus on the prosodic model. I explore the use of prosodic features including pause, duration,
pitch, and energy features when lexical information is not accessible. The original database
of prosodic features (described in Chapter 6 and listed in Appendix B) contained over 300
different features. Using the approach described in Section 6.7, the huge database was reduced
to a smaller set of 40 features. Note that the target number of features was not determined
beforehand but resulted from the used feature selection method.

Besides reporting overall accuracy of prosodic models with the “rich” prosodic feature
set, I also investigate whether there is gain from using the richer set of prosodic features
in comparison with using pause information alone. The alternative pause-only feature set
contains just three features capturing pause duration after the previous, the current, and
the following word. I experiment with this feature set since there was a valid suspicion that
prosodic features beyond pause duration might not be helpful; prosodic marking of boundaries
in meetings seems to be largely irregular. Since extraction of prosodic features requires a lot of
effort, it is purposeful to test whether the additional features yield a significant improvement
in meeting applications.

Only two modeling approaches are evaluated in this section. Although I investigate three
modeling approaches (HMM, MaxEnt, and BoosTexter) in this work, two of them (HMM and
MaxEnt) use prosodic scores obtained from the same prosodic classifier (CART-style decision
tree with ensemble bagging). Hence, I only compare CART and BoosTexter in this section.

8.6.1 Experimental Results for Prosodic Models

Table 8.2 shows BERs achieved by particular prosody models in both reference and ASR test
conditions.

8.6.1.1 Results in Reference Conditions

In reference conditions, the best result (BER = 8.06%) was achieved by the CART model using
the rich prosodic feature set. This result corresponds to NIST = 50.60% and F = 70.60%. I
also should point out that in reference conditions, the best prosodic model on its own performs
significantly worse that the best language model on its own (BER = 8.06% vs. BER = 7.02%).

We can see that prosody beyond pause is helpful to a great extent. The p-values of the
Sign test for the comparison of rich prosody vs. pause-only are 10−99 and 10−24 for CART
and BoosTexter, respectively. A comparison of CART and BoosTexter indicates that the
boosting-based model is better when only three pause duration features are employed. On the
other hand, bagged decision trees are better in handling the larger prosodic feature set. This
superiority is significant at p < 0.001.

8.6.1.2 Results in ASR Conditions

As in reference conditions, the best result in ASR conditions (BER = 8.30%) was achieved
by the CART model with the rich feature set. Using the other two metrics, this best result
corresponds to NIST = 59.89% and F = 63.58%. In contrast with the results on clean
reference data, the best prosodic model significantly outperforms the best language model
(BER = 8.30% vs. BER = 9.12%) in ASR conditions. This comparison supports the hypoth-
esis that prosodic features are less degraded by word errors than lexical features.
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Table 8.2: DA segmentation error rates for prosodic models [BER %]

Model Used Features Train/Test Setup

REF/REF REF/ASR ASR/ASR

Chance — 15.92% 13.85% 13.85%

CART w. Ens. Bag. Pause 8.96% 8.97% 9.03%
All Prosody 8.06% 8.30% 8.32%

BoosTexter Pause 8.81% 8.85% 8.82%
All Prosody 8.22% 8.31% 8.35%

The gap between CART and BoosTexter was really tiny and statistically insignificant in
ASR conditions. I infer that the reason for this is that the simpler BoosTexter model (which
only uses stumps instead of fully grown trees as weak learners) is more robust to errors in test
data and this robustness may balance more accurate modeling shown by the CART model.
Note that although prosodic features are more robust than lexical features, it does not mean
that they are not affected by word errors at all since a number of them depend on phone or
word boundary information for extraction or normalization.

As in reference conditions, the models benefit from using the rich prosody feature set.
The gain over the pause feature set is a bit smaller than for reference data but still clearly
significant – at p < 10−41 for CART and p < 10−18 for BoosTexter. The results also indicate
that the models trained on clean data slightly outperform their counterparts trained on ASR
data. However, note that the differences between them are not statistically significant.

8.6.2 Prosodic Feature Usage

To explore which prosodic features were useful in this task, I analyzed feature usage in prosodic
decision trees; the decision trees are much easier to interpret than the BoosTexter model. The
metric called feature usage [49] reflects the number of times a feature is queried in a tree,
weighted by the number of samples it affects at each node. Thus, features that are used higher
up in the decision tree have higher usage values. Total feature usage within a tree sums to
1. The results reported here are based on averaging results over multiple trees as generated
during ensemble bagging.

For illustration purposes, prosodic features were grouped into five non-overlapping groups:
pause at the boundary in question, duration, pitch, energy, and “near pause” (describing pauses
associated with the previous and the following word boundary positions). The statistics for
each group as well as the most used features from each group are listed in Table 8.3. The
numbers show that the most frequently queried feature group was “duration” followed by
“pitch”. However, if we sum “pause” and “near pause”, we can conclude that pause-related
features are overall more important than F0-related features. As expected, the most used
individual feature is duration of the pause after the current word. The next most queried
features were duration of the current word, pause after the preceding word, and normalized
duration of the last rhyme in the current word. On the other hand, I observed that overlap
features were not helpful at all, which was a bit surprising. It suggests that turn-taking in this
multichannel data is well captured by pause-related features.

I also looked at the feature usage for the pause-only feature set. In this feature set, pause
after the current word has usage 39.2%, whereas pauses after the previous and the following
word have 29.9% and 30.9%, respectively. Thus, as expected, the pause at the boundary in
question was the most frequently queried feature in this feature set.
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Table 8.3: Feature usage for individual groups of prosodic features

Group Tot. usage Two most used features from the group

Pause 16.1% pause.after(16.1%), —
Duration 48.9% word.dur(9.3%), word.dur.last_rhyme.snorm(5.5%)
Pitch 21.4% f.f0.slope.first(3.6%), f0.ratio.last_min__baseline(3.2%)
Energy 4.9% f.RMS.mean(2.3%), RMS.min.voiced.norm (1.5%)
NearPause 8.7% p.pause.after(5.7%), f.pause.after(3.0%)

Table 8.4: DA segmentation error rates for models combining textual and prosodic features [BER%]

Model Used Features Train/Test Setup

REF/REF REF/ASR ASR/ASR

Chance — 15.92% 13.85% 13.85%

HMM LM+Pause 5.60% 6.86% 6.93%
LM+Prosody 5.42% 6.85% 6.83%

MaxEnt LM+Pause 5.59% 6.82% 6.64%
LM+Prosody 5.42% 6.64% 6.55%

BoosTexter LM+Pause 5.84% 6.85% 6.67%
LM+Prosody 5.72% 6.73% 6.60%

8.7 DA Segmentation Using Both Textual and Prosodic Infor-
mation

In this section, I report results of models that rely both on prosodic and textual information.
The approaches to knowledge source combination differ among individual models; particular
combination methods were already described in Section 7. I compare two sets of models; the
first combines the best LMs (using word, AIC, and POSmix features) with the pause-only
models, whereas the second combines the same LMs with the prosody models based on the
richer feature set. The results for both test conditions are presented in Table 8.4.

Note that in contrast with the experiments reported in the previous section, prosodic
trees trained on REF data were used to generate prosodic posteriors also for both ASR-based
setups. Thus, in the ASR/ASR experiments, HMM and MaxEnt combine textual features
extracted from ASR data with prosodic posteriors obtained from trees trained on REF data.
This decision was motivated by the results reported in the previous section; they showed that
CARTs trained on clean data outperformed their ASR-trained counterparts.

8.7.1 Results in Reference Conditions

The best result in REF conditions was achieved by the HMM model combining the LM with the
rich prosodic model (BER = 5.42%, NIST = 34.03%, F = 83.17%). However, the MaxEnt
model performed nearly as well, and, in total, made only two more errors in 102k test samples.
Thus, the difference between these two models is evidently not statistically significant. On the
other hand, the differences between HMM and BoosTexter, and MaxEnt and BoosTexter are
significant at p < 10−5 using the Sign test.

The models with the richer prosodic features sets outperform models with pause informa-
tion only in all three approaches. The improvements are significant at p < 10−4 for HMM and
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Figure 8.1: DA segmentation error rates for individual models in dependence on used knowledge
sources [BER %]

MaxEnt, and at p < 0.005 for BoosTexter. Despite the fact that models using rich prosody
were always better than models with pauses, the results indicate that the gain from better
prosodic modeling is diminished when combined with an LM. For example, the relative error
rate reduction for prosody only conditions is over 10% in the HMM approach, whilst it is just
3.2% for the combined prosodic-textual model in the same approach.

Furthermore, we can observe that combined models notably outperform both language
and prosody models alone. For comparison, the chance error rate is 15.92%, the best LM
alone performed at BER = 7.02%, the best prosody model at BER = 8.06%, and the best
combined model at BER = 5.42%. The left hand graph in Fig. 8.1 confronts BERs according
to available information sources for all three modeling approaches. In the figure, lines connect
points corresponding to the same model for the sake of readability.

8.7.2 Results in ASR Conditions

The best performing model in ASR conditions was the MaxEnt model that was using rich
prosody and was trained on ASR data (BER = 6.55%, NIST = 47.29%, F = 73.90%). Of
the three modeling approaches, BoosTexter came second and HMM (which was the best in
REF conditions) was the worst. The Sign test showed that MaxEnt is significantly better than
HMM (p < 10−4), but the difference between MaxEnt and BoosTexter (BER = 6.55% vs.
BER = 6.60%) is not significant. The gap between BoosTexter and HMM is significant at
p < 0.001%.

For all three approaches, models trained on ASR data outperform models trained on REF
data. While the difference is not significant for HMM, it is significant at p < 0.05 and p < 0.01
for MaxEnt and BoosTexter, respectively. These results indicate that training on ASR data
is more beneficial for the discriminative models.

As in the tests on reference data, the models with the richer prosodic feature sets outper-
form models only using pause information. However, the gains are relatively smaller in ASR
conditions. The improvement is clearly insignificant for the HMM model, the p-values for
MaxEnt and BoosTexter are 0.02 and 0.07, respectively. Again, we can observe that the gain
from rich prosody is much smaller when combined with LMs. Whereas the relative error rate
reduction for prosody only conditions is 7.5% using decision trees, it is just slighltly over 1% in
the best performing MaxEnt approach (which also uses decision trees for prosody modeling).

The right-hand graph in Fig. 8.1 shows BERs according to available information sources
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Table 8.5: DA segmentation error rates for a combination of HMM, MaxEnt, and BoosTexter [BER%]

Combination Approach Test Data

REF ASR

Chance 15.92% 13.85%

Best Single Approach 5.42% 6.55%
Majority Voting 5.20% 6.29%
Linear Interpolation 5.18% 6.19%

for all three modeling approaches in ASR conditions. The chance error rate is 13.85%, the best
LM performed on its own at BER = 9.12%, the best prosody model at BER = 8.30%, and
the best combined model at BER = 6.55%. Although the shapes of the performance curves
are different from those for the REF-based tests displayed in the left-hand graph (prosody
models outperform LMs for ASR), the combined models are by far the best models again.

8.8 Combination of All Three Modeling Approaches

In this section, I evaluate models that not only combine knowledge sources but also statistical
modeling techniques. As was already mentioned in Chapter 7, the three machine learning
approaches used in this work train segmentation models in different ways. In machine learning
tasks, it is often the case that superior results are achieved by a combination of several different
submodels. Models of a different nature usually make different errors and thus may be at least
partly complementary. Hence, I also tried to combine the three modeling approaches to see
whether the combination could provide improvement over the best single-approach model.
I examined two combination methods – simple majority voting and linear interpolation of
posterior probabilities.

Table 8.5 presents the overall error rates for both test conditions. The two combination
approaches are compared with the best individual models – HMM for REF and MaxEnt for
ASR conditions. The results indicate that the model combination boosts DA segmentation
performance. Overall, BER was reduced from 5.42% to 5.18% for REF, and from 6.55% to
6.19% for ASR. These error reductions are significant at p < 10−17 and p < 10−7, respec-
tively. In the other two metrics, the best results are NIST = 32.49% and F = 83.18% for
REF, and NIST = 44.70% and F = 75.85% for ASR. Of the two combination approaches,
linear interpolation worked better, however, the gain over the majority voting approach was
only significant for the ASR-based tests (p < 0.005). The interpolation weights for HMM,
MaxEnt, and BoosTexter were estimated on the develepment data as 0.36, 0.33 and 0.31 for
REF, and 0.32, 0.32 and 0.36 for ASR. None of the models has a dominant position and the
weight distributions are not far from uniform. Examples of meeting transcripts automatically
segmented by the best performing system are shown in Appendix C (page 153).

I also compared overall classification accuracy across the test conditions. Note that this
comparison cannot be carried out in terms of absolute BER because this metric does not take
into account event priors. Since the DA boundary priors differ between the two compared
datasets, a comparison in terms of absolute BERs would be skewed. However, we can com-
pare model performance across corpora in terms of F -measure, NIST error rate, or relative
reductions of BER over the chance error. As expected, the comparisons on the meeting data
clearly show that the final segmentation models are relatively more successful when dealing
with human-generated test data. For instance, the relative BER reduction over chance is
67.5% for REF and 55.3% for ASR.
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8.9 Chapter Summary and Conclusions

In this chapter, I explored automatic DA segmentation of the ICSI meeting corpus. Three
different modeling approaches were examined – HMM, MaxEnt, and BoosTexter. For language
modeling, I did not only use simple word-based models, but also utilized textual information
beyond word identities, as captured by automatically induced classes and POS tags. In prosody
modeling, I experimented with two distinct feature sets – the first contained just pause-based
features, while the other was a richer set also containing features relating to duration, pitch,
and energy. All experiments were evaluated both on manual and automatic transcripts.

First, I explored DA segmentation based on textual information. The results of language
models only using a single textual knowledge source indicate that both word-based and AIC-
based features show good results, while POS information is helpful only when the most frequent
words are kept and not replaced by POS classes. For both test conditions, the best results were
achieved when all textual information sources were combined. The most successful language
modeling approach was HMM, while BoosTexter was the worst.

The next set of experiments focused on performance of prosodic models. These experiments
compared decision tree and BoosTexter classifiers since both HMM and MaxEnt use prosodic
posteriors obtained from the decision trees. The results show that decision trees outperform
BoosTexter. The difference between the two models was statistically significant in reference
conditions but insignificant in ASR conditions. The results also indicate that prosodic features
are less degraded by speech recognition errors than lexical features.

Prosody beyond pause was helpful to a great extent. The rich feature set significantly
outperformed pause in both test conditions. The analysis of feature usage in decision trees
revealed that the most frequently queried group of features was the pause group followed by
the duration group and the pitch group. Thus, information from pauses is extremely important
for successful DA segmentation of meetings, but adding duration, pitch, and energy features
yields a further significant improvement.

Models combining prosodic and lexical information clearly outperform language and
prosody models alone. Similarly to prosody-only models, the models combining textual in-
formation with rich prosody feature set were better than the models combining it only with
pause-based features. However, the relative gain from additional prosodic features was smaller
than for the models not employing textual features.

The comparison of individual modeling approaches shows that HMM and MaxEnt prevails
in reference conditions, and MaxEnt is the best in ASR conditions. The results of all models
suggest that a tighter integration of prosodic and lexical knowledge during training is helpful
for DA segmentation in ASR conditions. The best overall results for both test conditions were
achieved by a combination of HMM, MaxEnt, and BoosTexter based on linear interpolation of
posterior probabilities. This result indicates that the three modeling approaches are at least
partly complementary.

Another comparison of automatic segmentation accuracy shows that the best DA segmen-
tation system is relatively more successful in reference than in ASR conditions. The relative
BER reduction over the chance error is 67.5% for reference and 55.3% for ASR conditions. The
overall results in ASR conditions also indicate that models trained on ASR data slightly out-
perform their counterparts trained on manual transcripts. For the generative HMM approach,
the difference is not significant, whereas the discriminative models (MaxEnt and BoosTexter)
get a modest yet significant gain from training on ASR data. Thus, we can conclude that for
corpora in which ASR performance is still rather poor, it may be useful to train models on
recognized rather than reference words. However, we must take into account that automatic
recognition of large amounts of training data may be computationally expensive.
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Chapter 9

Speaker-Dependent Modeling
for Dialog Act Segmentation
of Meetings

Society exists only as a mental concept;
in the real world there are only individuals.

Oscar Wilde

The previous chapter focused on automatic DA segmentation of meeting speech in a speaker-
independent fashion. In this chapter, by contrast, I take a closer look at speaker-dependent
prosodic and language modeling for DA segmentation of meetings. Speaker adaptation meth-
ods are widely used for speech recognition, but much less is known about speaker-specific
variation in prosodic and lexical patterns that are important for detection of linguistic bound-
aries in speech.

The meeting domain is a good test bed for speaker-dependent modeling. In many real-life
meeting applications, the speakers are often known beforehand and recorded on a separate
channel. Moreover, many meetings have recurring participants, presenting the opportunity
for adapting models to the individual talkers. In the remainder of this chapter, I explore
speaker-specific issues for both prosody and language modeling. Section 9.1 discusses speaker-
dependent prosodic modeling, Section 9.2 is devoted to speaker-dependent language modeling,
and Section 9.3 provides an overall summary and conclusions.

9.1 Speaker-Dependent Prosodic Modeling

9.1.1 Motivation and Goals

The general idea of speaker adaptation is well known. Speaker adaptation methods were
first successfully used in the cepstral domain for speech recognition [167, 168]. On the other
hand, only little is known about speaker-specific variation in prosodic patterns, beyond basic
F0 normalization. Studies in speech synthesis and automatic speaker recognition have used
prosodic variation successfully, but to my best knowledge, modeling stylistic prosodic vari-
ability for sentence boundary recognition has to date been mentioned only anecdotally in the
literature [49, 169, 170].

The experiments reported in this section try to find answers to two questions about speaker
variation in prosodic marking of DA boundaries, using 20 frequent speakers from the ICSI
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meeting corpus. The first question asks whether individual speakers benefit from modeling rich
prosodic features other than simple pause information. The second question inquires whether
speakers differ enough from an overall (speaker-independent) model of prosody to benefit from
a model trained (or adapted) on only their speech. The rest of this section is organized as
follows. Subsection 9.1.2 describes used prosodic features, classifiers, modeling approaches,
and the experimental setup. Subsection 9.1.3 provides results and discussion showing answers
to the two questions. The results are presented separately for individual speakers as well as
summed over all speakers to enable an overall model comparison.

9.1.2 Method

9.1.2.1 Prosodic Features

For the speaker-dependent experiments, I used a feature set comprising 32 prosodic features.
This set was derived from the 40 feature set used for the speaker-independent experiments by
removing all raw duration features. Although unnormalized duration features aid performance
of prosody-based segmentation, they could correlate with lexical features that should be mod-
eled in a language model. Certain frequent DAs (esp. backchannels) have small set of words,
so raw durations may capture those words rather than prosody. Hence, in order to focus on
the aspect of the speaker-dependent prosodic characteristics, these raw features were taken
out to avoid interference with language modeling. In addition to the rich prosodic feature set,
the comparison in Section 9.1.3.1 also evaluates models only using pause features.

9.1.2.2 Classifiers

As in past work on DA segmentation, CART-style decision trees with ensemble bagging were
employed as prosodic classifiers. Since the trees were trained on bagged ensembles downsam-
pled to equal class priors, when applying the classifiers on (the imbalanced) test data, the
output posteriors were adjusted to take into account the original class priors. The advantage
of decision trees is not only in that they yield good results, but they are also easy to interpret
in terms of feature usage. These classifiers have been described in detail in Section 7.1.4.

9.1.2.3 Evaluated Prosodic Models

This study compares three types of prosodic models differing in speaker-dependency. Speaker-
independent (SI) models are trained using all available data, whereas speaker-dependent (SD)
models are only trained on speech of the target talker. Models of the last type, speaker-adapted
(SI+SD), are created via posterior probability interpolation of the two previous models

PSI+SD(X;λ) = λPSI(X) + (1− λ)PSD(X) (9.1)

where X denotes the observed prosodic feature vector, PSI(X) the speaker-independent and
PSD(X) speaker-dependent posterior, and λ is a weighting factor estimated using the jackknife
approach, as described below in Section 9.1.2.4.

9.1.2.4 Data and Experimental Setup

As in the previous chapter, the DA segmentation experiments reported here were performed
using the ICSI meeting corpus. However, the experimental setup was different because the
speaker-dependent experiments required a special data split. The models were evaluated on
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Table 9.1: Data set sizes for individual speakers. ID=Speaker ID, Train=Trainig set size, Test-R=Test
size for REF, Test-A=Test size for ASR. All data sizes are presented as numbers of words.

No. ID Train Test-R Test-A No. ID Train Test-R Test-A

1. me013 115.2k 51.2k 43.4k 11. mn052 10.7k 3.8k 3.5k
2. me011 50.6k 24.8k 22.9k 12. mn021 9.6k 4.1k 4.1k
3. fe008 50.6k 22.6k 19.5k 13. me003 9.3k 3.6k 3.2k
4. fe016 32.0k 15.4k 13.9k 14. mn005 7.7k 3.1k 3.0k
5. mn015 31.9k 14.7k 13.7k 15. me045 8.1k 2.4k 2.1k
6. me018 31.8k 14.7k 13.3k 16. me025 7.7k 2.4k 1.6k
7. me010 26.1k 12.6k 11.3k 17. me006 6.9k 1.5k 1.3k
8. mn007 27.2k 10.1k 8.4k 18. me026 5.2k 2.5k 2.3k
9. mn017 21.0k 7.1k 6.0k 19. me012 5.3k 2.1k 1.9k
10. mn082 13.3k 4.2k 3.7k 20. fn002 5.9k 1.5k 1.4k

the top 20 speakers in terms of total words. This speaker set contains 17 males and 3 females;
12 speakers are native English speakers and 8 are nonnative speakers.

Each speaker’s data was split into a training set (∼70% of data) and a test set (∼30%),
with the caveat that a speaker’s recording in any particular meeting appeared in only one
of the sets. Because of data sparsity, especially for the less frequent speakers, I did not use
a separate development set, but rather jackknifed the test set for my experiments. In this
approach, one half of speaker’s test data is used to tune weights for the other half, and vice
versa. As in the previous experiments, two different test conditions are used for evaluation:
reference transcripts (REF) and automatic speech recognition output (ASR). BER (defined
in Eq. (3.1) on page 18) is used for performance evaluation as in the preceding segmentation
experiments.

The total training set for speaker-independent models (comprising the training portions of
the 20 analyzed speakers, as well as all data from 32 other less-frequent speakers) contained
567k words. The total test set contained 204k words for reference test conditions and 180k
for ASR test conditions. Data set sizes for individual speakers are shown in Table 9.1; size of
training sets available for training of the speaker-dependent models ranges from 5.2k to 115.2k
words. Note that the test set sizes for REF and ASR conditions differ since the number of
words in ASR outputs is usually smaller than that in the corresponding reference. Speaker
identity is described using the official corpus speaker IDs. The first letter of the ID denotes
the sex of the speaker (“f” or “m”); the second letter indicates whether the speaker is a native
(“e”) or nonnative (“n”) speaker of English.

9.1.3 Results and Discussion

9.1.3.1 Pause-only vs. Rich Prosody Features for Individual Speakers

Before analyzing the SD prosodic models, I took a look on prosodic differences among individ-
ual speakers from a different perspective. The experiments in Chapter 8 showed that features
capturing prosodic information beyond pause help prosody-based sentence segmentation of
meetings. However, here our goal is to explore whether there is a gain from using rich prosody
for all speakers, or only for some. Hence, I used an SI model based on the rich feature set
and an SI model based only on pause information and compared their results for individual
speakers.
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Table 9.2: DA segmentation error rates by pause-only (Pause) and rich prosody models (RichPr)
models for individual speakers in reference conditions [BER %]. RER denotes relative BER reduction
by RichPr with respect to Pause. The best result for each speaker is shown in boldface.

ID Pause RichPr RER ID Pause RichPr RER

me013 8.93% 8.36% 6.29% mn052 8.93% 8.29% 7.17%
me011 7.47% 6.61% 11.50% mn021 8.23% 8.01% 2.64%
fe008 8.92% 8.53% 4.37% me003 6.18% 5.83% 5.79%
fe016 10.15% 9.62% 5.18% mn005 8.74% 7.73% 11.57%

mn015 8.69% 7.99% 8.06% me045 7.95% 7.20% 9.37%
me018 8.30% 7.74% 6.72% me025 8.74% 8.32% 4.85%
me010 9.25% 8.30% 10.21% me006 10.72% 9.86% 7.98%
mn007 11.53% 10.71% 7.10% me026 7.94% 7.94% 0.00%
mn017 8.67% 8.03% 7.35% me012 8.85% 8.66% 2.11%
mn082 9.76% 9.00% 7.82% fn002 11.26% 9.79% 13.09%

Table 9.2 shows the results using the two feature sets for each speaker. The speakers
displayed in the table are sorted according to the total number of words they have in the
corpus. As shown, the richer prosodic feature set (RichPr) yields a better performance than
the pause-only model (Pause), for 19 of the 20 speakers, and the other speaker (me026) showed
the same BER using both models.

The relative error rate reduction by RichPr with respect to Pause is also provided. It
shows that differences across speakers on this measure, interestingly, do not appear to be
correlated with the amount of training data. They may thus reflect differences in speaking
styles, although other factors such as robustness of feature extraction or production of different
rates of DA types, may also play a role.

9.1.3.2 Speaker-Independent vs. Speaker-Dependent Models for Individual
Speakers

The main problem I investigate is whether some speakers may benefit from speaker-dependent
training, despite significantly less data for SD than for SI models. All the experiments reported
in this section were performed with the rich prosodic feature set. I will present results for both
reference transcripts and ASR conditions, but I will mainly analyze results using the reference
transcripts, because I was more interested in looking at the effects of speaker differences than
effects of recognition errors.

Table 9.3 compares performance of SI, SD, and SI+SD models in REF conditions. The
results indicate that the SD model is better than the SI model for 4 of the 10 most frequent
speakers, and for 5 of the 20 speakers. The SD or SI+SD model is better than the SI model
for 5 of the top 10 speakers, and for 7 of all 20 speakers. Note that it is possible for the SI+SD
to perform worse than the SI model, because weights are estimated on fairly small amounts
of data that are separate from the data on which the model is tested. I used the Sign test
for statistical significance measurement. Four speakers (me011, mn007, fe016, mn005) showed
improvements significant at p < 0.05 or better; one speaker (fn002) was marginally significant
at p < 0.10. It is also interesting that the error reduction with respect to SI varies across
speakers, but in a manner uncorrelated with training set size.

Although only some speakers show these improvements (while some others show rather
poor results from SD modeling), the finding is important. If a speaker shows significantly
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Table 9.3: DA segmentation performance comparison of SI, SD, and SI+SD prosodic models in
REF conditions [BER %]. The best result for each speaker is shown in boldface, * indicates that the
improvement of SI+SD over SI is significant at p < 0.05 using the Sign test.

ID SI SD SI+SD ID SI SD SI+SD

me013 8.36% 8.47% 8.39% mn052 8.29% 8.64% 8.32%
me011* 6.61% 6.60% 6.41% mn021 8.01% 9.27% 8.08%
fe008 8.53% 8.55% 8.55% me003 5.83% 6.57% 5.83%
fe016* 9.62% 9.55% 9.52% mn005* 7.73% 7.15% 7.18%
mn015 7.99% 8.47% 7.96% me045 7.20% 7.62% 7.29%
me018 7.74% 8.09% 7.74% me025 8.32% 8.95% 8.32%
me010 8.30% 8.20% 8.30% me006 9.86% 10.65% 9.99%
mn007* 10.71% 10.47% 10.19% me026 7.94% 8.99% 7.94%
mn017 8.03% 8.06% 8.03% me012 8.66% 8.76% 8.66%
mn082 9.00% 9.62% 9.02% fn002 9.79% 10.52% 9.32%
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Figure 9.1: Relative usage of prosodic feature groups for native (left) and nonnative (right) speakers
who improved using SD information

improved results using a model trained on far less data than the SI model, this suggests that
the speaker’s prosodic marking of DA boundaries differs from that of the SI model. That
a number of speakers do not benefit from SD modeling is consistent with their being well
described by the SI model. That is, there are most likely some consistent ways that people
behave prosodically, but for some speakers who deviate from these norms, speaker-dependent
modeling can be of value.

Figure 9.1 displays relative feature usage statistics for those speakers for whom there is an
improvement from using SD information. As in the speaker-independent feature usage analysis
presented in Section 8.6.2, the prosodic features were grouped into five nonoverlapping groups:
pause at the boundary in question, duration, pitch, energy, and “near pause”. The figure
compares the SD feature usage distribution with the SI distribution, for native speakers (the
left-hand graph) and nonnative speakers (the right-hand graph).

The three natives show very similar usage to each other and to the SI model. However, as
we saw earlier, SD models improve their results. This suggests that even when general feature
usage patterns for a talker are similar to those of the SI model, specific features and/or feature
thresholds may still be better modeled by training on the specific speaker. Given only three
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Table 9.4: DA segmentation performance comparison of SI, SD, and SI+SD prosodic models in
ASR conditions [BER %]. The best result for each speaker is shown in boldface, * indicates that the
improvement of SI+SD over SI is significant at p < 0.05 using the Sign test.

ID SI SD SI+SD ID SI SD SI+SD

me013 8.41% 8.47% 8.37% mn052 8.96% 9.30% 8.70%

me011 7.01% 6.80% 6.77% mn021 7.56% 8.54% 7.56%
fe008 9.04% 8.98% 8.90% me003 6.40% 6.49% 6.27%

fe016 9.40% 9.39% 9.41% mn005 6.78% 5.87% 5.90%
mn015 8.09% 8.47% 7.96% me045 7.93% 8.13% 7.89%

me018 8.16% 8.30% 8.18% me025 11.14% 10.77% 10.83%
me010 8.62% 8.34% 8.30% me006 10.94% 10.78% 10.63%

mn007* 10.74% 10.06% 10.01% me026 7.91% 8.51% 7.61%

mn017 8.04% 8.16% 8.04% me012 8.99% 9.31% 8.99%
mn082 8.03% 8.38% 8.00% fn002 9.74% 9.24% 9.46%

native speakers showing improvements here; it is possible that not all native speakers show
the same pattern, but this is a question for further research on a larger data set.

Feature usage for nonnative speakers, on the other hand, looks quite different. Speakers
differ from each other, as well as from the SI pattern. Although more research is needed
before drawing conclusions, this finding is nevertheless consistent with stylistic differences
between nonnative speakers and an overall SI model, in prosodic marking of DA boundaries.
Obvious next question would be whether improvement depends on native language, proficiency
in English, or degree of perceived accent. The sample of nonnative speakers is too small to
examine these questions, however, I do note that of three native German speakers, all highly
proficient in English, one speaker improved from individual modeling while two others did not.
Of three Spanish speakers, all moderately proficient, two improved and one did not.

Table 9.4 presents results for ASR conditions. We can see that the distribution of the best
performing models differ from that for REF. In contrast to REF, most of speakers improved
by using SD information. While only 7 of 20 speakers improved in REF, 16 speakers improved
in the ASR-based tests. Also note that all 7 speakers who improved in REF also improved in
ASR conditions. On the other hand, the magnitudes of improvement were relatively smaller.
Using the Sign test, only one speaker (mn007) showed a gain significant at p < 0.05. One
other speaker (mn005) showed a marginally significant gain (p < 0.09).

I suppose that some of the differences between REF and ASR are related to backchannels,
often missed by the ASR system. The backchannels are rather different from other speech
material, and thus their smaller number may considerably influence overall results. This
supposition suggests to test prosodic adaptation on other data also having recurring speakers,
yet a smaller number of backchannels and more regular prosody.

9.1.3.3 Overall Results of Speaker-Independent and Speaker-Dependent Models

After presenting results for individual speakers, I also present overall results summed over all
tested speakers. These are shown for both test conditions in Table 9.5, along with chance
error rate. In REF tests, the overall best performance showed the speaker-adapted SI+SD
model followed by the SI model while the SD model was the worst. The improvement of
SI+SD over SI in reference conditions is statistically significant at p < 0.001 using the Sign
test. Given the absolute difference in BER, the relatively high level of significance may seem
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Table 9.5: Overall DA segmentation error rates for SI, SD, and SI+SD prosodic models [BER%]

Method REF ASR

Chance 15.02% 13.19%

SI (Baseline) 8.25% 8.41%
SD 8.40% 8.41%
SI+SD 8.19% 8.26%

a little surprising, but there exist two explanatory reasons. First, the overall test set is really
huge (204k words). Second, if the SD information does not benefit a particular speaker, it
often get zero weight in the interpolation model. Thus, both SI+SD and SI show identical
output for many unimproved speakers which decreases variance between overall output and
consequently supports statistical significance in the Sign test. The difference between SI+SD
and SD is significant at p < 0.01 and between SI and SD at p < 0.05.

In ASR conditions, the SI+SD model was also the best performing one. The superiority
of SI+SD over SI and SD used alone was significant at p < 0.05. The relative gain by using
SI+SD instead of SI was higher than in reference conditions. Interestingly, the SD model
performed almost as well as the SI model. In total, SD made only 4 more errors than SI in
the 180k test samples.

9.2 Speaker-Dependent Language Modeling

While the previous section dealt with speaker-dependent prosodic modeling, this section fo-
cuses on speaker-dependent language modeling for DA segmentation.

9.2.1 Motivation and Goals

Section 9.1 indicated that the prosody-based automatic DA segmentation system may for some
speakers show good results with prosodic models trained only on a small amount of speech from
the same speaker. However, similar results cannot be expected for LMs since LMs trained only
on such small amounts of data as we have available for individual talkers would apparently suf-
fer from large out-of-vocabulary rates and yield inferior performance. For speaker-dependent
language modeling, nevertheless, we can get inspired by the good results achieved by the
SI+SD prosodic model that combines speaker-independent and speaker-dependent informa-
tion. Thus, speaker-dependent modeling is viewed in terms of speaker LM adaptation in this
study. The goal is to try to adapt the LM to capture speakers’ idiosyncratic lexical patterns
associated with DA boundaries.

Speaker adaptation of LMs is not meaningful in all domains. First, the target domain
must show spontaneous speech. Evidently, it would not be reasonable to try speaker LM
adaption on, for example, broadcast news where anchors just read prompted text prepared by
another person. In addition, the possible target domain should also have recurring speakers
since it seems to be very difficult to perform effective speaker LM adaptation to previously
unseen speakers. Both conditions are met for multiparty meeting data, which presents the
opportunity for investigating speaker LM adaptation.

General LM adaptation has been studied rather extensively in speech recognition and other
language processing tasks, using both supervised [171, 172] and unsupervised [173, 174, 175]
approaches. A useful survey of LM adaptation techniques is given in [176]. The typical
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approach is to use the test words to determine the topic for the test document, and then use
the topic-specific LM or its combination with the generic LM.

Topic- and domain-based LM adaptation approaches have received significant attention in
the literature, but much less is known about LM adaptation for individual talkers. First of
all, Besling and Meier [177] improved an automatic speech dictation system by speaker LM
adaptation based on the LM fill-up method. Akita and Kawahara [178] showed improved
recognition performance using LM speaker adaptation by scaling the N -gram probabilities
with the unigram probabilities estimated via probabilistic latent semantic analysis. Tur and
Stolcke [179] demonstrated that unsupervised within-speaker LM adaptation significantly re-
duced word error rate in meeting speech recognition.

Unlike previous work in LM adaptation (mostly topic-based adaptation in the task of speech
recognition), the goal of the study presented in this section is to investigate whether speaker
adaptation of LMs may help in automatic DA segmentation of meetings. The remainder of this
section is structured as follows. Subsection 9.2.2 describes used LMs, the speaker adaptation
approach, and the experimental setup. Subsection 9.2.3 presents results and discussion; the
results are presented separately for individual speakers as well as summed over all speakers to
enable an overall model comparison.

9.2.2 Method

9.2.2.1 Language Models

HELMs (described in detail in Section 7.1.3) that showed good results in previous work are
used to automatically detect DA boundaries in the unstructured word sequence. The model
is trained by explicitly including the DA boundary token in the vocabulary in word-based
N -gram LM. I use trigram LMs with modified Kneser-Ney smoothing. During testing, the
HELM performs forward-backward decoding in the HMM framework.

9.2.2.2 Speaker Adaptation Approach

To adapt the generic speaker-independent LM to a particular speaker, I used the simple yet
powerful interpolation approach again. The speaker-adapted model is obtained from a linear
combination of the speaker-independent model SI and a speaker-dependent model SD as
follows:

PSI+SD(ti|hi;λ) = λPSI(ti|hi) + (1− λ)PSD(ti|hi) (9.2)

where ti denotes a token (word or DA boundary) and hi its history of n−1 tokens within an N -
gram LM. λ is a weighting factor that is empirically optimized on held-out data. Note that the
SD data is already contained in the SI data for LM training; therefore, this interpolation does
not help reduce out-of-vocabulary rate, it rather gives a larger weight to N -grams observed in
the data corresponding to a particular speaker and is expected to be better suitable to this
speaker.

9.2.2.3 Data and Experimental Setup

I use the same data split as for the prosodic adaptation experiments, as described in Sec-
tion 9.1.2.4. Thus, all data set sizes presented in Table 9.1 are also valid for the language-
modeling experiments. As in previous work, I test the method using both manual and au-
tomatic transcripts; DA segmentation performance is measured using BER. Likewise, I also
employ the jackknife approach, instead of using a separate development test. The only notable
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Table 9.6: DA segmentation error rates for speaker-independent (SI) and speaker-adapted LMs
for individual speakers in REF conditions [BER %]. AdInW=Adaptation with individual weights,
AdGlW=Adaptation with global weights. The best result for each speaker is shown in boldface, * and
** indicate that the improvement over SI is significant by the Sign test at p < 0.05 for one or both
methods, respectively.

ID SI AdInW AdGlW ID SI AdInW AdGlW

me013** 6.75% 6.55% 6.52% mn052 7.33% 7.28% 7.28%
me011* 7.40% 7.38% 7.25% mn021** 6.68% 5.41% 5.65%
fe008** 7.51% 7.12% 7.16% me003 8.78% 8.45% 8.56%
fe016* 7.35% 7.22% 7.18% mn005** 7.83% 7.01% 6.92%

mn015** 8.05% 7.75% 7.80% me045 8.90% 8.94% 8.90%
me018* 6.64% 6.43% 6.45% me025 8.06% 8.02% 7.85%

me010** 7.24% 6.96% 6.84% me006 9.53% 10.32% 9.47%

mn007* 7.59% 7.36% 7.31% me026 5.80% 5.76% 5.80%
mn017** 7.02% 6.44% 6.44% me012** 6.85% 6.29% 6.29%
mn082 6.33% 6.28% 6.21% fn002 10.92% 10.79% 11.33%

difference compared to the prosodic adaptation setup is that I test two approaches to estimate
the interpolation weights for LM adaptation.

A robust estimation of the interpolation weight λ in (9.2) may be a problem because of
data sparsity. In the jackknife approach, one half of speaker’s test data is used to estimate
λ for the other half, and vice versa. I test two methods for estimating λs. First, λs are
estimated individually for each speaker. In the second method, I set λ as the average value of
the interpolation weights across all the speakers. Note that in the latter approach, however,
I still use only data from the first halves of individual test sets to estimate λ for the second
halves, and vice versa. This approach eliminates having two significantly different values of λ
for a single speaker, which did occur for some of the 20 analyzed speakers. It indicated that
for those speakers, there is a mismatch in the two halves of the test data used in jackknife,
and thus the weights were not optimized properly for the test set.

9.2.3 Results and Discussion

9.2.3.1 Results for Individual Speakers

Table 9.6 shows a comparison of DA segmentation performance for the baseline speaker-
independent LM and speaker-adapted LMs for individual speakers, using reference transcripts.
The speakers displayed in the table are sorted according to the total numbers of words they
have in the corpus. The results indicate that for 17 of 20 speakers, performance improved
using both individual and global weights, and two other speakers improved only for one of the
two interpolation methods. However, the degree of the improvement varies across particular
speakers. For 8 talkers, the improvement was statistically significant at p < 0.05 using the
Sign test for both methods. For 4 others it was significant for only one of the methods.

Table 9.7 reports the corresponding results for the ASR conditions. The results show that
15 speakers improved using both interpolation methods, while 4 other speakers improved just
for one of the methods. Again, for 8 talkers, the improvement was significant at p < 0.05 for
both methods, and for 4 others the improvement was significant for one method. An interesting
observation is that for both testing conditions, the relative error reduction achieved by speaker
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Table 9.7: DA segmentation error rates of speaker-independent and speaker-adapted LMs for in-
dividual speakers in ASR conditions [BER %]. AdInW=Adaptation with individual weights, and
AdGlW=Adaptation with global weights. The best result for each speaker is shown in boldface, *
and ** indicate that the improvement over SI is significant by the Sign test at p < 0.05 for one or both
methods, respectively.

ID SI AdInW AdGlW ID SI AdInW AdGlW

me013** 8.29% 8.16% 8.18% mn052* 10.87% 10.49% 10.17%

me011** 8.81% 8.59% 8.51% mn021* 8.20% 7.83% 7.73%

fe008* 9.19% 9.05% 8.89% me003 9.36% 9.36% 9.33%

fe016 8.42% 8.40% 8.31% mn005** 11.47% 8.94% 10.42%
mn015** 10.16% 9.90% 9.84% me045 11.08% 11.42% 11.27%
me018** 8.12% 7.83% 7.90% me025 14.36% 14.23% 14.36%
me010** 8.39% 7.96% 7.91% me006* 10.94% 10.01% 10.40%
mn007** 11.28% 10.73% 10.78% me026 7.35% 7.01% 6.88%

mn017** 8.92% 8.01% 7.84% me012 8.68% 8.15% 8.31%
mn082 10.37% 10.45% 10.10% fn002 13.40% 13.40% 12.89%

Table 9.8: Overall DA segmentation error rates of speaker-independent and speaker-adapted LMs in
reference and ASR conditions [BER %]

Method REF ASR

Chance 15.02% 13.19%

SI (Baseline) 7.30% 9.06%
SI+SD: Individual weights 7.02% 8.79%
SI+SD: Global weights 6.99% 8.76%

SI+SD: Adapt. with ASR data N/A 8.97%

adaptation is not correlated with the amount of adaptation data. This finding suggests that
speakers differ inherently in how similar they are to the generic speaker-independent LM. Some
talkers probably differ more and thus show more gain, even with less data.

9.2.3.2 Overall Results of Speaker-Independent and Speaker-Dependent Models

An overall comparison of performance of baseline speaker-independent and speaker-adapted
LMs is presented in Table 9.8. The test set contains 204k words for REF and 180k words
for ASR conditions. These results show that for both conditions, speaker-adapted LMs –
with either global interpolation weights or individual weights – outperform the baseline. The
overall improvements by LM speaker adaptation for both conditions are statistically significant
at p < 10−15, using the Sign test. Of the two weight options, global interpolation results in
better performance; however, the difference between the two approaches is only marginally
significant at p < 0.1.

In ASR conditions, I also tried interpolating the speaker-independent model trained on
reference transcriptions with a speaker-dependent model trained on the recognizer output.
The idea was to allow the model also to adapt for error patterns typical for an individual
talker. However, this adaptation performed less well than using reference transcriptions as
the training data, which indicates that, at least with the amount of data available for our
experiments, it is preferable to adapt LMs using clean data. In consequence it also suggests
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that prospective unsupervised approaches to LM speaker adaptation will perform less well
than the supervised approach.

9.3 Chapter Summary and Conclusions

In this chapter, I have investigated speaker-specific prosodic and language modeling for DA
segmentation in meetings. The method was evaluated on 20 frequent speakers with a wide
range of total words available for speaker-dependent modeling. First, it was found that overall,
prosodic features beyond pause provide benefit over the pause-only features for 19 of the 20
speakers studied. Further, it was found that interpolating the large, speaker-independent
prosodic model with a much smaller prosodic model trained only on that talker’s speech yielded
improvements for 6 of the 20 speakers in reference conditions, and for 16 of 20 the speakers in
ASR conditions. The ASR conditions showed a higher number of improved speakers, but the
improvements were relatively smaller than those in the reference conditions. Overall results,
summed over all 20 speakers, indicate modest yet significant improvement with respect to the
SI-model for both test conditions.

Feature analysis, while preliminary given the number of speakers, suggests that nonnative
speakers may differ from native speakers in overall feature usage patterns associated with
DA boundaries. An important question for future work is to explore what factors predict
whether speaker-dependent modeling will benefit a particular speaker since it did not benefit
all speakers. The absolute amount of data did not appear to be a predictor in our experiments,
although data is certainly necessary for robustness.

In the second set of experiments, I explored speaker adaptation of hidden event language
models for the same task. Analogous to prosodic model adaptation, the speaker LM adaptation
was based on a linear combination of the generic speaker-independent and speaker-dependent
LMs. Improvements were found for 17 of the 20 speakers using reference transcripts, and for
15 of the 20 speakers using automatic transcripts. Overall, I achieved a statistically significant
improvement over the baseline LM for both test conditions. It can be concluded that speaker
adaptation of LMs aids DA segmentation, and that future work should investigate the potential
of speaker-specific modeling for other spoken language understanding tasks.

For both types of speaker adaptation, improvements were achieved even for some talkers
who had only a relatively small amount of data available for adaptation. In addition, the
relative error reduction achieved by speaker adaptation was not correlated with the amount
of adaptation data. This finding suggests that speakers differ inherently in how similar they
are to the generic models. Some talkers probably differ more and thus show more gain, even
with less data.

An obvious question is whether the speakers who benefit from prosodic model adaptation
also benefit from language model adaptation. Of the 6 speakers who improved by prosodic
adaptation in reference conditions, 5 also improved by language model adaptation. The number
of improved speakers in common may seem to be high, but it was not higher than the chance
agreement based on the counts of improved speaker in both sets (5.1 speakers). Similarly, of
the 16 speakers who improved by prosodic adaptation in ASR conditions, only 10 improved also
by language model adaptation, while the chance agreement was 12 speakers. These numbers
indicate that that there was no apparent correlation between speakers’ idiosyncrasy in prosodic
and lexical patterns associated with DA boundaries.
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Chapter 10

Sentence Unit Segmentation of
Czech Corpora

Change your language and you change your thoughts.
Karl Albrecht

While the experiments presented in the two preceding chapters focused on sentence segmenta-
tion of conversational English, this chapter focuses on sentence segmentation of spoken Czech
using the two MDE corpora described in Chapter 5. The same three modeling approaches as
in the experiments with the meeting data (HMM, MaxEnt, and BoosTexter) are compared
herein. In addition, I analyze gains from using various textual and prosodic features.

The remainder of this chapter is organized as follows. Section 10.1 summarizes most promi-
nent differences between Czech and English, Section 10.2 surveys related work on sentence
segmentation of spoken Czech, and Section 10.3 defines the task and experimental setup.
Sections 10.4, 10.5, and 10.6 report results of the experiments based on using only textual
information, only prosodic information, and a combination of both information sources, re-
spectively. Section 10.7 presents a system combining all three modeling approaches, and
Section 10.8 summarizes all experiments and draws conclusions.

10.1 Differences between Czech and English

When dealing with Czech data, we must cope with some specific issues that are absent in
English. Czech belongs to the family of Slavic languages, which are highly inflectional and
derivational. The languages with a highly inflectional morphology typically use an extremely
large number of distinct word forms. For example, Czech nouns have seven cases in the singular
number and another seven cases in the plural number. Even though some of the inflected forms
are identical, the number of distinct word forms relating to lemmas of inflected parts of speech
is high. Hence, the ubiquitous problem of data sparseness is even more painful for Czech.

Additional problems arise when we must deal with colloquial Czech [180]. Colloquial Czech
deviates from standard Czech as defined by orthographic, morphological, lexical and syntac-
tic rules by the Czech normative bodies. With respect to pronunciation variation, Czech is
different from English and many other languages in that spelling rules for Czech are phonet-
ically based. Therefore, colloquial Czech words have well-defined but different spellings than
their standard variants. In other words, colloquial Czech has an orthographic written form.
The difference between colloquial and standard Czech is most prominently displayed in the
morphology – prefixes and endings are often changed in the former.
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Another problem is a relatively free word order in Czech. Word order flexibility is generally
correlated with rich inflection in a language. In highly inflective languages, syntactic roles of
sentence members are often disambiguated based on morphological information, rather than
a position in a sentence. Although the word order flexibility does not imply that the word (or
phrase) order may be chosen absolutely arbitrarily, it evidently affects the predictive power of
statistical models based on N -gram contexts.

On the prosody side, the largest difference between Czech and American English is probably
in typical sentence melody. While sentence-final pitch falls/rises are present in both languages,
intrasentential pitch movements (e.g., at prosodic phrase boundaries) are typically less steep
in Czech than in English. Another distinction is caused by a different function of stress in
the two languages. Stress has a lexical function in English, i.e. it may distinguish word
identities. Stressed syllables in English are typically louder, as well as being longer and having
a higher pitch than non-stressed syllables. On the other hand, stress in Czech has only a
delimitative function. Stress is fixed to the first syllable of a foot and its only function is to
acoustically delimit foot boundaries. This delimitative stress is usually less strongly marked
than the lexical stress in English. Furthermore, preboundary lengthening in Czech is also
less emphatic than in English. The reason for this is that the length of vowels also serves a
lexical function in Czech, which offers less opportunity for prosodically motivated lengthening.
All these differences make Czech prosody sound “flatter” than English; foreigners often find
spoken Czech rather monotonous.

10.2 Related Work on Czech

At the time I started to work on my thesis, there was no published research relating to sentence
segmentation or automatic punctuation of spoken Czech. Thus, our (Kolář, Švec, and Psutka)
paper from 2004 [181] was the first published work focusing on this language. Since the early
experiments from this study are not included in this thesis, I briefly summarize their results
here. The pilot paper focused on automatic punctuation (insertion of commas and periods) of
Czech broadcast news data. Although the same Czech BN corpus was used, we did not have
the MDE annotation available at that time. Thus, instead of the MDE symbols, we had to
use the slightly inconsistent punctuation from the first transcription pass.

We used the HMM approach and tested two prosodic classifiers – CART and MLP. Of the
two classifiers, CART worked slightly better. On the language modeling side, a baseline word-
based trigram was outperformed by a POSmix model in which infrequent word forms were
replaced by their morphological tags. The methods were only tested on automatically aligned
reference transcripts and the best performing combined system (HELM+CART) achieved
BER = 4.8% and F = 78.2% for all punctuation marks. For sentence boundary detection,
the results were only reported in F -measure (F = 88.1%).

One year later, Kolorenč presented an automatic system for punctuation of automatically
recognized Czech broadcast news [182]. He used a simple approach utilizing automatically
learned rules, separate for periods and commas. The period insertion rules were based on
replacing automatically recognized “noises”, such as long pauses or audible breaths, by periods.
For induction of the replacement rules, a genetic algorithm based on a grammatical evolution
approach was employed. By contrast, the rules for commas were induced from a newspaper
corpus. These rules were only relying on two words following the interword boundary of
interest and looked for positions of conjunctions, pronouns, adverbs, and prepositions (i.e.,
potential clause-joining words).

After applying the learned rules to speech recognizer output, a postprocessing step based
on a simple morphological analysis was performed. In this step, all punctuation marks were
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removed from all segments not containing nouns, numbers or pronouns in the first case (possible
subjects), or verbs in a finite form (possible predicates). The author reports the performance
rates as F = 81.9% for periods and F = 83.2% for commas. Overall, my view on this
paper is that while the presented approach is interesting, it seem to be suboptimal. For
period insertion, it only looks for noise flags instead of using prosodic and lexical features.
Furthermore, the comma insertion rules do not take into account the words occuring before
the classified boundary. Moreover, the rules learned in that way do not seem to be robust
against word recognition errors.

10.3 Data and Experimental Setup

10.3.1 Segmentation Task for Czech Data

As mentioned above, this chapter uses the two MDE-annotated Czech corpora described in
Chapter 5. The diversity of MDE symbols allows us to define the sentence-unit segmentation
task for these corpora in a variety of ways. For example, we can only recognize sentence-like
units delimited by the double slash symbols or, on the other hand, we can segment speech
into smaller syntactic units with boundaries marked by both sentence-external and sentence-
internal SU breaks. However, since this part of my work aimed to perform an initial set
of experiments with SU segmentation of spoken Czech, I decided to follow the original SU
definition as used in the EARS project. Thus, I defined a two-way classification task in which
a sentence-like unit boundary was recognized when the current word was followed by any SU-
external symbol (both complete and incomplete – “/.”, “//.”, “/?”, “//?”, “/-”, “/∼”). On the
other hand, words followed by SU-internal symbols (“/&”, “/,”) or no symbol were treated as
“non-boundary”.

10.3.2 Experimental Setup

The two Czech corpora were evaluated separately. As usual, each corpus’ data were split into
a training set, a development set, and a test set. The splits were performed based on the dates
of broadcast in order to ensure that the training data only contain older recordings than those
on which the models are tested. Particular data set sizes in terms of a total number of words
are shown in Table 10.1. Note that, in line with the setup of the previous English experiments,
pseudo-words, such as filled pauses or “uh-huhs”, are treated as word tokens during testing
and evaluation. On the other hand, background noises or mouth noises, such as loud breaths
or coughs, are not taken into account during evaluation and therefore not counted in the table.

The numbers in Table 10.1 show that the automatically generated transcripts contain
slightly more words than the manual transcripts, indicating that the employed ASR system
(described in the following section) was making more insertion errors than deletion errors.
Also note that both Czech corpora are significantly smaller than the ICSI meeting corpus used
in the two previous chapters. For example, both Czech training sets are more than three times
smaller than the training set of the meeting corpus.

In terms of the number of broadcast programs, the BN corpus setup used 244 programs for
training, 39 for development, and 59 for testing. The seemingly unbalanced distribution of the
broadcast programs among the sets was caused by largely varying lengths of the recordings
in the corpus. The development and the test set were designed to contain an approximately
equal number of words, regardless of the number of shows. On the other hand, the RF corpus
comprises talk shows of a similar length. Hence, the RF split – 40 shows for training, 6 shows
for development, and 6 shows for testing – was balanced in this respect. The evaluation sets
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Table 10.1: Data set sizes for Czech corpora (numbers of words)

Data Set BN RF

REF ASR REF ASR

Training 174.8k N/A 159.1k N/A
Development 28.2k 28.6k 24.1k 24.2k
Test 31.2k 31.6k 24.6k 24.7k

contain unseen speakers as well as speakers appearing in the training data, as it is typical for
the real world applications. For example, the talk shows usually have recurring interviewers,
whereas the invited guests typically occur only in a single show.

To generate “reference” SU boundaries for ASR transcripts, I used the same approach as
described in Section 8.4. In contrast with previous experiments on the meeting data, I did not
examine models trained on ASR data. This decision was made because the Czech ASR system
was trained on the same data as I use for training of my segmentation models. Consequently, it
was expected that the training portion of the data would be recognized with a higher accuracy,
causing an apparent mismatch between training and test data.

As in all preceding experiments, BER is used as the main performance measure. In ad-
dition, chance error rate is always reported. To ease a performance comparison across the
experiments, I also present the NIST error rate and F -measure for best results in individual
sections. All experiments are evaluated using both human-generated and automatic speech
transcripts.

10.3.3 Speech Recognition System for Czech

Although building ASR models for Czech data was not one of the thesis goals, I briefly mention
the speech recognition system here since I had to build my own ASR models as a necessary
preliminary step for my work on sentence segmentation. For automatic recognition of the
Czech speech data, I used the LVCSR system developed at UWB [183]. The system was
designed for real-time recognition of highly inflected languages.

In the UWB recognizer, each individual basic speech unit (triphone) is represented by a
three-state HMM with a continuous output probability density function assigned to each state.
Feature vectors are computed at the rate of 100 frames per second using a parametrization
with 12 PLP cepstral coefficients plus corresponding delta and delta-delta subfeatures. For
decoding, the system employs a time synchronous Viterbi search with token passing within a
lexical-tree recognition network. In the first pass, the recognizer uses a bigram language model
to generate word lattices, which are rescored in the second pass using a higher order language
model.

The acoustic models for either corpus were trained in HTK only using data from the MDE
training sets of the same corpora. For training of language models, I have used a database
provided by a Czech media-monitoring company. This database contained manual transcripts
of radio and TV broadcasts spanning the years from 1996 to 2006. First, the pieces of text had
to be preprocessed to normalize non-standard tokens, such as numerals, dates, or abbreviations.
For this purpose, a text normalization system tailored for languages with rich inflection was
employed [184]. Then, the transcripts were manually divided into five groups according to the
program type: news, discussions, economics, investigative journalism, and sports. Since the
target domain does not include sports, this subpart of the training corpus was not used, nor
all the data corresponding to the dates on which our development and test sets were recorded.
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The remaining four subcorpora yielded 107M words in total.
For each of the subcorpora, I trained a separate trigram language model with modified

Kneser-Ney smoothing in the SRILM toolkit [138]. Subsequently, the four LMs plus a model
trained only on the MDE training set transcripts were interpolated to form a mixture LM
with five components. The interpolation weights for the two target corpora were estimated
on corresponding development sets using the EM algorithm. Thus, the LM for recognition
of broadcast news was different from the LM for broadcast conversation recognition. The
recognizer’s vocabulary contained 200k words. The words for the ASR vocabulary were selected
using the vocabulary optimization method described in [185]. A relative weight of the LM for
a combination with the acoustic model and the word insertion penalty value were tuned using
the development data. The overall word error rates were 12.4% for the BN and 29.3% for
the RF corpus. The same automatic system was also used to generate forced alignments of
manual transcripts.

10.4 SU Segmentation Based on Textual Information

10.4.1 Textual Features

10.4.1.1 Words

In this set of experiments, the term “word features” is used to refer to word-based features
only extracted from the training portions of the two Czech MDE corpora. Before I started
to evaluate the word-based segmentation experiments, I had focused on the issue whether the
word-based LMs for either corpus may benefit from also using training data from the other
corpus. The answer to this question was not straightforward. While both corpora have been
MDE annotated in the same way, they largely differ in speaking styles. My initial experiments
showed that using data from the other corpus was not helpful for either corpus. Besides employ-
ing the data from the Czech MDE corpora, I also investigated using data from other sources.
The exploitation of auxiliary textual resources is discussed below in Subsection 10.4.1.4.

10.4.1.2 AICs

Automatic word classes for the Czech data were induced in the same way as for the meeting
data (as described in Section 8.5.1.2). The optimization of the number of target classes was
performed for each corpus separately. It was based on evaluation of models with various
class granularities on corresponding development data. The optimal numbers of classes were
estimated as 300 for the BN corpus and 275 for the RF corpus. These numbers are higher than
the number for the ICSI meeting corpus, which only used 100 classes. The differences are not
very surprising since we must take into account that, although the Czech corpora are smaller,
their vocabularies contain a higher number of word forms. While the training portion of the
ICSI corpus contains 11,034 distinct word forms, the training set of the BN corpus contains
26,805 word forms and the training set of the RF corpus 20,919 word forms. Thus, the corpora
with larger vocabularies also show a higher number of resulting word clusters.

10.4.1.3 POS for Czech

Since the use of POS-based features helped in a variety of Czech speech processing tasks, such
as speech recognition [186, 187] or semantic parsing [188], employment of POS information
for sentence segmentation of spoken Czech is explored here as well. In contrast to languages
with poor inflection (such as English), highly inflected languages (such as Czech) often use
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Table 10.2: Description of individual tag positions in PDT tagset

No. Category No. Category

1 POS 9 Tense

2 Detailed POS 10 Degree of comparison

3 Gender 11 Negation

4 Number 12 Voice

5 Case 13 Reserve 1

6 Possessor’s Gender 14 Reserve 2

7 Possessor’s Number 15 Special Usage

8 Person

structured morphological tagsets. In addition to labeling words with a POS category, these
structured tagsets use tags comprising of “subtags” providing information about morphological
categories.

For Czech, the most popular tagset is the positional tag system from the Prague Depen-
dency Treebank (PDT) [189].1 In this tagset, every tag is represented as a string of 15 columns
(positions). 13 of the 15 positions correspond to individual morphological categories, which
approximately fit the formal Czech morphology. The two remaining positions are currently
unused and kept as reserves for a possible future use. The description of individual positions is
presented in Table 10.2. Values in each position are represented by a single character, mostly
an uppercase letter. The values that are not applicable for a particular word (e.g., Gender for
prepositions) are denoted by a single hyphen (-). For example, the word form “rezignoval”,
lit. “(he) resigned”, is tagged as VpYS---XR-AA---.

It is evident that the structured tagsets for morphologically rich languages are much larger
than the compact tagsets for languages with a poor morphology. While the Penn Treebank
Tagset [191] used for our English data contains just 36 POS tags plus 12 tags for punctuation,
the rich tagsets usually contain more than 1,000 distinct tags. For example, there is about
1,500 different tags in the PDT corpus. A theoretical number of possible tags for Czech is
even higher.

Several automatic taggers have been developed for Czech. In this work, I used automatic
tags obtained from the Morče tagger2 [118], which is based on the averaged perceptron method.
Because the Czech tagset is so rich, it was worth exploring whether the sentence segmentation
systems could benefit from using features based on some reduced tags. I explored various
reduced tags including: (1) tags containing just the second position - Detailed POS; (2) tags
containing just first five positions; (3) the pair comprising of POS plus Case (or Detailed POS
instead of Case for POSs for which Case is not defined) often used for parsing of Czech; (4)
the reduced tag found optimal in [181] - Detailed POS, Case (reduced to nominative, genitive,
accusative, and “other”), person, tense, and grade. Of the four tested reductions, only option
(4) achieved performance close to that using the full tags. However, since none of the reduced
tagsets yielded improved results on the development data, I chose to use the full tags in all
the following POS-based experiments.

Besides the pure POS-based models, I also tested the models combining tags with frequent

1Besides the PDT tagset, there also exists an alternative tag system called Ajka [190]. This tagset is not
described herein since I do not use it in this work.

2The tagger is available from http://ufal.mff.cuni.cz/morce/.
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words (POSmix). Optimizing the model on my development data, I ended up with 1600 most
frequent word forms being kept for the BN corpus, and 2000 word forms being kept for the RF
corpus. In terms of relative frequency, the cutoff values for not replacing words by their POS
was 8.57 · 10−5 (i.e. 15/175k) for the BN data and 5.66 · 10−5 (i.e. 9/159k) for the RF corpus.
These boundary values are lower than the cutoff value for the English meeting corpus, which
was 1.87 · 10−4.

10.4.1.4 Auxiliary Words

In my experiments with Czech data, I did not only employ textual data from the MDE corpora,
but also investigated benefits from using an additional text corpus. In comparison with English,
the need for additional text data is larger for Czech, since the rich morphology sharpens the
data sparseness problem. Some additional textual data are often available, but we must
take into account two important facts. First, such data are typically not annotated for SU
boundaries in terms of the MDE guidelines but only contain standard punctuation. This may
cause a mismatch between training and test data, and it is not clear beforehand whether the
additional data would improve or rather hurt segmentation performance.

The second problem is that for the auxiliary textual data, we do not have available any
prosodic features associated with the words. In the HMM approach, the auxiliary LM can
easily be incorporated by interpolation with the baseline LM, but both MaxEnt and Boos-
texter, which do not have a separate LM, assume that all features are available during training.
In addition, these two methods are not very suitable for large N -gram-based training data.
Therefore, I used a trick similar to the trick that was used for incorporating prosodic features
into the MaxEnt model (cf. Section 7.2.3). The HELM model is used to estimate posterior
event probabilities based on the auxiliary LM, and these posteriors are subsequently used as
an extra feature during training of the models from the primary data. In the BoosTexter
model, the auxiliary posteriors are employed directly, while for the MaxEnt-based model, the
posteriors are thresholded to yield binary features.

The auxiliary LM was trained on the same data as I used to build my LMs for the Czech
ASR system (cf. Section 10.3.3). To generate reference SU boundaries for this data, the 107M
word corpus of broadcast transcripts was automatically split into sentences using a set of
heuristic rules based on punctuation and capitalization information. Then, a HELM model
could be trained in a standard way.

10.4.2 Experimental Results

Table 10.3 displays experimental results for all three models (HMM, Maxent, and BoosTexter)
and all textual feature sets (words, AIC, POS, POSmix, and Auxiliary words). For either of the
two Czech corpora, each model is evaluated using both manual and automatically generated
transcripts.

10.4.2.1 Results for BN Corpus

In both REF and ASR-based tests on the BN data, the best result by a model only relying on
a single knowledge source was achieved by the auxiliary word (AuxWord) HMM. These results
indicate that there is a good match between the textual database of broadcast transcripts and
the BN corpus. The second most successful single-source feature set was POSmix. Similar to
the meeting experiments, POSmix outperforms the pure POS model, however, the gap is much
smaller on the Czech data. The different results between the two languages can be explained
by a different number of tags in the two tagsets. The Czech tagset is much larger so that it

123



Chapter 10. Sentence Unit Segmentation of Czech Corpora

Table 10.3: SU segmentation error rates for LMs with various textual features [BER %].
AIC=Automatically Induced Classes, POS=pure POS-based model, POSmix=infrequent words re-
placed by POS tags and frequent words kept, AuxWords=Auxiliary words, REF=Reference conditions,
ASR=ASR conditions, BN=Broadcast News corpus, RF=Radioforum corpus (Broadcast conversa-
tions). The best results for each model are displayed in boldface.

Model Used Features BN RF

REF ASR REF ASR

Chance — 8.11% 8.01% 6.81% 6.89%

HMM Words 6.58% 6.72% 5.38% 6.18%
AIC 7.18% 7.31% 6.12% 6.55%
POS 6.74% 7.25% 6.17% 6.98%
POSmix 6.13% 6.39% 5.27% 5.94%
AuxWords 5.23% 5.47% 6.25% 6.28%
Words+AIC 6.50% 6.63% 5.43% 6.11%
Words+POSmix 5.24% 6.23% 5.24% 5.91%
Words+AuxWords 4.68% 5.05% 5.07% 5.24%

Words+AIC+POSmix 5.98% 6.19% 5.16% 5.86%
Words+POSmix+AuxWords 4.53% 4.96% 4.88% 5.27%
Words+AIC+POSmix+AuxWords 4.56% 4.99% 4.89% 5.34%

MaxEnt Words 6.65% 6.78% 5.76% 6.30%
AIC 7.11% 7.23% 6.21% 6.76%
POS 6.70% 7.00% 6.21% 6.65%
POSmix 6.37% 6.64% 5.77% 6.21%
Words+AIC 6.82% 6.93% 5.92% 6.56%
Words+POSmix 6.21% 6.50% 5.64% 6.14%
Words+AuxWords 4.71% 4.99% 5.16% 5.55%
Words+AIC+POSmix 6.42% 6.65% 5.99% 6.48%
Words+POSmix+AuxWords 4.65% 4.93% 5.16% 5.72%
Words+AIC+POSmix+AuxWords 4.51% 4.85% 5.31% 5.60%

BoosTexter Words 6.77% 7.07% 5.31% 6.10%
AIC 7.09% 7.29% 6.11% 6.73%
POS 7.01% 7.31% 6.08% 6.65%
POSmix 6.72% 6.91% 5.42% 6.22%
Words+AIC 6.95% 7.13% 5.96% 6.47%
Words+POSmix 6.67% 6.87% 5.43% 6.22%
Words+AuxWords 4.70% 4.93% 5.12% 5.78%

Words+AIC+POSmix 6.85% 7.10% 5.88% 6.53%
Words+POSmix+AuxWords 4.88% 5.15% 5.28% 5.82%
Words+AIC+POSmix+AuxWords 4.91% 5.00% 5.47% 6.02%
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forms a class-based model with a much finer granularity. As a result, it suffers less from the
absence of the important cue words. Finally, we can see that the least effective textual feature
set was AIC.

Note that since MaxEnt and BoosTexter did not use a separate AuxWord model but
AuxWords posteriors from the HMM model, it is not possible to make a comparison across
the three modeling approaches for the AuxWord feature set. However, we can compare the
results of the modeling approaches with other single-source feature sets. The numbers show
that the HMM approach was superior also for the second best feature set (POSmix), as well
as for the third best feature set (Words).

In general, lower error rates were achieved by feature sets relying on more than one infor-
mation source. The best performing feature sets differ across the modeling approaches. The
globally best result for both test conditions was achieved by the MaxEnt model combining all
four knowledge sources. This best result was BER = 4.51% (NIST = 55.64%, F = 70.59%)
for BN REF and BER = 4.85% (NIST = 60.52%, F = 67.27%) for BN ASR. On the other
hand, HMM worked best with Words+POSmix+AuxW and BoosTexter run best when only
Words and AuxWords were used.

Overall, it seems to be very difficult to get some gain from the AIC information. Only the
MaxEnt model improved by adding AICs to the overall feature set. For BN REF, the gain
was significant at p < 0.03 using the Sign test. For BN ASR, the p-value of the same test was
0.11.

For all models, the differences between the results achieved by the baseline word-based
feature set and the best performing combined feature sets were large and statistically significant
at p-values close to zero. Using the Sign test, I have also evaluated the gaps between the results
of the three modeling approaches. In reference conditions, the difference between MaxEnt and
HMM is not significant, whereas the differences MaxEnt–BoosTexter and HMM–BoosTexter
are significant at p < 0.02. In ASR conditions, the gaps are much smaller; only the supremacy
of MaxEnt over HMM has a p-value smaller than 0.1. But even for that case, the significance
level is just p < 0.08.

10.4.2.2 Results for RF Corpus

Results for the RF corpus are also shown in Table 10.3. In both REF and ASR-based tests
on the RF data, the best result by a model only relying on a single knowledge source was
achieved by the HMM using POSmix features. By contrast, the best single-source BoosTexter
was using the Word features for both conditions, and the MaxEnt model worked best with
Words in REF and with POSmix in ASR conditions.

Unlike BN, the HMM with AuxWords was not performing very well on the RF data when
used alone. It indicates that the differences between the training broadcast text database and
spontaneous conversations are rather big. The differences are not only in the colloquiality of
the used language but also in sentence definitions. SUs in the RF corpus differ from written
sentences to a larger extent than SUs from the BN corpus. In addition, AuxWords suffer
from the absence of pseudo-words such as filled pauses or “uh-huhs”. These pseudo-words are
frequent in the corpus transcripts but absent in the auxiliary training text. However, as shown
by the results of combined feature sets discussed, the AuxWord information help improve
the overall performance when AuxWords are not used alone but in a combination with other
feature sets.

The models using feature sets relying on more than one information source displayed
generally better results than the models with single-source features. The best performing
feature sets differ across modeling approaches and test conditions. The globally best per-

125



Chapter 10. Sentence Unit Segmentation of Czech Corpora

forming approach was HMM. For reference conditions, the best result was achieved with
Words+POSmix+AuxWords – BER = 4.88%, NIST = 70.19%, F = 55.14%. For ASR
conditions, the best result was achieved with Words+AuxWords – BER = 5.24%, NIST =
75.95%, F = 49.04%. BoosTexter performed at its best in both conditions when combining
Words and AuxWords. On the other hand, MaxEnt worked best with Words+POSmix+AuxW
on manual transcripts and with Words+AIC+POSmix+AuxW on automatic transcripts. This
was the only top feature set that included the AIC information. However, even here the im-
provement by adding AICs was only marginally significant (p < 0.06), as shown by the Sign
test.

I also checked statistical significance of gains from adding the AuxWord information to
the overall feature sets. The comparison of the best results achieved with the Auxword in-
formation (HMM with Words+POSmix+AuxWords for RF REF and with Words+AuxWords
for RF ASR) and without the AuxWord information (HMM Words+AIC+POSmix for both
conditions) showed that these improvements were significant at p < 0.001 for REF and at
p < 10−6 for ASR conditions.

The gaps between the baseline models only employing Words and the models with best
performing feature sets were smaller for the RF corpus than for the BN corpus. For HMM,
the statistical significance levels of the improvements were p < 10−5 for REF and p < 10−14

for ASR. Likewise for Maxent, the significance levels were p < 10−5 for REF and p < 10−8

for ASR. On the other hand, the improvement of BoosTexter showed in reference conditions
a p-value of just 0.09. In ASR conditions, the improvement of BoosTexter was significant at
p < 0.01. Thus, it can be concluded that both HMM and MaxEnt display greatly significant
improvements by adding the textual information beyond the RF training set words, while the
BoosTexter model was not that largely successful in getting gain from the additional textual
features.

Finally, I measured statistical significance of the differences between the results of the
three modeling approaches. For reference conditions, the supremacy of HMM was significant
– over MaxEnt at p < 0.005 and over Boostexter at p < 0.03. The gap between BoosTexter
and MaxEnt was not significant. For ASR conditions, the dominance of HMM over the other
models was significant at p < 10−5. The prevalence of MaxEnt over BoosTexter was significant
at p < 0.05.

10.4.2.3 Result Comparison across Corpora

The most distinctive difference between the results for BN and RF is in the importance of
AuxWords. The auxiliary training text resembles more the BN corpus than the RF corpus.
Accordingly, it is more beneficial for sentence segmentation of the former corpus. When
AuxWords are used alone, they reduce the chance BER for BN REF and BN ASR by 35.5%
and 37.1% relative, whereas for RF REF and RF ASR, they reduce it just by 8.2% and 8.5%
relative, respectively. In addition, a comparison of the best results achieved with AuxWord
features shows difference in improvements. The addition of AuxWords reduce BER by 13.9%
relative for BN REF, by 22.2% for BN ASR, by 5.4% for RF REF, and by 10.6% for RF ASR.

Performance of individual modeling approaches also differ between the two corpora. Max-
Ent was the most successful for the BN corpus, while HMM was the best performing method
for the RF corpus. The superiority of HMM for RF was greater than the superiority of Max-
Ent for BN. On the other end, BoosTexter was the worst for three of the four test conditions.
The only exception was RF REF, where it slightly outperformed MaxEnt. The dominance
of HMM for the RF data indicates that the smoothing method used in the HELM is more
robust to lexical irregularities frequent in colloquial Czech data than those used in other two
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approaches.
We can also compare relative error reductions with respect to chance achieved by the best

models in individual test sets. The relative reductions are 44.4% for BN REF, 39.5% for BN
ASR, 28.3% for RF REF, and 23.9% for RF ASR. It is possible to see that language modeling
was more succesful in the BN corpus. The differences between the corpora are also in the
performance degradation caused by ASR errors. SU segmentation performance in ASR tests
is relatively more degraded in the RF corpus, which was recognized with a much higher WER.

Interesting insights are also offered by the comparison with the LM results on English
meeting data. For that corpus, the relative error reductions with respect to chance were
55.9% a 49.3% for REF and ASR, respectively. Despite not using any additional textual
data, language modeling for the English meeting corpus was more successful than for the
Czech corpora. Although such a comparison may be a bit imprecise beacuse of easier-to-
detect backchannel DAs frequent in the English meeting corpus, it yet illustrates that language
modeling is more difficult for Czech.

10.5 SU Segmentation Based on Prosodic Information

In this section, I evaluate performance of prosodic models. The prosodic feature selection
for Czech corpora was performed in the same way as for the English meeting data (cf. Sec-
tion 8.6.2). In contrast with meetings, the number of selected features was lower. The feature
reduction algorithm ended up with 11 features for the BN corpus and 17 features for the RF
corpus. The varying number of features may not only be explained by different characteristics
of individual corpora (number of channels, level of spontaneity, rate of backchannels), but
also by different amount of training data. The meeting corpus is much larger than the Czech
corpora, and thus it could allow a model with a higher number of features to be robustly
estimated.

As in the prosody-based experiments on the ICSI meeting corpus, two modeling approaches
are examined here (CART and BoosTexter) since the overall MaxEnt approach only bins
prosodic scores obtained from CARTs. Besides reporting the overall accuracy of individual
prosodic models, I also investigate whether there is some gain from using a richer set of
prosodic features in comparison with using pause information only. In contrast with meetings,
the alternative pause feature set not only contains the three features capturing pause duration
after the previous, the current, and the following word, but also one “other” feature indicating
speaker change. As described below, this non-prosodic feature significantly improves classi-
fication accuracy for the broadcast data. Therefore, its absence in one of the two evaluated
feature sets would skew the comparison.

10.5.1 Experimental Results for Prosodic Models

Table 10.4 shows BERs achieved by particular prosody models in both reference and ASR test
conditions. The two following subsections report results for individual corpora.

10.5.1.1 Results for BN Corpus

In the BN corpus, the best results were achieved by bagged CARTs with the rich prosodic
feature set. In reference test conditions, this model achieved BER = 1.81% (corresponding to
NIST = 22.48% and F = 88.52%). In ASR conditions, it achieved BER = 2.11% (NIST =
26.41%, F = 86.37%). Using the Sign test, the differences between CART with rich prosody
and BoosTexter with rich prosody were significant at p < 10−11 and p < 10−10 for the two
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Table 10.4: SU segmentation error rates for prosodic models [BER %]

Model Used Features BN RF

REF ASR REF ASR

Chance — 8.11% 8.01% 6.81% 6.89%

CART with Ens. Bag. Pause 2.96% 3.75% 4.88% 5.29%
All Prosody 1.81% 2.11% 4.48% 4.82%

BoosTexter Pause 2.76% 3.40% 4.89% 5.30%
All Prosody 2.28% 2.55% 4.60% 5.13%

test conditions. Moreover, the gains over pause-only models were significant at p < 10−45 and
p < 10−99, respectively.

On the other hand, the boosting-based model was better than CART in modeling pause
information alone. These results were conformable with the results for the English meeting
corpus, where BoosTexter also handled the pause feature set better. The differences were
significant at p < 0.001 and p < 10−7 for reference and ASR-based tests, respectively.

10.5.1.2 Results for RF Corpus

For the RF corpus, the best results were also achieved by the CART model with the rich
prosodic feature set. In reference test conditions, the CART model achieved BER = 4.48%
(NIST = 66.27% and F = 56.81%). In ASR conditions, this model achieved BER = 4.82%
(NIST = 70.21%, F = 53.77%). Using the Sign test, the difference between rich-prosody
CART and BoosTexter was significant at p < 0.001 in ASR conditions. On the other hand,
the p-value of the same test in reference conditions was just 0.06. The two modeling approaches
showed similar results when only using the pause feature set.

The gaps between rich prosody and pause only CART models showed p-values 10−6 and
10−8 for reference and ASR conditions, respectively. For BoosTexter, these p-values were
lower: 0.001 and 0.05.

10.5.1.3 Result Comparison across Corpora

A comparison of relative error reductions with respect to the chance error rate indicates that
prosody-only models perform much better in the BN corpus than in the RF corpus. Expressed
in percentages, these error reductions are 77.7% for BN REF, 73.7% for BN ASR, 34.2%
for RF REF and 30.0% for RF ASR. Since broadcast news speech has more regular prosody,
more accurate prosody-based predictions were expected for that data. In addition, I compared
these error reductions with those obtained on the English meeting corpus. There, the chance
error was reduced by 49.4% for REF and 40.1% for ASR. Thus, the prosody model was most
successful for the Czech BN corpus, second most successful for the ICSI meetings, and least
successful for the Czech RF corpus.

I also analyzed the improvements achieved by the rich prosody feature set in comparison
with the pause-only feature set. Gain by adding prosody beyond pause is much more substan-
tial for the BN corpus. The relative error reductions over using pauses alone are 38.8% and
43.7% for human- and ASR-generated BN transcripts, while the relative reductions are just
8.2% and 8.9% for the RF transcripts. These numbers also indicate that using rich prosody is
more helpful in ASR conditions.

We can also compare the results achieved by prosodic models with the earlier presented
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Table 10.5: Prosodic feature usage for the BN corpus (“—” indicates that less than two features from
the group appear in the overall feature set.)

Group Tot. Usage Two most used features in the group

Pause 26.9% pause.after (26.9%), —
Duration 43.9% vowel.dur.last_1st.snorm (9.4%), word.dur (8.4%)
Pitch 12.0% f0.logratio.pwl_last_baseline (12.0%), —
Energy 6.3% f.RMS.max.norm (6.3%), —
Near Pause 0.0% —
Other 10.8% turn.is_end (10.8%), —

results of LMs (Table 10.3). Unlike the ICSI meetings, for which the prosody models outper-
formed the language models only in ASR conditions, prosody models outperformed language
models in all four Czech test sets. However, the magnitudes of the differences varied across
the test sets. In comparison with the BERs by the LM, the BER by the prosody model was
lower by 59.8% relative for BN REF, 56.5% for BN ASR, 8.2% for RF REF, and 8.0% for RF
ASR.

10.5.2 Prosodic Feature Usage

10.5.2.1 Prosodic Feature Usage for Czech Corpora

Similarly to Section 8.6.2, I also explored prosodic feature usage in decision trees. The usage
rates for each group as well as the most used individual features are presented in Table 10.5
(BN) and Table 10.6 (RF). In addition to the five feature groups from Chapter 8 (pause, dura-
tion, pitch, energy, near pause), the group “other” is also represented here. While no feature
from this group was selected for multi-channel meeting data, the feature called turn.is_end
indicating speaker change was found to be very important for the single-channel broadcast
data.

The numbers for the BN corpus show that the most frequently queried feature group was
“duration” followed by “pause”. The difference between these two groups is quite high – 17%
absolute. The third most queried group was “pitch”, the fourth was “other”, and the fifth was
the group of energy features. As contrated to meetings, near pause features were not selected
at all. The most used individual feature was pause after the current word. Other heavily
queried features were the log ratio of the last stylized F0 value and the speaker’s F0 baseline,
the speaker change flag, and the normalized duration of the last vowel in the current word.

For the RF corpus, the most frequently used feature groups were also “duration” and
“pause”. The gap between the two groups was more prominent in the RF data – it was over
38% absolute. The third most queried group was “energy”, the fourth was “other”, and the
fifth was the group of pitch-related features. Although the near pause group had nonzero usage
in this corpus, it was the least represented group again, taking up just 2.2%. The most used
individual feature was duration of the current word, surpassing the pause after the current
word. Other heavily queried features were the speaker change flag and the feature capturing
speaker-normalized lengthening of the longest vowel in the current word.

A comparison of feature group usage between the two corpora is visualized in Fig. 10.1.
The group of duration features prevails in both corpora, however, the two distributions vary.
The difference is most prominently displayed in pausing features. The feature capturing pause
duration at the boundary of interest was more frequently queried in the BN corpus. Pausing in
news speech is much more regular than in conversational speech; therefore, pause features are
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Table 10.6: Prosodic feature usage for the RF corpus (“—” indicates that less than two features from
the group appear in the overall feature set.)

Group Tot. Usage Two most used features in the group

Pause 14.7% pause.after (14.7%), —
Duration 53.0% word.dur (16.5%), vowel.max_dur.snorm (6.0%)
Pitch 9.1% f0.last.min (5.0%), f0.logratio.pwl_last_baseline (4.1%)
Energy 11.5% f.RMS.max.norm (5.8%), f.RMS.min.norm (5.8%)
Near Pause 2.2% p.pause.after (2.2%), —
Other 9.4% turn.is_end (9.4%), —
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Figure 10.1: Prosodic feature group usage for Czech corpora (BN and RF)

more reliable for that corpus. Another difference between the two distributions is the usage
proportion of pitch and energy features. The BN corpus prefers pitch features, while the RF
corpus prefers energy features.

Variances in usage of individual features were the following. From the duration group, a
feature that aims to capture segmental lengthening is the most important for the BN corpus,
while the raw word duration feature is dominant for the RF corpus. The pitch group of the BN
corpus heavily use a feature reflecting the ratio between the last F0 value and the speaker’s F0

baseline. It suggests that radio anchors regularly mark statement boundaries with expressive
pitch falls. This pitch feature was also important for the RF corpus, but an unnormalized
feature capturing minimal F0 value in the last voiced region was used more. In both corpora,
energy features were represented by normalized RMS values computed from the word following
the boundary in question. These features reflect the fact that speakers typically start sentences
loudlier than they finish them.

I have also explored feature usage in the “pause-only” feature set. For the BN corpus, the
pause after the current word had usage of 67.5%, while the pauses after the previous and the
following word had 1.9% and 1.0%, respectively. The remainder (29.6%) corresponded to the
speaker change feature. For the RF corpus, the pause after the current word takes in 48.4%.
In contrast with BN, the pause after the preceding word was also largely used – 21.6% of the
total usage. The pause after the following word showed usage 6.0% and the speaker change
flag 24.0%. A quick comparison of the two corpora indicates that in the BN corpus, we can
do well with just using pause at the current boundary, while in the RF corpus, the other two
pause features are also important when other prosodic features are not available.
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10.5.2.2 Prosodic Feature Usage Comparison across Languages

It is not easy to make a direct comparison of prosodic feature usage between our Czech corpora
and some similar English corpora because authors of parallel sentence segmentation studies
usually do not present relative usage of their prosodic features. An exception is [149], where
Liu shows the best performing features for HMM-based sentence segmentation of English
broadcast news and telephone conversations. For broadcast news, the most important feature
was the pause duration at the word boundary in question. As expected, the most used feature
is identical with the most used feature for Czech BN, however, their relative usage percentages
differ. Liu reports the pause usage as 44.3%, while my Czech experiments showed the pause
usage only as 26.9%.

The next best prosodic features3 for English BN were reported as the normalized duration
of the last rhyme in the word (17.7%), and the difference between last PWL F0 value and
the speaker’s baseline (4.5%). These two features capture the same phenomena as my most
used duration and F0 features, but their order is reversed in the feature ranking and their
relative percentages largely vary. The comparison of particular numbers indicate that features
capturing final lengthening are more important for English, while features capturing final pitch
fall are more important for Czech. This finding is in agreement with the fact that Czech offers
less opportunity for final lengthening because length also serves a lexical function in Czech.

In the comparison of prosodic feature usage between BN and CTS data, Liu concludes that
pitch plays a more important role for BN than for CTS, whereas phone and word duration
is more important for CTS. This observation is in line with my findings regarding differences
between read-aloud and conversational Czech data.

Shriberg et al. reported a comparison of feature usage between English broadcast news
and Switchboard conversations only based on feature groups [49]. The differences between
read-aloud and conversational speech in terms of feature group usage observed in that study
were once again similar to those I report here for Czech data – pitch and pause features4 were
more used in broadcast news, whereas duration features dominated in Switchboard.

While broadcast news speech have been studied for prosody-based sentence segmenta-
tion extensively, much less is in this respect known about broadcast conversations since this
genre has drawn attention of the speech technology community rather recently. To my best
knowledge, the only published study analyzing prosodic features for sentence segmentation of
broadcast discussions is [192] by Cuendet et al. However, the way in which this study evaluates
prosodic features does not allow a direct comparison with my feature usage statistics.

The authors do not present feature usage of individual features in the overall set but
compare segmentation accuracy of systems using individual prosodic feature groups – duration,
energy, pitch and pause. For energy and pitch features, the authors also looked at feature
subgroups – range, reset and slope. The error rates of individual feature subsets were compared
across three genres, namely natural meetings, broadcast news, and broadcast conversations.
The results revealed that in terms of sentence boundary cues, broadcast conversations stand
closer to broadcast news than meetings. This finding cannot be confirmed nor refuted here
because the variance between meetings and broadcast conversations observed in my thesis may
not only be caused by genre but also by language differences.

3In this cross-lingual comparison, I only take into account “pure” prosodic features, leaving out “other”
features in the top feature rankings. Since the non-prosodic features cover different proportions in the compared
feature sets, and these proportions are usually not reported, precise conclusions about “pure” prosodic features
cannot be drawn based on comparisons of the absolute usage numbers.

4Energy-based features were not used in this early study by Shriberg et al.
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Table 10.7: SU segmentation error rates for models combining textual and prosodic features [BER %]

Model Used Features BN RF

REF ASR REF ASR

Chance — 8.11% 8.01% 6.81% 6.89%

HMM LM+Pause 2.18% 2.59% 3.61% 4.25%
LM+Rich Prosody 1.44% 1.73% 3.44% 4.14%

MaxEnt LM+Pause 2.40% 2.78% 3.57% 4.27%
LM+Rich Prosody 1.76% 2.07% 3.45% 4.16%

BoosTexter LM+Pause 1.85% 2.28% 3.58% 4.42%
LM+Rich Prosody 1.42% 1.72% 3.56% 4.21%

10.6 SU Segmentation Using Both Textual and Prosodic In-
formation

In this section, I present results of models that rely both on prosodic and textual information.
For each modeling approach, I compare two types of models. The first combines the best LMs
(different across the three approaches) with the pause-only models, whereas the second type
of models combines the same LMs with prosody models based on the richer feature set. The
error rates for both Czech corpora are displayed in Table 10.7.

10.6.1 Results for BN Corpus

For the BN corpus, the best results were achieved by the BoosTexter model combining textual
information with the rich prosody feature set. These results were BER = 1.42%, NIST =
17.49%, F = 91.27% for REF test conditions and BER = 1.72%, NIST = 21.44%, F =
89.19% for ASR conditions. However, the gap between BoosTexter and HMM using the same
feature sets was really tiny and statistically insignificant for both test conditions. On the other
hand, MaxEnt performed significantly worse than the other two approaches. Using the Sign
test, the difference between MaxEnt and BoosTexter was significant at p < 10−6 for both test
conditions. The difference between MaxEnt and HMM was significant at p < 10−7 for REF
and at p < 10−8 for ASR.

The models with richer prosodic feature sets consistently outperform the models with
pause information only. The improvements by adding rich prosody information are statisti-
cally significant for all three employed modeling approaches and both test conditions. The
significance levels for REF conditions are p < 10−28, p < 10−17 and p < 10−13 for HMM, Max-
Ent, and Boostexter, respectively. The corresponding significance levels for ASR conditions
are p < 10−35, p < 10−20 and p < 10−19.

Although the combined models with rich prosody outperform the combined models with
pause-only prosody, the relative gains from using rich prosody are diminished in compari-
son with the gains for the prosody-only classification presented in Table 10.4. The decrease
of improvement is smaller for Czech BN than for the English meetings, but it is still visible.
Whereas the addition of prosodic features beyond pause reduces BER of the prosody-only clas-
sification by 34.4% relative for BN REF and by 37.9% relative for BN ASR, the classification
by combined models is only improved by 23.2% and 32.6%, respectively.
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10.6.2 Results for RF Corpus

In the RF corpus, the best results were achieved by the combined HMM model employing
the rich prosodic feature set. The best model performed at BER = 3.44%, NIST = 49.50%,
F = 74.48% for REF and BER = 4.14%, NIST = 60.06%, F = 68.59% for ASR test
conditions. The second best results were obtained from the MaxEnt model. The MaxEnt
results were basically identical with those of HMM. Even the BoosTexter model, which was
the worst of the three modeling approaches, showed just insignificantly (p > 0.1) higher error
rates than the best HMM.

Same as in the BN corpus, the models with the rich prosodic features sets outperformed
the models only using pause information for prosody modeling. However, the improvements
by adding rich prosody information were much smaller for the RF corpus. For REF conditions,
only HMM showed a clearly significant improvement (p < 0.01). The gain for MaxEnt was
only “marginally” significant at p < 0.08, while the gain for BoosTexter was even clearly
insignificant. On the other hand, BoosTexter was the only model displaying a clearly significant
improvement (p < 0.005) in ASR conditions. The improvements by the other two approaches
only showed p-values between 0.08 and 0.10.

Again, I observed that relative gains from using rich prosody for models relying both
on textual and prosodic cues are smaller than the gains for a prosody-only classification.
This relative decrease of improvement for the RF corpus is much larger than for the BN
corpus. While the addition of prosodic features beyond pause reduced BER of the prosody-
only classification by 8.2% relative for RF REF and by 8.9% for RF ASR, the classification
by the models combining textual and prosodic features was only improved by 4.9% and 2.7%
relative, respectively.

10.6.3 Result Comparison across Corpora

The presented numbers relating to models combining textual and prosodic information show
some differences between BN and RF. BoosTexter was the best combined model for BN, while
HMM was the best for RF. However, the gaps among the three explored approaches were rather
small for both corpora. The only exception was MaxEnt for BN, which showed significantly
worse results than the other approaches. These results of individual modeling approaches
suggest that tight integration of prosodic and textual features is important for BN, while more
efficient language modeling as shown by the HMM approach is important for RF.

The results also indicate differences in the importance of using prosodic features beyond
pause in the combined models. The additional prosodic features decreased BER by 23.2%
relative for BN REF and by 32.6% relative for BN ASR, but they only reduced the error by
4.9% relative for RF REF and by 2.7% relative for RF ASR.

Fig. 10.2 visualizes BERs in dependence on used knowledge sources for all three modeling
approaches. Individual graphs in the figure correspond to four Czech test sets on which
the models were evaluated (BN REF, BN ASR, RF REF, and RF ASR). In the graphs,
lines connect points corresponding to the same model in order to increase readability. The
graphs show some interesting facts. For instance, two of the three models for the BN corpus
show a better performance when only using rich prosody than when using an LM plus pause
information. This finding is quite surprising. It shows how important the prosodic features
beyond pause are for sentence segmentation of broadcast news data. Unlike BN, the LM plus
pause models consistently outperform the rich prosody models used on their own in the RF
corpus. In general, lexical cues are more important for spontaneous speech corpora, which
display less regular prosodic marking of boundaries than planned speech corpora do.
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Figure 10.2: SU segmentation error rates for individual models in dependence on used knowledge
sources [BER %]

The differences among the results of the three modeling approaches are more visible in
the RF graphs. The hugest deviation is displayed in the LM-only tests in which the HMM
approach clearly outperforms the two others. Another notable deviation is in the results of
prosody-only tests in which we can see that the BoosTexter model is not good in handling the
rich prosody feature set on its own. This inferiority is more visible in ASR conditions.

10.7 Combination of All Three Modeling Approaches

Just as for the meeting data (cf. Section 8.8), I tried to combine HMM, MaxEnt, and Boos-
Texter models into a single SU segmentation system. Thus, the resulting system combines not
only various knowledge sources but also various machine learning techniques. I only combine
the best performing models, i.e. those using both lexical and prosodic features. Again, two
model combination methods were examined – simple majority voting and linear interpolation.
The results for both Czech corpora are presented in Table 10.8. For a better illustration,
the table compares the two combination approaches with the best results achieved by single-
approach models – BoosTexter for BN REF and BN ASR, and HMM for RF REF and RF
ASR.
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Table 10.8: SU segmentation error rates for a combination of HMM, MaxEnt, and BoosTexter [BER %]

Combination Approach BN RF

REF ASR REF ASR

Chance 8.11% 8.01% 6.81% 6.89%

Best Single Approach 1.42% 1.72% 3.44% 4.14%
Majority Voting 1.35% 1.65% 3.23% 4.00%
Linear Interpolation 1.27% 1.61% 3.22% 3.98%

10.7.1 Results for BN Corpus

The results on the BN corpus indicate that the model combination improves SU segmentation
accuracy. Of the two combination options, the linear interpolation worked better, however, the
gain over the voting approach was only significant for tests on manual transcripts (p < 0.01).
Overall, BER was decreased from 1.42% to 1.27% for BN REF, and from 1.72% to 1.61% for
BN ASR. The Sign test showed that these improvements over the best single-approach model
are significant at p < 0.001 and at p < 0.02, respectively. In our other metrics, the best results
of the combined models were evaluated as NIST = 15.63% and F = 92.30% for REF, and
NIST = 20.09% and F = 90.02% for ASR conditions.

The interpolation weights for HMM, MaxEnt, and BoosTexter were estimated from devel-
opment data using the EM algorithm. I got 0.33, 0.38, and 0.29 for BN REF, and 0.36, 0.36,
and 0.28 for BN ASR. The estimated weights do not largely vary across the test conditions
and both weight distributions are not far from uniform. For illustration of the automatic
sentence segmentation accuracy achieved by the best performing system, an example of an
automatically segmented BN transcript is shown in Appendix C.2.

10.7.2 Results for RF Corpus

The results for the RF corpus also indicate an improvement over the best single-approach
model. Of the two combination options, the linear interpolation approach showed better
results. However, the gain over the simple majority voting approach was statistically insignif-
icant for both test conditions. The interpolation decreased BER from 3.44% to 3.22% for RF
REF, and from 4.14% to 3.98% for RF ASR. The Sign test indicated that the gaps between
the best combined system and the best single-approach model were significant at p < 0.005
and at p < 0.02 for the two test conditions, respectively. The best results correspond to
NIST = 46.35% and F = 75.65% for RF REF, and NIST = 57.65% and F = 69.12% for RF
ASR.

The optimal interpolation weights for HMM, MaxEnt, and BoosTexter were determined by
the EM algorithm as 0.30, 0.39, and 0.31 for RF REF, and as 0.34, 0.32, and 0.34 for RF ASR.
Again, the estimated weight distributions did not diverge far from the uniform distributions.
An example of an automatically segmented RF transcript is presented in Appendix C.3.

10.7.3 Result Comparison across Corpora

The model combination approach helped relatively more for the BN corpus than for the RF
corpus. The relative error reductions by model interpolation were 10.6% for BN REF, 6.4%
for BN ASR, 6.4% for RF REF, and 3.9% for RF ASR. Since the results by the interpolated
models are the best for all Czech test sets, I also used them to compare overall classification
accuracy across the corpora. In terms of a relative BER reduction with respect to chance error
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rate, my segmentation system was relatively most successful on BN REF (BER reduction by
84.3%) followed by BN ASR (79.9%), RF REF (52.7%), and RF ASR (42.2%). Analogous
comparisons based on NIST error rates and F -measures show the results in the same order.

Furthermore, we can compare these relative BER reductions with those achieved for the
ICSI meeting corpus – 67.5% for ICSI REF and 55.3% for ICSI ASR. Thus, it is possible to
conclude that of the three corpora explored in this thesis, the best results were achieved for
the Czech broadcast news, second best for the English multiparty meetings, and the relatively
worst results were obtained for the Czech broadcast conversations. However, this order does
not necessarily imply that meetings represent an easier domain for automatic sentence segmen-
tation of speech than broadcast conversations. There are two important facts that should be
taken into account when interpreting the above presented numbers. First, the ICSI meeting
data contain a large number of backchannel DAs whose boundaries are relatively easier to
detect. Second, the meetings are in English, which is an easier language for modeling than
Czech.

Finally, my results for BN can be confronted with those presented in [115] for SU boundary
detection in English BN data. Therein, the results are reported using the NIST error rate,
which allows to make a performance comparison across tasks and corpora having different
event priors. The lowest NIST error rates for English BN achieved by a combination of HMM,
MaxEnt, and CRF were reported as 47.44% for REF and 57.23% for ASR (WER = 11.7%)
conditions. These NIST error rates are much higher than those achieved for the Czech BN
herein – NIST = 15.63% and NIST = 20.09%, respectively. Nevertheless, this comparison
does not allow to claim that my Czech sentence segmentation system is better. The comparison
of the Czech BN MDE corpus and the English MDE corpus presented in Chapter 5 revealed
that the English data are more difficult since they contain a higher number of fillers and edit
disfluencies.

10.8 Chapter Summary and Conclusions

In this chapter, I have explored automatic sentence unit segmentation of spoken Czech from
two different domains – broadcast news and broadcast conversations. As for the experiments
with English meeting data, I have examined three different modeling approaches: HMM,
MaxEnt, and BoosTexter, and evaluated them on manual and automatic transcripts of the
two corpora.

In language modeling, I not only employ simple word-based models, but also textual in-
formation beyond word identities, as captured by automatically induced word classes and
part-of-speech tags. In addition, I investigated the possibility of using additional text re-
sources that were not annotated for SUs but only contained standard punctuation. Prosody
models were evaluated with two distinct feature sets – the first contained just pause-based
features, while the other was a richer set also comprising features relating to duration, pitch,
and energy. Features for the richer feature set were selected for each corpus separately.

The experiments with language models showed that the HMM model trained on the aux-
iliary text corpus was by far the best single-source model for the BN corpus. On the other
hand, this feature set did not perform that well for the RF corpus, for which the best feature
set was POSmix. However, when AuxWords were combined with other textual information
sources, they significantly improved segmentation performance also for the RF corpus.

In general, language models combining several textual knowledge sources worked better
than models using just a single information source. For BN REF and BN ASR, the best
language model was MaxEnt with Words+AIC+POSmix+AuxWords. For RF REF, the best
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was HMM with Words+POSmix+AuxWords. The HMM model was also the best for RF ASR,
but it performed slightly better when only using Words+AuxWords.

The next set of experiments focused on performance of prosodic models. For all four test
sets, the best results for prosody-only classification were achieved by the CART-based model
using the rich prosodic feature set. The prosodic features beyond pause were more helpful
for the BN corpus which has a more regular prosodic marking of sentence boundaries. I also
observed that relative gain from the additional prosodic features was slightly larger in ASR
conditions.

Prosodic feature usage analysis revealed that duration and pause feature groups were most
important for both corpora. However, the feature group usage distributions differed between
the two corpora. The difference was most prominently displayed in pausing features, which
were more frequently queried in the BN corpus. Another difference between the two distri-
butions was in the proportion of pitch and energy features. The BN corpus preferred pitch
features, while the RF corpus preferred energy features. For the BN data, I also compared my
feature usage with those reported for English BN. As expected, the most used feature (pause
duration at the boundary) was the same for both languages, however, its relative usage dif-
fered. It was higher for English. A comparison of other most used features demonstrated that
features capturing final lengthening were more important for English, while features capturing
final pitch fall were more important for Czech. This finding is in agreement with the fact that
Czech offers less opportunity for final lengthening because length also serves a lexical function
in Czech.

Further, models relying on both lexical and prosodic cues were examined. BoosTexter
was the best modeling approach for BN, while HMM was the best for RF. The results of
individual modeling approaches suggest that tight integration of prosodic and textual features
is important for broadcast news data, while more efficient language modeling as shown by
the HMM approach is important for broadcast conversation data. However, the gaps among
the three explored approaches were not very large. The results indicated differences in the
importance of using prosodic features beyond pause in the combined textual-prosodic models.
Similarly to sentence segmentation only based on prosodic models, the additional prosodic
features were much more helpful for the BN corpus.

Overall, the best results for all test sets were achieved by a model that combines HMM,
MaxEnt, and BoosTexter models via posterior probability interpolation. This result is in
line with my results for English multiparty meetings, for which the interpolation model also
showed superior performance. Finally, I compared relative BER reductions with respect to
chance across all three corpora used in this thesis. This comparison indicates that the highest
chance error reduction was achieved for the Czech broadcast news corpus, the second highest
for the ICSI meeting corpus, and the relatively worst results were obtained for the Czech
broadcast conversation corpus.
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Conclusion

Success is not final, failure is not fatal:
it is the courage to continue that counts.

Winston Churchill

This final chapter summarizes contributions of this thesis (Section 11.1), presents a thesis
summary and main conclusions (Section 11.2), and proposes possible extensions and research
directions for future work (Section 11.3).

11.1 Contributions

This section explicitly lists contributions of this thesis. They are categorized according to the
list of objectives presented in Chapter 4.

1. Two Czech speech corpora with structural annotation have been created – one in the
domain of broadcast news and the other in the domain of broadcast conversations. The
employed annotation scheme creates boundaries between natural breakpoints in the flow
of speech, flags non-content words for optional removal, and identifies sections of disfluent
speech. The original structural metadata annotation guidelines for English have been ad-
justed to accommodate specific phenomena of Czech syntax. In addition to the necessary
language-dependent modifications, I have proposed some language-independent modifi-
cations refining the original annotation scheme. Finally, I have performed a detailed
analysis of the metadata annotated corpora.

2. Automatic dialog act segmentation of English multiparty meetings has been investigated.
Various textual and prosodic features have been explored for usefulness, and three mod-
eling approaches (HMM, Maximum Entropy, and BoosTexter) have been compared. In
addition to experiments in a speaker-independent fashion, I have also explored speaker
adaptation of both prosodic and language models in this domain. Speaker adaptation
for sentence (or dialog act) segmentation of speech is a novel idea proposed in this thesis.

3. The first sentence segmentation system for spoken Czech has been developed. The system
has been evaluated on the two Czech corpora created in Objective 1. Again, various
prosodic and textual features have been examined, and the three modeling approaches
have been compared.

139



Chapter 11. Conclusion

11.2 Summary and Main Conclusions

The work presented in the thesis can be divided into two major parts based on the type of
work – Creation and analysis of data resources (Objective 1) and Development and evaluation
of automatic systems for segmentation of speech into sentence-like units (Objective 2 and 3).
The work on these two major parts is summarized in the two following subsections.

11.2.1 Creation and Analysis of Czech Data Resources

11.2.1.1 Corpus Design and Creation

Objective 1 is about creation of Czech speech corpora with appropriate annotation of sentence-
like unit boundaries. The employed annotation scheme was based on the LDC’s “Simple
Metadata Annotation Specification”, which was originally defined for English. In order to
make this standard applicable to Czech, the original annotation guidelines have been ad-
justed to accommodate specific phenomena of Czech syntax. I have also proposed a novel
approach to transcribing and annotating filled pauses in Czech, distinguishing vowel-like (EE)
and consonant-like (MM ) sounds. In addition to the necessary language-dependent modifi-
cations, I have proposed and applied some language-independent modifications refining the
original annotation scheme. The refinements included limited prosodic labeling at sentence
unit boundaries and distinction of two types of incomplete units.

Two Czech corpora with structural metadata annotation were created – one in the domain
of broadcast news (BN) and the other in the domain of broadcast conversations (RF). The
first corpus has been created by enriching an existing corpus with the structural metadata
annotation, while the second has been built from scratch – it had to be recorded and manually
transcribed first. Besides their importance to automatic structural metadata extraction re-
search, these corpora are also useful for training ASR systems as well as for linguistic analysis
of read-aloud and spontaneous Czech.

11.2.1.2 Corpus Analysis

I have conducted a detailed comparison of the two Czech corpora in terms of structural meta-
data statistics. The comparison revealed that, as expected, Czech broadcast conversations
represent a more difficult data for automatic metadata extraction than Czech broadcast news
since they contain significantly more disfluencies and fillers. I also found that reparanda and
their corrections show differences in POS distributions in comparison with the general POS
distribution. For example, the relative proportion of nouns, pronouns, and prepositions is
higher in reparanda than in all data. On the other hand, verbs, adverbs, and adjectives are
relatively less frequent in reparanda.

Regarding SU symbols, I observed that clausal breaks were more frequent in the broadcast
conversation corpus, which indicates that complex sentences are more common in talk shows
than broadcast news. Furthermore, the comparison showed that SUs in conversational data
were on average longer by 1.5 words.

Moreover, I also reported most frequent filler words in the two corpora. Statistics of filled
pauses showed that EEs were much more frequent than MMs; more than 90% of all filled
pauses were EEs. Another interesting observation was that discourse markers containing a
verb (such as English you know) are much less frequent in Czech than in English. The most
frequent Czech discourse markers were tak (lit. so), no (well), and prostě (simply).
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11.2.2 Development and Evaluation of Automatic Sentence Segmentation
Systems

The other two objectives referred to the development of automatic systems for segmentation of
speech into sentence-like units. The objective No. 2 was focused on DA segmentation of multi-
party meetings from the ICSI meeting corpus and the objective No. 3 on sentence segmentation
of the two Czech MDE corpora. Although the systems for Czech and English were trained
on different data, they share a common modeling groundwork. All sentence segmentation ex-
periments were conducted on two types of speech transcripts – manual transcripts (reference
conditions) and automatically-generated transcripts (ASR conditions). Furthermore, I have
evaluated sentence segmentation accuracy achieved by models only relying on textual infor-
mation, models only relying on prosodic information, and combined models relying on both
sources of information.

Since the experimental part of the thesis was manifold, its summary is divided into several
sections. The first section provides a brief description of the general segmentation system. The
following three sections summarize results of experiments – speaker-independent experiments
on English meetings, speaker-dependent experiments on the same corpus, and experiments
on Czech corpora. The final section summarizes general findings learned from the described
experiments.

11.2.2.1 General System Description

For either language, three modeling approaches have been examined – HMM, MaxEnt, and
BoosTexter. All these approaches rely on both textual and prosodic features. The textual
features describe lexical patterns associated with sentence-external and sentence-internal in-
terword boundaries. I use features capturing word identities, parts of speech, and automatically
induced word classes. The prosodic features for sentence segmentation of speech reflect breaks
in temporal, intonational, and loudness contours in an utterance. In the approach I employ
in this thesis, prosodic features for automatic classification are extracted directly from the
speech signal based on time alignments from automatic speech recognition, without any need
for hand-labeling of prosodic events. A toolkit for the direct extraction of prosodic features
has been implemented as part of this work.

11.2.2.2 Speaker-Independent Experiments on Multiparty Meetings in English

The work conducted on DA segmentation of meetings from the ICSI corpus can be divided
into two parts – speaker-dependent and speaker-independent. The speaker-independent ex-
periments had the following results. The best performing language modeling approach for
text-based DA segmentation was HMM combining words, POS, and AICs. The best perform-
ing model for DA segmentation only based on prosodic information was bagged CART using
a rich prosodic feature set. An analysis of feature usage in decision trees revealed that the
most frequently queried group of features was pause, followed by duration-related features and
pitch-related features.

Models combining prosodic and lexical information clearly outperformed language and
prosody models used on their own. A comparison of individual modeling approaches showed
that HMM and MaxEnt were superior in reference conditions, and MaxEnt was the best
in ASR conditions. The best overall results for both test conditions were achieved by a
combination of HMM, MaxEnt, and BoosTexter based on linear interpolation of posterior
probabilities. The overall results in ASR conditions also indicate that models trained on ASR
data slightly outperform their counterparts trained on human-generated transcripts. The best
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system achieved BER = 5.18%, NIST = 32.49%, F = 83.18% in reference conditions, and
BER = 6.19%, NIST = 44.70%, F = 75.85% in ASR conditions.

11.2.2.3 Speaker-Dependent Experiments on Multiparty Meetings in English

These experiments examined speaker-specific prosodic and language modeling for DA segmen-
tation of meetings. The method was evaluated on 20 frequent speakers with a wide range of
total words available for speaker-dependent modeling. For prosodic models, it was found that
interpolating the large, speaker-independent prosodic model with a much smaller prosodic
model trained only on that talker’s speech yielded improvements for 6 of the 20 speakers in
reference conditions, and for 16 of 20 the speakers in ASR conditions. The ASR conditions
showed a higher number of improved speakers, but the improvements were relatively smaller.
Overall results, summed over all 20 speakers, indicate a modest, yet statistically significant
improvement with respect to the speaker-independent model for both test conditions. Feature
analysis, while preliminary given the number of speakers, suggests that nonnative speakers may
differ from native speakers in overall feature usage patterns associated with DA boundaries.

For speaker-adapted language models, improvements were found for 17 of the 20 speakers
using reference transcripts, and for 15 of the 20 speakers using automatic transcripts. Over-
all, a statistically significant improvement over the baseline LM was achieved for both test
conditions. For both types of speaker adaptation, improvements were achieved even for some
talkers who had only a relatively small amount of data available for adaptation. In addition,
the relative error reduction achieved by speaker adaptation was not correlated with the amount
of adaptation data.

11.2.2.4 Experiments on Czech Corpora

The last group of experiments focused on sentence segmentation of the two Czech corpora. The
experimental setup was the same as for the speaker-independent experiments on the meeting
data. In contrast to the meeting experiments, I have also examined the possibility of using
auxiliary text resources not annotated for sentence-like unit boundaries but only containing
standard punctuation. The experiments with language models showed that the HMM model
trained on the auxiliary text corpus was by far the best single-source model for the BN corpus.
On the other hand, this feature set did not perform that well for the RF corpus. However,
when auxiliary word features were combined with other textual information sources, they
significantly improved segmentation performance also for the RF corpus.

For both Czech corpora, same as for the meeting corpus, the best results for prosody-
only segmentation were achieved by the CART-based model with a rich prosodic feature set.
A prosodic feature usage analysis showed that the feature group usage distributions differed
between the two Czech corpora. The difference was most prominently displayed in pausing
features, which were more frequently queried in the BN corpus.

Of the models relying on both lexical and prosodic cues, BoosTexter was the best modeling
approach for BN, while HMM was the best for RF. Overall, the best results for all test
sets were achieved by a model that combined HMM, MaxEnt, and BoosTexter models via
posterior probability interpolation. For the BN corpus, the best performing system achieved
BER = 1.27%, NIST = 15.63%, F = 92.30% in reference conditions, and BER = 1.61%,
NIST = 20.09%, F = 90.02% in ASR conditions. For the RF corpus, the best system achieved
BER = 3.22%, NIST = 46.35%, F = 75.65% in reference conditions, and BER = 3.98%,
NIST = 57.65%, F = 69.12% in ASR conditions. The results indicate that, as expected,
broadcast conversations are more difficult for automatic sentence segmentation than broadcast
news.
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11.2.2.5 General Findings

The performed experiments indicate several important findings. First, prosody represents a
valuable knowledge source for automatic sentence segmentation of speech, both in English and
Czech. Nevertheless, the importance of prosodic features varies across corpora. They were
relatively most beneficial for the Czech BN corpus, where professional newscasters usually pay
attention to proper prosodic marking of sentence boundaries. However, prosodic information
largely reduced error also for other two corpora. Similarly, the gains from using rich prosodic
feature sets instead of only pause features differed corpus to corpus; they were the largest for
the BN corpus. Furthermore, feature analysis reveals that English and Czech slightly differ
in overall prosodic feature usage patterns. The experimental results also show that prosodic
features are less degraded by word recognition errors than textual features.

Textual features based on N -gram contexts are also important for sentence segmentation
of speech. An increase in performance was achieved when word-based N -grams were com-
bined with N -grams based on automatically induced classes and POS tags. Automatic class
information was more helpful for English, while POS information was more helpful for Czech.
As expected, language models were relatively more successful on English data since Czech
represents a more complex language for language modeling. In addition, it was shown that
textual features are complementary to prosodic features. The models relying on both prosodic
and textual features outperformed prosody-only and language-only models in all test sets.

An important part of this work was a comparison of three statistical modeling approaches
to sentence segmentation of speech – HMM, MaxEnt, and BoosTexter. The experimental
results indicate that there is no clear overall winner among the approaches since each of
them was superior in some of the tests. On the other hand, a clear conclusion is that the
best performance is achieved when all these approaches are combined via posterior probability
interpolation. This model was superior in all tests in both languages, and all the improvements
over the best single approach model were statistically significant.

Of the individual modeling approaches, HMM showed most consistently good results. In
the vast majority of tests, it produced best or close to best results. The only test in which this
method did not perform very well was DA segmentation of meetings in ASR conditions. In this
test with the highest WER, the best model was MaxEnt. A tighter integration of prosodic
and lexical knowledge was helpful for this particular data since BoosTexter also performed
well. On the other hand, the MaxEnt model had problems with the RF corpus because its
language model did not work well on this data. Apparently, its smoothing method was not
able to efficiently deal with a higher out-of-vocabulary rate and lexical irregularities frequent
in the RF corpus. The last approach, BoosTexter, was relatively most successful on Czech
BN data where it was the best of the three approaches for both types of transcripts. On the
contrary, it worked rather poor on manual transcripts of the meeting corpus. As indicated by
the results of individual language models, this shortcoming was probably caused by the fact
that the simpler BoosTexter’s language model was less effective on errorless manual English
transcripts. By contrast, the same model performed reasonably well on ASR hypotheses of
the same transcripts, showing that a simpler lexical model may also be robust in the face of
word recognition errors.

The results of speaker-dependent experiments indicate that prosodic features beyond pause
information are helpful for a vast majority of speakers. In my tests, they provided benefit for
19 of the 20 speakers studied. On the other hand, not all speakers benefited from speaker
adaptation of prosodic and language models. Interestingly, improvements were achieved even
for some talkers with relatively little data available for adaptation. The relative error reduction
achieved by speaker adaptation was not correlated with the amount of adaptation data. Hence,
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I infer that speakers differ inherently in how similar they are to the generic speaker-independent
model. Some talkers differ more and thus show more gain, even with less data.

11.3 Future Work

The work presented in this thesis suggests a number of extensions and future research direc-
tions. One obvious direction is to examine possible gain from using other machine learning
techniques. Among others, support vector machines and conditional random fields have shown
good success in many similar applications. In addition, the statistical models might be com-
bined with some rules (either hand-crafted or induced from data) imposing constraints on the
form of the extracted sentence-like segments. However, there arises a question how robust
such rules would be in the face of ASR errors.

Another possible direction is to take into account ASR word confidences. Their inclusion
would allow to dynamically adjust relative weights of language and prosodic models. It might
be helpful since it was shown that prosodic models are less degraded by ASR errors. For exam-
ple, the language model weight could automatically be decreased for speech regions recognized
with low confidence scores. Such a setup could especially be useful in domains for which ASR
accuracy is still rather poor.

Furthermore, the importance of additional classification features ought to be investigated.
In prosody modeling, an interesting direction would be to explore longer-range features since
only local features have been employed so far. On the other hand, language models might
benefit from using parsing features. These features should be generally helpful, but the problem
is that the quality of speech parsing is largely affected by ASR errors, missing punctuation, and
disfluencies. Moreover, there is a kind of a circular problem: parsing features are important for
sentence segmentation and sentence segmentation is important for parsing. Roark et al. [72]
have solved this problem by using a hypothesis reranking approach, however, their approach
also has some limitations, such as impracticability in real-time applications. If reliable, parsing
features would probably benefit sentence segmentation for Czech more than English since the
standard N -gram models are less powerful for Czech because of the more flexible word order.

Moreover, employment of information sources beyond prosody and recognized words should
be examined. Given the recent progress in audio-visual speech processing, using visual cues to
sentence segmentation represents a promising research direction. For example, TV broadcast
data offer a good opportunity for testing multimodal segmentation models.

The results of the speaker-dependent modeling experiments also motivate further research.
An important unanswered question about prosodic adaptation is what factors predict whether
speaker-dependent prosodic modeling will benefit a particular speaker. Prosodic adaptation
did not benefit all speakers and the absolute amount of data did not appear to be a good pre-
dictor. Additional areas for further research include development of other adaptation methods,
exploration of unsupervised adaptation approaches, and exploration of clustering of speakers
similar in behavior, for greater model robustness. Future work should also investigate the
potential of speaker-specific modeling for other tasks in spoken language understanding.

For Czech, this thesis has only focused on automatic sentence boundary detection. How-
ever, the rich MDE markup available for the two Czech corpora also enables research of
automatic detection of other structural events. A variety of structural event detection tasks
beyond SU segmentation can be defined based on the MDE annotation scheme. A meaningful
extension of the segmentation task would be to not only look for SU boundaries, but also to
automatically label their types (statement/question/incomplete). Likewise, we can also try
different definitions of the detected boundary. For instance, we might only recognize sentence-
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like units delimited by the double slash SU symbols, or, on the contrary, segment speech into
smaller units with boundaries delimited by both sentence-external and sentence-internal SU
breaks.

SU boundary detection is one of the four subtask defined in the EARS MDE task. The
three other subtasks defined by MDE are Filler word detection (identification of words used as
FPs, DMs, or EETs), Edit word detection (identification of all the words within DelRegs), and
Interruption point detection (identification of the interword locations at which fluent speech
becomes disfluent). All these subtasks can be evaluated using the two newly created Czech cor-
pora. Future research on Czech metadata extraction may also include exploration of automatic
detection of events that are not among the MDE subtasks, such as Asides/Parentheticals.

The automatic detection of disfluencies and filler words mentioned in the previous para-
graph is important for spontaneous speech where these events are frequent. On the other
hand, the task for the more regularly structured BN data may be extended in another way.
In addition to automatic sentence segmentation, we could focus on automatic punctuation
from speech, especially on automatic insertion of commas. Commas not only enhance hu-
man readability, but also help downstream automatic processes, as was shown by some recent
work [193, 194]. I have already experimented with automatic punctuation for Czech broadcast
news [181], but this task should be explored more thoroughly for Czech. Note that Czech
punctuation is slightly different from that of English since Czech grammar has different (and
more strict) rules for using commas.

Finally, the impact of sentence segmentation on downstream automatic processes, such as
POS tagging, named entity tagging, speech summarization, and machine translation, should
be evaluated. This is very important since different applications may require input segmented
in a different way. The very recent work of Hillard [113] argues that when providing automatic
sentence segmentation to downstream applications, performance can be improved when the
automatic sentence segmentation is optimized for downstream process performance rather than
for sentence segmentation performance itself.
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Annotation Tool for Czech MDE

In order to ease the MDE annotation process, a software tool – QAn (Quick Annotator) – was
developed for the Czech MDE annotation task. Analogous to the English MDE tool [114], it
enables to highlight relevant spans of text, play corresponding audio segment, and then record
annotation decisions with few mouse clicks or keystrokes. Moreover, it respects particularities
of the Czech MDE task (data format, new MDE symbols, etc.). The tool was implemented by
Jan Švec.

The following screenshot not only displays the tool itself, but also serves as an example of
MDE annotated Czech data. In the screenshot, mouth noises are displayed in gray, DelRegs
in green, corrections in black, EETs in blue green, DMs in dark brown, DRs in light brown,
FPs in magenta, and SUs in red. Asterisks denote IPs.
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List of Prosodic Features

This appendix presents a complete list of implemented prosodic features. Note that this is a
list of all available features, not a list of features that were found to be useful for the sentence
segmentation task. Only the features referring to the current word are listed in the following
table for the sake of brevity. In addition, all feature names may be prefixed by “p.” or ”c.”
to indicate that they refer to the previous or the following word, rather than to the current
word. Thus, thrice as many features may be generated in total. The horizontal lines in the
table delimit individual feature groups (pause, duration, pitch, energy, and “other”).

Feature Name Description

pause.after Pause duration after current word

vowel.avg_dur Average duration of vowels in current word
vowel.avg_dur.norm Normalized average duration of vowels in current word
vowel.avg_dur.snorm Speaker-normalized average duration of vowels in current

word
vowel.avg_dur.var Mean variance of vowel duration
vowel.dur.first_1st Duration of first vowel in current word
vowel.dur.first_1st.norm Normalized duration of first vowel in current word
vowel.dur.first_1st.snorm Speaker-normalized duration of first vowel in current

word
vowel.dur.first_1st.word_norm Duration of first vowel in current word normalized by

mean duration of all vowels in current word
vowel.dur.first_2nd Duration of second vowel in current word
vowel.dur.first_2nd.norm Normalized duration of second vowel in current word
vowel.dur.first_2nd.snorm Speaker-normalized duration of second vowel in current

word
vowel.dur.first_2nd.word_norm Duration of first vowel in current word normalized by

mean duration of all vowels in current word
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Feature Name Description

vowel.dur.last_1st Duration of last vowel in current word
vowel.dur.last_1st.norm Normalized duration of last vowel in current word
vowel.dur.last_1st.snorm Speaker-normalized duration of last vowel in current

word
vowel.dur.last_1st.word_norm Duration of last vowel in current word normalized by

mean duration of all vowels in current word
vowel.dur.last_2nd Duration of penultimate vowel in current word
vowel.dur.last_2nd.norm Normalized duration of penultimate vowel in current

word
vowel.dur.last_2nd.snorm Speaker-normalized duration of penultimate vowel in

current word
vowel.dur.last_2nd.word_norm Duration of penultimate vowel in current word normal-

ized by mean duration of all vowels in current word
vowel.max_dur Duration of the longest vowel in current word
vowel.max_dur.norm Normalized duration of the longest vowel
vowel.max_dur.snorm Speaker-normalized duration of the longest vowel
vowel.max_dur.z Z-score of vowel.max_dur
vowel.med_dur Median duration of vowels in current word
vowel.med_dur.norm Normalized median duration of vowels
vowel.med_dur.snorm Speaker-normalized median duration of vowels
vowel.min_dur Duration of the shortest vowel in current word
vowel.min_dur.norm Normalized duration of the shortest vowel
vowel.min_dur.snorm Speaker-normalized duration of the shortest vowel in cur-

rent word
vowel.min_dur.z Z-score of vowel.min_dur
vowel.75_dur 75% fractile of duration of vowels in current word
vowel.75_dur.norm 75% fractile of normalized duration of vowels
vowel.75_dur.snorm 75% fractile of speaker-normalized duration of vowels
word.dur Raw word duration
word.dur.norm Normalized word duration
word.dur.snorm Speaker-normalized word duration
word.dur.last_rhyme Duration of last rhyme
word.dur.last_rhyme.norm Normalized duration of last rhyme
word.dur.last_rhyme.snorm Speaker-normalized duration of last rhyme

f0.baseline Speaker’s F0 baseline
f0.max Max value of F0 in word
f0.mean Mean value of F0 in word
f0.min Min value of F0 in word
f0.first First value of raw F0 in word
f0.last Last value of raw F0 in word
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Feature Name Description

f0.last.max F0 maximum in last voiced region
f0.last.min F0 minimum in last voiced region
f0.pwl_first First value of PWL F0 in word
f0.pwl_last Last value of PWL F0 in word
f0.diff.first__baseline Difference between f0.first and speaker’s baseline
f0.diff.last__baseline Difference between f0.last and speaker’s baseline
f0.diff.last__first Difference between f0.last of current and f0.first of fol-

lowing word
f0.diff.pwl_first__baseline Difference between f0.pwl_first and speaker’s baseline
f0.diff.pwl_last__baseline Difference between f0.pwl_last and speaker’s baseline
f0.diff.pwl_last__pwl_first Difference between f0.pwl_last of current and

f0.pwl_first of following word
f0.logdiff.first__baseline Log of f0.diff.first__baseline
f0.logdiff.last__baseline Log of f0.diff.last__baseline
f0.logdiff.last__first Log of f0.diff.last__first
f0.logdiff.pwl_first__baseline Log of f0.diff.pwl_first__baseline
f0.logdiff.pwl_last__baseline Log of f0.diff.pwl_last__baseline
f0.logdiff.pwl_last__pwl_first Log of f0.diff.pwl_last__pwl_first
f0.ratio.first__baseline Ratio of f0.first and speaker’s baseline
f0.ratio.last__baseline Ratio of f0.last and speaker’s baseline
f0.ratio.last__first Ratio of f0.last of current and f0.first of following word
f0.ratio.pwl_first__baseline Ratio of f0.pwl_first and speaker’s baseline
f0.ratio.pwl_last__baseline Ratio of f0.pwl_last and speaker’s baseline
f0.ratio.pwl_last__pwl_first Ratio of f0.pwl_last of current and f0.pwl_first of fol-

lowing word
f0.ratio.first_avg__baseline Ratio of average F0 in first voiced region and baseline
f0.ratio.first_beg__baseline Ratio of F0 onset in first voiced region and baseline
f0.ratio.first_end__baseline Ratio of F0 offset in first voiced region and baseline
f0.ratio.first_max__baseline Ratio of F0 maximum in first voiced region and baseline
f0.ratio.first_min__baseline Ratio of F0 minimum in first voiced region and baseline
f0.ratio.last_avg__baseline Ratio of average F0 in last voiced region and baseline
f0.ratio.last_beg__baseline Ratio of F0 onset in last voiced region and baseline
f0.ratio.last_end__baseline Ratio of F0 offset in last voiced region and baseline
f0.ratio.last_max__baseline Ratio of F0 maximum in last voiced region and baseline
f0.ratio.last_min__baseline Ratio of F0 minimum in last voiced region and baseline
f0.logratio.first__baseline Log of f0.ratio.first__baseline
f0.logratio.last__baseline Log of f0.ratio.last__baseline
f0.logratio.last__first Log of f0.ratio.last__first
f0.logratio.pwl_first__baseline Log of f0.ratio.pwl_first__baseline
f0.logratio.pwl_last__baseline Log of f0.ratio.pwl_last__baseline

151



Appendix B. List of Prosodic Features

Feature Name Description

f0.logratio.pwl_last__pwl_first Log of f0.ratio.pwl_last__pwl_first
f0.slope.first First slope PWL F0 in word
f0.slope.last Last PWL F0 in word
f0.slope.diff.last__first Difference between f0.slope.last of current and

f0.slope.first of following word

RMS.max Max RMS in current word
RMS.max.norm Max RMS divided by mean RMS in current turn
RMS.mean Mean RMS in current word
RMS.mean.norm Mean RMS divided by mean RMS in current turn
RMS.min Min RMS in current word
RMS.min.norm Min RMS divided by mean RMS in current turn
RMS.voiced.max Max voiced RMS in current word
RMS.voiced.max.norm Max voiced RMS divided by mean voiced RMS in current

turn
RMS.voiced.mean Mean voiced RMS in current word
RMS.voiced.mean.norm Mean voiced RMS divided by mean voiced RMS in cur-

rent turn
RMS.voiced.min Min voiced RMS in current word
RMS.voiced.min.norm Min voiced RMS divided by mean voiced RMS in current

turn

turn.is_begin Is word turn-initial? (speaker change before the word)
turn.is_end Is word turn-final? (speaker change after the word)
turn.speaker Speaker ID
overlap.n_overlap Number of words overlapping with current word
overlap.spurt_end25 Number of “spurt ends” overlapping with current word

- boundary 25ms
overlap.spurt_end50 Number of “spurt ends” overlapping with current word

- boundary 50ms
overlap.spurt_intern25 Number of “spurt-internal” words overlapping with cur-

rent word - boundary 25ms
overlap.spurt_intern50 Number of “spurt-internal” words overlapping with cur-

rent word - boundary 50ms
overlap.spurt_start25 Number of “spurt starts” overlapping with current word

- boundary 25ms
overlap.spurt_start50 Number of “spurt starts” overlapping with current word

- boundary 50ms
word.start Elapsed time from the beginning of current turn
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Appendix C

Examples of Automatically
Segmented Speech Transcripts

In this appendix, I present illustrative examples of speech transcripts automatically segmented
into sentence-like units. Even though there is no audio available, I believe that readers may get
a good notion how successful the automatic methods are. To present objective illustrations, I
tried to find such regions of the test data for which the automatic system performs at similar
error rates as on the whole test set.

This appendix is organized as follows. There are three one-page sections with examples.
Each of the sections represents one of the three corpora used in this thesis (English ICSI
meetings, Czech BN, and Czech RF) and shows a pair of examples. In each pair, the first
example illustrates an automatically segmented manual transcript (REF), and the second ex-
ample illustrates an automatically segmented automatic transcript (ASR) that corresponds to
the same region of speech as the manual transcript. For each corpus, I also recapitulate overall
performance rates using all three metrics (BER, NIST, and F). In the examples, automatic
decisions are displayed as follows:

• Correctly placed boundaries are displayed in green: /.

• Insertion errors (false alarms) are displayed in red: /.

• Deletion errors (misses) are displayed in blue: /.

For the sake of readability, the first example starts at the beginning of the next page.
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Appendix C. Examples of Automatically Segmented Speech Transcripts

C.1 ICSI Meeting Data

REF:
(Overall performance rates – BER = 5.18%, NIST = 32.49%, F = 83.18%)

the the worst system still reduced the error rate by thirty three percent or something in
development set /. so /. so you know sort of everybody is doing things between /. well
roughly a third of the errors and half the errors being eliminated /. uh and varying on
different test sets /. and so forth /. so i think /. um /. it’s probably a good time to look
at what’s really going on /. and seeing if there’s a there’s a way to combine the best ideas /.
while at the same time not blowing up the amount of uh resources used /. because that’s
that’s critical for this this test /. um uh /. the uh the- there were two systems that were put
forth by a combination of of uh french telecom and alcatel /. and um /. they they differed in
some respects /. but they e- them- one was called the french telecom alcatel system the other
was called the alcatel french telecom system /. uh which is the biggest difference /. i think /.
but but there’re there’re there’re some other differences too /. uh and and uh they both did
very well /. you know /. so um my impression is they also did very well on on the the uh
evaluation set /. but um /. i i- we haven’t seen /. you’ve- you haven’t seen any final results
for that /. yeah /. there is a couple pieces to it /. there’s a spectral subtraction style piece it
was basically you know wiener filtering /. and then then there was some p- some modification
of the cepstral parameters where they /. yeah /. but some people have done exactly that sort
of thing /. of of and the i mean it’s not to to look in speech only to try to m- to measure these
things during speech /. that’s p- that’s not that uncommon /. but i- it- it /. so it looks like
they did some some uh reasonable things /.

ASR:
(Overall performance rates – BER = 6.19%, NIST = 44.70%, F = 75.85%)

the the worst system still reduce their race by thirty three percent or something /. so it’s
it’s /. so /. so you know so everybody is doing things between uh roughly thirty years /. and
the errors being eliminated uh and bearing on different s. /. and so forth /. so i think /. um /.
it’s probably a good time to look at what’s really going on /. and see if there’s a there’s a
way to combine the best ideas /. swell same time not blowing up the amount of uh resources
used /. because that’s that’s critical for this this test /. um uh of /. the uh they they were
two systems that were put forth by combination of of uh france telecom and now could tell /.
and um /. they they differed in some respects /. but they in one was called french telecom elk
tell system it was called up and tell francetelecom still kind of system uh what’s the biggest
difference i think /. but but there there there are some other differences too /. uh /. and
and uh they both did very well /. you know /. so um /. my impression is they also did very
well on on the the uh evaluation set /. but um /. i i we haven’t seen /. if you haven’t seen
any find ourselves /. there’s a couple pieces to it /. to suspect this attraction southeast is
basically you know wiener filter /. and then then there was some some modification of the
capsule parameters /. but some people have done exactly that sort of thing /. of i mean it’s
not to to look in speech only try to measure these things during speeches /. but that’s not
that uncommon /. but it it still looks like he did some some uh reasonable things /.
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C.2. Czech BN Data

C.2 Czech BN Data

REF:
(Overall performance rates – BER = 1.27%, NIST = 15.63%, F = 92.30%)

zprávy /. jednání mezi mosteckou uhelnou a společností shd peel /. o osudu dolu kohinoor v
mariánských radčicích trvalo dlouho do noci /. konkrétní informace o možnosti prodeje dolu
ale budou zveřejněny až dopoledne /. uzavření kupní smlouvy je přitom hlavním požadavkem
sedmačtyřiceti horníků kteří zůstávají už čtrnáctý den pod zemí z obavy před uzavřením
dolu a ztrátou zaměstnání /. poslanci by mohli už odpoledne zahájit volbu členů nové
rady české televize /. z předběžné dohody mezi poslaneckými kluby vyplývá že kandidáti
čssd a ods zřejmě obsadí v tomto mediálním orgánu sedm míst z devíti přičemž sociálním
demokratům připadnou čtyři místa a ods tři /. lidovci a unionisté by pak podle této dohody
mohli do rady české televize dosadit po jednom kandidátovi /. zatímco komunisté jsou z
této hry pravděpodobně vyšachováni /. podle předsedy klubu ksčm vojtěcha filipa se ale
nevzdávají /. a své dva kandidáty i přesto navrhnou /. neveřejným zasedáním budou ve své
schůzi pokračovat senátoři /. projednají vládní materiál který vyhodnocuje činnost armádních
jednotek v zahraničí /. poté se horní parlamentní komora bude zabývat třemi zákony které
souvisejí s reformou veřejné správy /. v praze budou demonstrovat lidé kterým dluží peníze
zkrachovalé kampeličky /. protest na hradčanském náměstí pořádá celostátní koordinační
centrum postižených střadatelů družstevních záložen /. v praze také proběhne demonstrace
za dodržování lidských práv v čečensku /. vystoupí na ní zástupci nevládních organizací
politici i čečenští uprchlíci /. večer se pak uskuteční ekumenická bohoslužba za ukončení násilí
na severním kavkaze /.

ASR:
(Overall performance rates – BER = 1.61%, NIST = 20.09%, F = 90.02%)

z trávy ER /. jednání mezi mosteckou uhelnou a s společností s hady peel o osudu dolu
kohinoor v mariánských radčicích trvalo dlouho do noci /. konkrétní informace o možnosti
prodeje dolu ale budou zveřejněny až dopoledne /. uzavření kupní smlouvy je přitom hlavním
požadavkem sedmačtyřiceti horníků kteří zůstávají už čtrnáctý den podzimní z obavy před
uzavřením dolu a ztrátou zaměstnání /. a poslanci by mohli už odpoledne zahájit volbu členů
nové rady české televize /. předběžné dohody mezi poslaneckými kluby vyplývá že kandidáti
čssd a ods zřejmě obsadí v tomto mediálním orgánu se do míst z devíti přičemž sociálním
demokratům připadnout čtyři místa a ods tři /. lidovci a unionisté by pak podle této dohody
mohli do rady české televize dosadit po jednom kandidátovi /. zatímco komunisté jsou z
této hry pravděpodobně vyšachování /. podle předsedy klubu ksčm vojtěcha filipa se ale
nevzdávají /. a své dva kandidáty přesto navrhnou /. neveřejným zasedáním budou ve své
schůzi pokračovat senátoři /. projednají vládní materiál který vyhodnocuje činnost armádních
jednotek v zahraničí /. poté se horní parlamentní komora bude zabývat třemi zákony které
souvisejí s reformou veřejné správy /. vzp /. v praze budou demonstrovat lidé kterým
dluží peníze zkrachovalé kampeličky /. protest na hradčanském náměstí pořádá celostátní
koordinační centrum postižených střadatelů družstevních záložen /. v praze také proběhne
demonstrace za dodržování lidských práv v čečensku /. vystoupí na ní zástupci nevládních
organizací politici i čečenští uprchlíci /. večer se pak uskuteční ekumenická bohoslužba za
ukončení násilí na severním kavkaze /.
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Appendix C. Examples of Automatically Segmented Speech Transcripts

C.3 Czech RF Data

REF:
(Overall performance rates – BER = 3.22%, NIST = 46.35%, F = 75.65%)

A: pojďme se zastavit u jiné věci /. ministr práce a sociálních věcí místopředseda čssd zdeněk
škromach v sobotním právu vyjádřil názor že kdyby bylo po jeho bohatí by měli platit do
systému víc /. a i těch třicet sedum procent v pátém daňovém pásmu které se nepodařilo
prosadit by pro pana ministra škromacha byla jen symbolika protože by tak státní rozpočet
získal jen necelou miliardu /. co říkáte takovému názoru jako předseda rozpočtového výboru
a taky jako křesťanský demokrat jemuž EE so- solidarita sou není cizí /.

B: ale oni přece ti bohatí platí víc /. třicet dva procent z velkého příjmu je samozřejmě
mnohem víc peněz než patnáct procent z malého příjmu /. a také daň z příjmu fyzických osob
je jediná daň u nás která je progresivní /. která skutečně stoupá podle toho čím víc máte
tím více platíte podle toho v jakém ste daňovém pásmu /. ale ta progresivita musí mít svojí
míru /. kdybych MM extrapoloval vyjádření pana ministra škromacha tak bych samozřejmě
ře- tak by se dalo říct že kdo bude že když se bude platit sto procent v nejvyšším daňovém
pásmu tak se vybere nejvíc daní /. a to není pravda /. pak vám samozřejmě ti nejschopnější
kteří jsou schopni EE vydělávat nejvíc a tím pádem také nejvíc přispívat /. prostě z takového
systému utečou /. EE my sme přesvědčeni že současná míra progrese která je mezi patnácti až
třiceti dvěma procenty je míra progrese která je optimální /. a nechceme tu progresi zvyšovat
právě proto aby ti schopní neutíkali a nebyli do- demotivováni k tomu aby vytvářeli hodnoty /.

ASR:
(Overall performance rates – BER = 3.98%, NIST = 57.65%, F = 69.12%)

A: pojďme zase jiné věci /. ministra práce a sociálních věcí místopředseda čssd zdeněk
škromach v sobotním právu vyjádřil názor že kdyby bylo po jeho bohatí by měli platit do
systému HM s /. i těch třicet sedm procent v pátém daňovém pásmu které se nepodařilo
prosadit by pro pana ministra škromacha dva jen symbolika protože by tak státní rozpočet
získal jen necelou miliardu /. co říkáte takovému názoru jako předseda rozpočtového výboru
a tak jako křesťanský demokrat jemuž jsou solidarita soud není cizí /.

B: ale MM oni přece ti bohatí platí víc /. třicet dva procent z velkého příjmu je samozřejmě
mnohem víc peněz než patnáct procent z malého příjmu /. a také daň z příjmu fyzických osob
je jediná liberální u nás která je progresivní které skutečně stoupá podle toho čím víc o té
tím více platíte podle toho v jakém jste daňovém pásmu /. ale ta progresivita musí mít svoji
míru /. kdybych šel extrapolovat vyjádření pana ministra škromacha tak bych samozřejmě že
teď by se iluzí že výrobu nepodílí se bude platit sto procent nejvyšším daňovém pásmu kde
se vybere víc víc /. denního /. to není pravda /. pak nám samozřejmě ti nejschopnější kteří
jsou schopni /. a EE nevyděláváte nejvíc a tím pádem taky nejvíc přispívat prostě z takového
systému utečou /. my EE jsme přesvědčeni že současná míra progrese která je mezi patnácti
až třiceti dvěma procenty je EE míra progrese která je optimální /. a nechceme tu progresi
zvyšovat právě proto aby ti schopní neutíkali nebyly demotivováni který by tvořili hodnoty /.
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