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Chapter 1

Introduction

In the 20th century a massive boom of technological progress has begun. With the arrival
of computers more and more tasks, involving complicated mathematical approaches, become
solvable. The math (especially the branch concerning numerical methods) has been spread
and successfully applied to many scientific fields, among others, to speaker recognition (SR).
The domain of SR was until then fully in the hands of phoneticians and the main interest
of SR laid in the area of forensics. However, it has been shown that SR may be applied
to many other newly formed tasks. E.g. in speech recognition the speaker identity can be
utilized to adjust a speaker independent model to better fit the voice of the talking person.
Another usage of SR can be found in problems where huge databases of spoken speech are
searched through and only utterances originating from one specific speaker are requested (e.g.
in telecommunications or in security domains).

The speaker recognition task is usually divided into problems of identification and ver-
ification. In the verification case a decision has to be made, whether the speaker really is
who he claims to be. Thus, it is a one-to-one comparison. In the case of identification a set
of reference speakers with known identities is given. The task can be further divided into
closed set identification and open set identification. If open set identification is considered,
we assume that the unknown speaker stems from the set of reference speakers. In the open
set identification such an assumption is broken. The problem of SR can be distinguished
also upon the dependence on the text content inherent in the speech. The text-dependent
SR focuses on special phonetic events (e.g. vowels or sibilants) present in the spoken speech,
whereas the text-independent SR puts no limitation on what has been said.

The mathematic methods involved in SR are closely related to the human perception of
sounds. Generally, the speech sound is a product of air expiration from lungs and vocal tract
(VT) configuration. An important assumption concerning biometrics (e.g. the usage of SR in
forensics) is that the VT changes between speakers. More precisely, each speaker’s VT should
be unique. Hence, speaker recognition task may be stated as the effort to capture the specific
shapes of VT through investigation of the acoustic sound wave produced by the speaker.

During the last fifteen years an extensive progress has been done in the area of SR. The
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: A: speaker data (spoken speech) and background data (acoustic sound waves representing the acoustic

environment) are parametrized (features are extracted). B: The Universal Background Model is estimated according to

the background data. C: The speaker specific feature vectors are utilized in the adaptation phase and a speaker model

is constructed. Also an additional information about the shifting of UBM mixtures when fitting the speaker data is

acquired. The procedure of such an additional information retrieval can be thought of as a higher level feature extraction

and will be the aim of this report. D: Higher level features are used in the SVM training and finally a hybrid model

is constructed. The speaker model from the phase C is involved in the SVM training only when some of the derivative

mappings are used (for further details see Section 5.1.2).

problem of SR can be divided into several, separable tasks. Firstly, the varying time sequence
of samples (amplitudes), forming the sound wave, has to be processed in a proper way to
extract as many information regarding the speaker identity as possible. This is done in the
feature extraction (FE) stage. The frequency response of particular parts of VT is given by
the shape of VT. Hence, the feature extraction methods work primarily with the frequency
spectrum of the sound signal. Some of these approaches will be mentioned in Chapter 2.
The process of FE generates feature vectors, which are situated in the feature space – more
precisely in speaker specific feature subspaces. In the second stage of SR, feature vectors are
modeled and speaker models are obtained. Preferred methods exploit Gaussian Mixture Mod-
els (GMMs) and Hidden Markov Models (HMMs) described in Chapter 3. Nowadays popular
approaches of speaker modelling involve the adaptation techniques described in Chapter 4.
Hence, an Universal Background Model (UBM) describing the acoustic environment is esti-
mated, and the speaker specific models are adapted from the UBM. This is quite handy as
the adaptation techniques allow that parts of the UBM that represent only the acoustic en-
vironment, remain unchanged for all the speakers. Moreover, we are able to track changes of
each UBM mixture (assuming that GMMs are employed), in the adaptation process. Loosely
speaking, we are able to determine, in which direction and how far has been each of the mix-
tures moved to fit the speaker data. The information about the shifting of UBM mixtures can
be seen as a new advice that can be utilized in order to better capture the relations in the
feature space. This is the main motivation of this report. It has turned out that the Support
Vector Machine (SVM – introduced in Chapter 3), is a suitable tool to model such dependen-
cies (see Chapter 6). Hence, in the training phase, both the generative and the discriminative
model – hybrid modelling – are involved (see Figure 1.1). Appropriate methods will be intro-
duced in Chapter 5. In the last phase of SR, an speaker model and parametrized utterance of
an unknown speaker are given. The parametrized utterance is confronted with the reference
speaker model so that a recognition score is obtained and further handled according to the
stated task (verification/identification).



Chapter 2

Feature Extraction

Without a question, the feature extraction process can be regarded as the first and the
most important step for the further manipulation with the data. The task can be divided
into two subproblems, whether we want to classify the data or represent the data. In the
first case a set of classes is given and each feature has to be assigned to one of them. Thus,
it would be wise to choose features in such a way that the inter-class variation would be as
high as possible and the intra-class variation would be as low as possible. In the latter case,
we want to extract features that capture the true nature of the data. Both processes assume
and should also reflect the understanding of behavior, structure, correctness of the data,
etc. Complications like channel distortion, data corruption, noise presence and others also
have to be considered. It is a very common practice to impose some presumptions (e.g. on
independence, distribution of samples) to facilitate the problem solving procedure. Thus, the
true nature of the data can be distorted and some inaccuracies may come forth. Obviously,
the feature extraction process has to be carried out with caution and should be preceded by
succession of experiments, which would reveal the mentioned characteristics of the data.

Let us focus now on the specific problem of the feature extraction in the task of speaker
recognition, more precisely in hybrid modelling. A plenty of methods were already developed
and successfully tested to fulfill the task’s requirements. As will be shown soon, the specific
task of hybrid modelling involves two feature extraction stages. In the first stage, features
corresponding to acoustic events are extracted directly from the acoustic sound wave. Well
known methods used for this purpose are Linear Predictive Coding (LPC), Mell Frequency
Cepstral Coefficients (MFCC) [BBF+04], Perceptual Linear Prediction (PLP) [Her90], Tem-
poral Pattern (TRAP) features [Čer01] and many others. In the second stage, after some
manipulation with the data and retrieval of a suitable description of the data, the feature ex-
traction process is applied again – higher level feature extraction (see Figure 1.1). Preferred
methods are supervector (Section 5.1.1) and Fisher feature extraction techniques (Section
5.1.2). The supervector extraction technique consists of concatenation of important param-
eters related to the generative model, which subsequently form a high-dimensional vector -
supervector. The Fisher feature techniques (and its generalizations) are based on the Fisher
information and Fisher score retrieval. They are able to measure the information about the
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suitability of the model imposed on the data structure, thus the deviation of the data from a
model (see (5.43) and (5.44)).

The generative approach plays a role in the first part, whereas the discriminative train-
ing appears in the second part (in this work in the form of SVM training) of the extraction
process. Hence, first of all a feature space is constructed. The particular speaker utterances
are parametrized utilizing one of the before mentioned methods, thus a set of speaker depen-
dent feature vectors is formed and spread over the feature space. Most often the Maximum
A -Posteriori Probability adaptation (MAP - see Section 4.1) is performed to acquire an
speaker model. Such a model can be thought of as a new source of additional informations,
e.g. of metric properties in the newly formed space. Hence, we revealed a new informational
supply and are ready to make use of it. Detailed analysis and procedures will be given in
Chapter 5. An example of the described feature extraction process is depicted in Figure 2.1.

Figure 2.1: Feature extraction process involved in the task of hybrid modelling. Step 1: a feature vector is extracted

directly from the acoustic sound wave employing one of the appropriate methods mentioned in the text. Step 2: retrieval

of a convenient (e.g. statistical) description of the data. Step 3: features are mapped into a high-dimensional space,

hence a supervector will be obtained.



Chapter 3

Classifiers

The classification can be seen as a mapping of feature space vectors into a finite set of
labels (classes/clusters). The basic assumption is that the vectors does form clusters. In the
speaker recognition such an assumption is met indeed, because each speaker can be regarded as
a separate class and the set of (parametrized) speaker data Xs as the set of respective feature
vectors. The task of a classifier (decision function) D(x) is to decide on the pertinence of an
input data to one of the classes (speakers), hence label the input data in agreement with a set
of reference labels ys (assigned to reference speakers). For the sake of clarity let’s state, that
reference speakers are those speakers whose data were seen during the training of a classifier.
In this chapter we will assume (without the loss of generality) that each data corresponds to
one of the given classes (e.g. each speakers’ data were seen during the training). The classifier
can be expressed as a mapping in the form

D : X 7→ Y , yq = D(x) , (3.1)

where Y = {y1, . . . , yQ} is the finite set of Q reference labels and X represents an open set
of feature vectors spread in the feature space according to the probability density function
P (X). In the following, the concept of an Bayes Optimal Classifier (BOC) will be discussed,
which can be thought of as a theoretical base of the classification task. Subsequently the
parametric and nonparametric algorithms will be described and the main emphasis will be
laid on parametric statistical models (e.g. Gaussian Mixture Models) and nonparametric
linear discriminants (e.g. Support Vector Machines).

3.1 Optimal Classifier

From the theoretical point of view an optimal classifier should minimize the overall risk
R given as [DHS00]

R(D) =

∫

R(D(x)|x)P (x)dx (3.2)

5
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where R(D(x)|x) represents the conditional risk,

R(D(x)|x) =

Q
∑

q=1

l(D(x)|yq)p(yq|x) , (3.3)

where l(yi|ys) is the loss that will be taken when the feature vector x belonging to the class
ys will be labeled as yi, hence classified as i − th class. The loss can be regarded also as a
cost function c(x, ys,D(x)) for D(x) = yi, penalizing misclassifications so that the following
holds

c(·, ·, ·) ≥ 0 and c(·, ys, ys) = 0 . (3.4)

Now, the optimal classifier D∗ should be chosen in order to minimize the following form

R(D) =

Q
∑

q=1

∫

X

c(x, yq,D(x))P (x, yq)dx . (3.5)

Assuming Y continuous, open set of labels, the preceding equation can be rewritten as

R(D) =

∫

X×Y

c(x, y,D(x))dP (x, y) . (3.6)

Thus, all possible pairs of feature vectors and labels are considered and rated while (3.4)
holds. One of the popular cost functions is the zero-one loss function defined as

c(x, ys,D(x)) = l(D(x)|ys) =

{
0 if D(x) = ys
1 if D(x) 6= ys

, (3.7)

hence it penalizes only the incorrect classifications. The conditional risk becomes now

R(D(x)|x) =

Q
∑

q=1

p(yq|x) − p(ys|x) = 1 − p(ys|x) . (3.8)

It can be seen, that the conditional risk (so the overall risk) is minimized when the involved
classifier D assigns a vector x to the class with maximal posterior probability given x. Hence,
the optimal classifier D∗ is chosen according to the rule

D∗(x) = arg max
yq ∈ Y

{p(yq|x)}, ∀x ∈ X . (3.9)

Such a rule is also known as optimal Bayes or optimal Maximum A-Posteriori (MAP) decision
rule. Note that the overall risk represents now the probability of an error. The optimal Bayes
decision rule is strictly optimal in the sense of minimizing the probability of an error, and only
optimal for minimizing the overall risk subject to the 0-1 loss function [Smi03]. An example
of an optimal decision rule when three classes are present is shown in Figure 3.1.

Regrettably, prior and posterior distributions of X and Y are unknown. Therefore, none
of the before mentioned equations can be evaluated. However, in real-life applications each
problem goes along with some examples. If the examples would not exist, the problem would
not exist as well (no information = no problem). Such examples are called training data
and are the only submitted source of information. Thus, only approximations of the optimal
classifier can be found, whereas the accuracy is strictly dependent on the quality of the
training data (e.g. how well do they represent their parent class). The approaches will be
presented in the sequel.



CHAPTER 3. CLASSIFIERS 7

p( )y |1 x

p( )y |2 x

p( )y |3 x

p( )y|x

xy1 y2 y3 y2

p( )y |1 x

p( )y |2 x

p( )y |3 x

Figure 3.1: The a-posteriori probability distributions for classes y1, y2 and y3 given the feature vector x. The bold

line represents the optimal decision rule that should the optimal classifier obey.

3.2 Parametric Classifiers

Parametric classifiers try to build a structure upon the data in the training set to learn
the prior and posterior probabilities discussed in the previous section. The idea is to estimate
a model (e.g. statistical) that represents each class, and compute the decision rule (3.9)
indirectly utilizing the Bayes theorem, where the posterior probability for class yq can be
expressed as

p(yq|x) =
p(x|yq)P (yq)

P (x)
, (3.10)

and

P (x) =

Q
∑

q=1

p(x|yq)P (yq) (3.11)

is called the evidence. The decision rule (3.9) can be now rewritten into the form

D∗(x) = arg max
yq ∈ Y

{ln p(x|yq) + ln P (yq)} (3.12)

and for equiprobable classes

D∗(x) = arg max
yq ∈ Y

{ln p(x|yq)} . (3.13)

The entity p(x|yq) is derived from the training data and is called the class conditional density
or class model. The logarithmic function is involved because of the computational convenience.
Classifiers based on class models are also denoted as generative. One of the benefits is that
they can generate samples of the data through (3.11). We will focus on Gaussian Mixture
Models (GMMs) and also the concept of Hidden Markov Models (HMMs) will be discussed.

3.2.1 Gaussian Mixture Model (GMM)

Gaussian Mixture Models were firstly introduced to the speaker recognition by Reynolds
[Rey92] and are widely used up to now. For an I dimensional feature vector x the GMM
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takes the form

g(x) = p(x|λ) =

M∑

m=1

ωmp(x|m,λ) , (3.14)

p(x|m,λ) = N (x;µm,Cm) =
1

(2π)I/2 |Cm|1/2
exp

{

−0.5 (x − µm)T C−1
m (x − µm)

}

, (3.15)

where ωm,µm,Cm denote m− th mixture weight, mean and covariance, respectively, and

λ = {ωm,µm,Cm}Mm=1 . (3.16)

There are some restrictions laid on the mixture weights. These can be expressed as

∀m : 0 ≤ ωm ≤ 1 and

M∑

m=1

ωm = 1 . (3.17)

Generally, the covariance matrix Cm is considered full, nevertheless in praxis mostly diagonal
matrices are assumed (especially because of numerical stability and computational costs). It is
obvious that after the class models have been trained, the label yq in (3.12) or (3.13) is replaced
by speaker specific model parameters λq and the classifier is brought to bear. Methods that
consider also the prior probabilities P (λq) – prior information about the distribution of model
parameters – are denoted as adaptation techniques and are discussed in Section 4. GMMs
are well suited for description of static (context-independent) data sources, where the time
progress of samples is of no interest. In speaker recognition they are used mainly in text-
independent tasks. They delimitate subspaces in the feature space that are characteristic for
individual speakers. To train the GMM an iterative method called Expectation-Maximization
(EM) algorithm may be exploited [DLR77]. It is based on the Maximum Likelihood (ML)
approach and tries to maximize the output probability of the model for submitted training
data.

3.2.2 Hidden Markov Model (HMM)

Hidden Markov Models were developed in the 1960’s by Baum and his colleagues [Rab89]
and have successfully spread to all the scientific branches. Now, the class to which a feature
vector is assigned depends not only on the presented feature vector, but also on values of
the other feature vectors and on relations among various classes [TK03]. There are several
assumptions concerning the HMMs. Consider a sequence of classes Υ : y1, . . . , yq, then the
Markov model assumes that

• the class dependence is limited within two succesive classes; p(yq|yq−1, . . . , y1) = p(yq|yq−1),

• the feature vectors are statisticaly independent given Υ,

• the probability distributions in one class are independent of the other classes.

The principle of speech modelling according to the HMM comes from the idea that the
arrangement of the vocal tract arises from a finite set of states, where each state corresponds
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to a distinct vocal tract configuration responsible for a specific sound signal. We will focus
on HMMs with output probabilities of states represented by GMMs. Such models are also
denoted as Continuous Density Hidden Markov Models (CDHMMs).

The Hidden Markov Model is characterized by a set of parameters Λ = {S,A,G,π},
where S = {s1, . . . , sJ} represents the set of J states (classes) and A = [aij] stands for the
matrix of state transitions. Elements in A determine the probability of being in the state i
and subsequently moving to the state j, hence

aij = p(s(t+ 1) = sj|s(t) = si), i, j ∈ {1, . . . , J} . (3.18)

The column vector π = [πi] represents the initial state probabilities

πi = P (s(1) = si) . (3.19)

Sometimes even final state probabilities are defined. And at last, the set G = {λs1 , . . . ,λsJ
}

defines the GMM parameters (see (3.16)) for the states, though not each of the parameters
has to be defined. States with defined probability distributions are called emitting states. The
non-emitting states are used when several, separately trained HMMs have to be concatenated
(e.g. for each monophone an individual HMM is trained and subsequently, the HMMs are
concatenated utilizing the non-emitting states to model a word, sentence, etc.).

After the model parameters Λ have been estimated, the HMM output probability can be
computed in the following way. Let X = {x1, . . . ,xN} be the set of N feature vectors, ψ
denote a state-level path through the HMM and Ψ the entire set of such paths [Smi03], then

p(X|Λ) =
∑

ψ∈Ψ

p(X, ψ|Λ) =
∑

ψ∈Ψ

p(X|ψ,Λ)p(ψ|Λ) =

=
∑

ψ∈Ψ

(
N∏

k=1

gψs(k)(xk)

)(
N∏

k=1

aψs(k),s(k+1)

)

=
∑

ψ∈Ψ

(
N∏

k=1

gψs(k)(xk) a
ψ
s(k),s(k+1)

)

,

(3.20)

where gψs(k)(xk) is the state output probability defined in (3.14) and the upper index ψ indicates

the presence in the state-level path ψ. Using directly (3.20) is computationally unbearable,
therefore several efficient methods were developed, e.g. forward-backward or Viterbi algorithm
(for details see [TK03]). Similarly to the GMM case, the classification is done according to

Λ∗ = arg max
Λ ∈ L(Λ)

{p(X|Λ)} , (3.21)

where L(Λ) represents the set of parameters describing each participating HMM (classifier).
To train the HMM an iterative Baum-Welch algorithm may be utilized. It is a ML parameter
estimation procedure, basically similar to the EM algorithm. Regrettably a method that
would lead to the global maximum was not found yet, hence it is wise to run the training
algorithm several times with different initial conditions.

HMM classifiers are well suited and mostly exploited in the text-dependent recognition.
However, they can be utilized also in the text-independent recognition in the form of so-called
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a22 a33 a44

a21 a32 a43 a54s2 s3 s4s1 s5

x

p x( | 2)

x

p x( | 3)

x

p x( | 4)

Figure 3.2: An example of a left-to-right, five state Hidden Markov Model with two non-emitting states s1 and s5.

The transition probabilities are described by aij and the output probabilities of states s2, s3 and s4 are represented by

the GMMs (illustrated below each state).

ergodic models [ZGR+94]. In the task of speech recognition, the topology of an HMM depends
mostly on the choice of the linguistic unit (e.g. triphone, monophone, sylable, word etc.) that
statistical dependencies should be captured. An example of a left-to-right, five state HMM
with two non-emitting states is depicted in Figure 3.2.

3.3 Nonparametric Classifiers

Such classifiers learn decision rules directly from the data. They do not involve class
models and may be more accurate in cases when only a few training data are present. As
the evidence (3.11) is not available, nonparametric classifiers cannot generate samples of the
data. We will focus on linear discriminant functions in the form of

H : f(x) = wTx + b, (3.22)

where w is the normal vector of the hyperplane H and the scalar b denotes the offset. Such
a function divides the space into two half-spaces appropriate for two classes y1 and y2. The
output value of the function (3.22) does not define the geometrical distance of the point x

from the hyperplane H, this can be acquired according to

d(x,H) =
f(x)

‖w‖ . (3.23)

The classification obeys the rule

D(x) =

{

y1 if f(x) ≥ 0

y2 if f(x) < 0
. (3.24)

Of course, such linear discriminants behave well when the classes are linearly separable, but
such an assumption is relatively rare and often nonlinear classifiers are demanded. It is
quite difficult to ensure good generalization ability of nonlinear classifiers. However, utilizing
training algorithms that involve so-called kernels, one can extend linear classifiers also to
nonlinear cases. The kernel trick may be exploited in all the algorithms that approach the
data only through dot products. Another question concerns the requirement laid on the choice
of the separating hyperplane. All the before stated demands are solved in the concept of the
Support Vector Machine (SVM), which will be now our main domain of interest.
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3.3.1 Support Vector Machine (SVM)

Support Vector Machine was firstly introduced by Vapnik [V.V95]. The requirement set
on the decision hyperplane H concerns the width of the margin between the two classes that
should be separated. Let us adjust (3.24) in the manner of (3.25).

H1 : wTxi + b ≥ +1 for yi = +1
H2 : wTxi + b ≤ −1 for yi = −1

=⇒ ∀i : yi(w
Txi + b) − 1 ≥ 0 . (3.25)

Hence, we have requested a margin between the two classes y1 and y2. The width of the
margin can be easily computed using (3.23). Thus, |d(0,H1) − d(0,H2)| = 2/‖w‖, where
0 represents a zero vector (origin). The formulation of SVM demands the widest margin,
therefore we are seeking for w with the minimal norm. To allow errors (points that violate
the decision boundaries H1 and H2) and to relax the constraint of strict class pertinence in
(3.25), Vapnik introduced positive variables ξi denoted also slack variables. The constraints
become now

H1 : wTxi + b ≥ +1 − ξi for yi = +1 ,

H2 : wTxi + b ≤ −1 + ξi for yi = −1 ,

ξi ≥ 0 .

(3.26)

Thus, when an error occures, the slack variable exceeds unity and
∑

i ξi will measure the
upper bound of errors, otherwise ξi remains zero. The term

∑

i ξi is nothing else as the cost
(loss) defined in (3.3). Now, the problem can be formulated as

minimize

[

1

2
‖w‖2 + C

∑

i

ξi

]

, (3.27)

subject to (3.26), where C is an additional term defined by the user to set a cost for errors.
There are a lot of other possibilities how to choose the loss function, e.g. squared-error
cost

∑

i ξ
2
i (for other choices see [SS02]). An example of the SVM composition is depicted

in Figure 3.3. Note that the square of w was involved in order to ensure convexity of the
proposed problem and to guarantee only one, globally optimal solution. To solve the problem
of constrained convex optimization, Lagrange multipliers are involved, whereas the solution
is obtained in its dual form (for details see [Bur98]). Another handy tool providing useful
informations about the solution are the Karush-Kuhn-Tucker (KKT) conditions, well-known
in the nonlinear programming. The Lagrange formula of the primal problem with Lagrange
multipliers αi and βi can be expressed as

LP =
1

2
‖w‖2 + C

∑

i

ξi −
∑

i

αi{yi(wTxi + b) − 1 + ξi} −
∑

i

βiξi . (3.28)

Solving the problem (3.28) (seeking for mimimum) results in

∂LP

∂w
= w −

∑

i

αiyixi = 0 ,

∂LP

∂b
= −

∑

i

αiyi = 0 ,

∂LP

∂ξi
= C − αi − βi = 0 ,

(3.29)
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(0,0)

Figure 3.3: An example of the non-separable case of the SVM problem. Vectors encapsulated in circles denote support

vectors.

with additional KKT conditions

yi(w
Txi + b) − 1 + ξi ≥ 0 ,

αi{yi(wTxi + b) − 1 + ξi} = 0 ,

βiξi = 0 ,

ξi, αi, βi ≥ 0 .

(3.30)

Substituting (3.29) to (3.28) gives us the dual formulation, which has to be maximized, in the
form of

LD =
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjx
T
i xj (3.31)

subject to (3.30). According to (3.29) the normal vector w can be computed as

w =
∑

i

αiyixi . (3.32)

Thus, the decision hyperplane (3.22) results in

H : f(x) =
∑

i

αiyix
T
i x + b . (3.33)

After inspection of the KKT conditions it is quite clear that αi ∈ (0, C) (consider the third
condition in (3.29) and fourth condition in (3.30)). Furthermore, the second condition in
(3.30) implies that αi is zero for all the vectors that lie on the correct side of the margin,
and nonzero only for vectors that violate the margin (ξi > 0) or vectors lying on the margin
generated by hyperplanes H1 and H2 (defined in (3.26)). Vectors with nonzero αi are called
the support vectors as just they participate in (3.32). The offset b cannot be computed directly
– it does not occur in (3.29). However, it can be computed utilizing the second KKT condition
in (3.30) choosing any i for which αi 6= 0 – it is numerically safer to take the mean value of b
resulting from all such equations [Bur98].
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Note that equations (3.31) and (3.33) depend on data only through their dot products.
Consider a mapping Φ : X 7→ X , where X represents some Euclidean feature space (even
infinite dimensional). Then, the dot products in (3.31) and (3.33) may be replaced by dot
products defined in the space X and furthermore, utilizing a functionK(xi,xj) = Φ(xi)Φ(xj)
all that matters is the output of such a kernel function K(·, ·). Hence, the explicit information
about the form of Φ is unnecessary. Now, the two equations (3.31), (3.33) can be rewritten
as

LD =
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjK(xi,xj) , (3.34)

H : f(x) =
∑

i

αiyiK(xi,x) + b . (3.35)

It should be also stated that the matrix

H = [Hij], Hij =
∂2LD

∂αi∂αj
= −yiyjK(xi,xj) (3.36)

represents the Hessian matrix, which is used to determine the global maximum of the opti-
mization problem (3.34).

Some of the most familiar kernel functions are

• simple linear kernel – K(xi,xj) = xT
i xj,

• general polynomial kernel – K(xi,xj) = (axT
i xj + c)p,

• Radial Basis Function (RBF) kernel – K(xi,xj) = exp(−γ |xi − xj |2).

Of course, many other kernels were developed and tested through the time (kernels utilized
in speaker recognition will be in more depth discussed in Chapter 5). Generally, any function
representing a dot product in some space may be considered as kernel function. The condition
that a function has to satisfy to be a valid kernel is known as Mercer’s condition [V.V95].
Suppose any square integrable function f(x),

∫

f(x)2dx <∞ . (3.37)

Then K(x,y) =
∑

iΦi(x)Φi(y) is a valid kernel if and only if

∫

K(x,y)f(x)f(y)dxdy ≥ 0 . (3.38)

Hence, the main aspects of the Mercer’s condition are that the kernel function has to be
symmetric (K(x,y) = K(y,x)) and non-negative definite.

To train the SVM nonlinear programming techniques are utilized. Many trainers have
been already developed and coded, e.g. Thorsten’s SVMlight [Joa02] suitable for sparse data
problems (e.g. derivative kernels – see Section 5.1.2) or also very popular SVMtorch [CBW01]
and LibSVM [CL01].
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3.4 Conclusion and Remarks

When a classifier is proposed and trained, it is very important to have appropriate testing
data, which were not seen during the training. Consider a GMM with gradually increasing
number of mixtures. The situation is illustrated in Figure 3.4. At the beginning, the error
rates acquired on test and training data will decrease, e.g. Gaussian mixtures with diagonal
covariances will try to approximate the full-covariance case. But when too many mixtures are
employed, the mixtures will unnecessarily oppress each other. Such a problem is known as
overtraining and decreases the ability of the classifier to generalize to unseen data. The proper
choice of the number of GMM mixtures is task dependent, relevant factors are dimensionality
and amount of training data.

e
rr

o
r 

 r
a
te

classifier
complexity

test

training

optimal
choice

overtraining
week

generalization

Figure 3.4: Overtraining phenomena.

Regarding the time consumption of parametric and nonparametric classifiers, it can be
anticipated that nonparametric classifiers need longer time to be trained as they use all
the training data at once to learn the decision rules. However, when comparing a complex
generative model like HMM and discriminative classifier like SVM, the time consumption to
train the SVM should be lesser. The data has to be seen only once, only the information
about their dot products is stored and through the time many vectors will be neglected (only
support vectors will left), whereas the training of HMM is an iterative one, hence it has
to be run several times. Thus, the complexity plays a major role in the question of time
consumption.

In this chapter only three classifiers, important for the successive explanation of the
report objectives, were presented. Some other successfully exploited parametric classifiers
are Markov Random Fields (MRFs) or Bayesian Networks (BNs), and in the case of non-
parametric classifiers popular Neural Networks (NN) and Logistic Regression (LR) should be
mentioned (for details see e.g. [TK03]).



Chapter 4

Adaptation Techniques

The main difference between the adaptation and ordinary training methods consists in
the additional, prior knowledge about the distribution of model parameters, usually derived
from the speaker independent (SI) model [PMMR07]. The adaptation adjusts the model so
that the probability of the adaptation data would be maximized. This is equivalent to

λ∗ = arg max
λ

p(O1, . . . ,OE |λ)p(λ), (4.1)

where p(λ) stands for the prior information about the distribution of model parameters λ

(in the case of GMM these are the weights, means and covariance matrices of particular
mixtures), Oi = {oi1,oi2, . . . ,oiT }, i = 1, . . . , E, is the sequence of feature vectors related to
the i− th speaker, λ∗ is the best estimation of speaker dependent (SD) model parameters.

The function that will be optimized in the consequent text can be derived from the
maximum likelihood approach and can be expressed as [PMMR07]

Q(λ, λ̄) =
M∑

m=1

T∑

t=1

p(m|ot,λ) log p(ot,m|λ) , (4.2)

where M denotes the number of mixtures .

Following equations are common for all the adaptation techniques and we will refer to
them in the consequent text. Let ωm, µm, σ2

m and

γm(t) = p(m|ot,λ) =
ωmp(ot|m,λ)

∑M
m=1 ωmp(ot|m,λ)

(4.3)

be them−thmixture weight, mean, variance and posterior probability, respectively. Let cm =
∑T

t=1 γm(t) be the soft count of mixture m and let the vector εm(o) =
[
∑T

t=1 γm(t)ot

]

· c−1
m

be the average of features in frames which align to mixture m. Note: σ2
m = diag(Cm) is the

diagonal of the covariance matrix Cm.

15
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4.1 Maximum Aposteriori Probability (MAP)

MAP adapts each of the GMM parameters from the set λ = {ωm,µm,Cm}Mm=1 separately.
Thus, it is necessary to have enough adaptation data for all the parameters, otherwise would

be the result of adaptation negligible. The new parameters λ̄ =
{
ω̄m, µ̄m, C̄m

}M

m=1
are

acquired according to adaptation formulas

ω̄m = [αmcm/T + (1 − αm)ωm]χ , (4.4)

µ̄m = αmεm(o) + (1 − αm)µm , (4.5)

C̄m = αmεm(ooT) + (1 − αm)(σ2
m + µmµT

m) − µ̄mµ̄T
m , (4.6)

where

αm =
cm

cm + τ
. (4.7)

Hence, αm represents the adaptation coefficient that controls the balance between old and
new parameters using the parameter τ . The parameter τ is set by the user and determines
the amount of new data that have to match a specific mixture till the mixture parameters
change (they shift in the direction of new parameters) [Ale05]. χ is a normalization factor,
which guarantees that all the new weights of one mixture sum to unity.

4.2 Maximum Likelihood Linear Regression (MLLR)

In contrast to the method of MAP adaptation, where large amount of data is needed,
MLLR reduces the number of available model parameters using clustering (commonly used
is the regression tree) of similar components. Parameters from the same cluster Kn, n =
1, . . . , N , share one transformation matrix. Thus, less data are needed for MLLR to be
effective. If GMMs are assumed, the auxiliary function (4.2) that has to be maximized can
be, after some mathematical treatments, written as

Q(λ, λ̄) = const− 1

2

∑

m

∑

t

γm(t)
[
constm + log |C̄m| + (ot − µ̄m)TC̄−1

m (ot − µ̄m)
]
, (4.8)

where λ̄ =
{
ωm, µ̄m, C̄m

}M

m=1
, thus mixture weights are not adapted, and const, constm

denote constants. The given task is to find linear transformations for GMM means and
GMM variances that would maximize the auxiliary function specified in (4.8).

Mean is transformed according to the formula

µ̄m = A(n)µm + b(n) = W(n)ξm , (4.9)

W(n) = [A(n), b(n)] (4.10)

where µm is the original mean of the m-th mixture, µ̄m is the new, adapted mean, A(n) is
the regression matrix, b(n) is the additive vector that corresponds to the n − th cluster Kn
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and ξm = [µT
m, 1]

T is the original mean extended by 1. The part of the auxiliary function
(4.8) that changes with the current transform W(n) can be written as [PS06]

QW(n)
= const−

∑

m∈Kn

cm

I∑

i=1

(wT
(n)iξm)2 − 2(wT

(n)iξm)εmi(o)

σ2
mi

, (4.11)

where the column vector w(n)i equals the transpose of the i-th row of W(n) and I is the
dimension of feature vectors. Equation (4.11) can be further rearranged to the form

QW(n)
= wT

(n)ik(n)i − 0.5 wT
(n)iG(n)iw(n)i , (4.12)

where

k(n)i =
∑

m∈Kn

cmξmεmi(o)

σ2
mi

(4.13)

and

G(n)i =
∑

m∈Kn

cmξmξT
m

σ2
mi

. (4.14)

And finally the maximization of equation (4.12) gives us the updating formulas

∂Q(λ, λ̄)

∂W(n)
= 0 ⇒ w(n)i = G−1

(n)ik(n)i . (4.15)

The transformation equations for covariance matrices can be derived in a similar way. They
will be not discussed here as they are no important for further explanations and can be found
in [Gal97].

4.3 Feature MLLR (fMLLR) and

Constrained MLLR (CMLLR)

Compared to MLLR the transformation is applied on the feature space (feature MLLR)
instead of on model parameters. The auxiliary function (4.2) changes to [Gal97]

Q(λ, λ̄) = const− 1

2

∑

m

∑

t

γm(t)[constm + log |Cm| − log |A(n)|2+

+ (ōt − µm)TC−1
m (ōt − µm)] .

(4.16)

The feature vectors are transformed according to the formula

ōt = A(n)ot + b(n) = A−1
(n)cot + A−1

(n)cb(n)c = W(n)ξ(t) , (4.17)

where W(n) = [A(n), b(n)] stands for the transformation matrix corresponding to the n − th

cluster Kn, ξ(t) = [oT
t , 1]

T represents the extended feature vector. It can be shown [Gan05]
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that the transformation performed on features may be replaced by an equivalent transforma-
tion performed on model means and covariances utilizing matrices A(n)c and b(n)c. Hence,
model parameters can be transformed using formulas

µ̄m = A(n)cµm − b(n)c , (4.18)

and

C̄m = A(n)cCmAT
(n)c . (4.19)

This method is known as Constrained MLLR (CMLLR), because the same transformation
matrix is used both for means and for covariances. Loosely speaking, fMLLR and CMLLR are
equivalent transformations and the only difference consists in their interpretation. In analogy
with the previous section, it is possible to rearrange the auxiliary function (4.16) to the form
[PS06]

QW(n)
(λ, λ̄) = log |A(n)| −

I∑

i=1

wT
(n)iki − 0.5 wT

(n)iG(n)iw(n)i , (4.20)

where

k(n)i =
∑

m∈Kn

cmµmiεm(ξ)

σ2
mi

, (4.21)

G(n)i =
∑

m∈Kn

cmεm(ξξT)

σ2
mi

, (4.22)

εm(ξ) =
[
εT
m(o), 1

]T
, (4.23)

and

ε(ξξT)m =

[
εm(ooT) εm(o)
εm(o)T 1

]

. (4.24)

In order to find the solution of equation (4.20) we have to express A(n) in terms of W(n)

(realize that W(n) = [A(n), b(n)]). One of the possible solutions is the use of the equivalency

log |A(n)| = log |wT
(n)iv(n)i|, where v(n)i stands for transpose of the i− th row of cofactors of

the matrix A(n) extended with a zero in the last dimension. Let α(n) = wT
(n)iv(n)i. After the

maximization of the auxiliary function (4.20) we receive

w(n)i = G−1
(n)i

(
v(n)i

α(n)
+ k(n)i

)

, (4.25)

where α(n) can be found as the solution of the quadratic function

β(n)α
2
(n) − α(n) vT

(n)iG
−1
(n)ik(n)i − vT

(n)iG
−1
(n)iv(n)i = 0 , (4.26)

where

β(n) =
∑

m∈Kn

∑

t

γm(t) . (4.27)

Because of equation (4.26) two different solutions w
1,2
(n)i are obtained in (4.25). The one that

maximizes the auxiliary function (4.20) is chosen.
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Note that due to the fact that in fMLLR the transformation function f(ot) = A(n)ot+b(n)

is applied directly on feature vectors, an additional term – jacobian of f(ot) – will occur in the
log likelihood related to each mixture [Gan05]. Hence, for CMLLR we get the log likelihood

log p
(
ot|µm,Cm,A(n)c, b(n)c

)
= logN

(

ot;A(n)cµm − b(n)c,A(n)cCmAT
(n)c

)

, (4.28)

but for fMLLR we get

log p
(
ot|µm,Cm,A(n), b(n)

)
= logN

(
A(n)ot + b(n);µm,Cm

)
+ 0.5 log |A(n)|2 . (4.29)

The estimation of W(n) is an iterative procedure, therefore matrices A(n) and b(n) have to be
correctly initialized first. The initialization for A(n) can be chosen as a diagonal matrix with
ones on the diagonal, and b(n) can be initialized as a zero vector. The estimation ends when
the change in parameters of transformation matrices is small enough (about 20 iterations are
sufficient) [PS06].

900

800 < Toccup 100 < Toccup

1900

1000 900

Occupation = 2800C7

C6 C5

C1 C2 C3 C4

Figure 4.1: An example of a binary regression tree. Numerical values represent occupation counts of nodes (clus-

ters). Nodes C3 and C4 have occupations lesser then the occupation threshold Toccup = 850, therefore all the mixture

parameters belonging to C3 and C4 will share the transformation matrix defined for node C5.

4.4 Regression Classes for MLLR

The benefit of MLLR like methods is the possibility to cluster similar mixture parameters
of the model using binary Regression Trees (RTs), where the final number of clusters depends
on the amount of adaption data. All parameters belonging to the same cluster are then trans-
formed by the same transformation. Several methods for construction of RTs were already
developed, e.g. divisive hierarchical algorithms utilizing euclidean distance between Gaussian
mixture means [YEG+06], optimal clustering techniques trying to maximize the likelihood
of the adaptation data [Gal96] and others. The final set of clusters in the RT is established
during the adaptation process according to the amount of data that align to mixtures in each
of the clusters – cluster ocuppations, where an empirical threshold has to be set. For example,
let us analyze the tree depicted in Figure 4.1 with four leaves {C1, C2, C3, C4}. The clusters
C3 and C4 have small occupation counts (lower then the threshold Toccup = 850), therefore all
components in clusters C3 and C4 will be transformed with matrices defined for the cluster
C5. On the other hand, two individual transformation matrices will be used for C1 and C2.
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4.5 Conclusion and Remarks

After inspection of equations (4.4) - (4.7), (4.13) - (4.15), (4.21) - (4.22), (4.25) - (4.27)
one can notice that all the adaptation formulas depend on the data only through statistics
γm(t), cm, εm(o) [PS06]. Thus, the adaptation process can be divided into two stages. In
the first stage, the three mentioned statistics are accumulated till the data are introduced
to the algorithm and in the second stage the transformation matrices for the desired type of
adaptation are computed. There is no need to specify the adaptation type in advance and it
can be defined after the adaptation data have been accumulated. The computational costs
are also low as the updating matrices G(n)i,k(n)i have not to be recalculated in each iteration
(they are computed only once at the end of the adaptation).

It should be stated, that the transformation matrices W(n) carry information about the
speakers identity. More precisely they give us advice how should be the SI model ”moved” to
fit a new speaker, and, of course, this information should differ for each speaker (under the
assumption that the initial SI model remains the same).



Chapter 5

Hybrid Generative/Discriminative

Models

Recently, a huge progress was done in the use of SVM as an discriminative trainer in
the speaker verification. The main difference between generative and discriminative methods
is that generative algorithms process the input data belonging to separate classes individu-
ally and focus on efficient description of submitted data, whereas discriminative algorithms
consider and process the whole set at once seeking for boundaries between different classes.
One of the important questions that can be stated is whether there are problems that can
be solved only by discriminative methods, whereas any generative method would fail. It is
shown in [LSS07] that such problems exist. However, the idea is to combine both approaches
to gain a superior performance of such a hybrid system. The experiments are very promising
and prove that hybrid models based on SVMs act at least as good as the generative ones and
in many cases even better [JH99, MHV03].

5.1 Dynamic Kernels

In order to use a SVM, the data that have to be classified need to be of fixed dimension.
Nevertheless, the speech utterances are usually parametrized as variable length sequences.
First method solving this problem was developed by Jaakola and Hausler [JH99] and is known
as Fisher kernel (see Subsection 5.1.2). Over the time many other kernels were proposed and
successfully tested. Also a basic hierarchical structure of kernels was proposed, where the
dynamic kernel (also known as sequence kernel) can be further divided into parametric and
derivative kernels [LG07].

Dynamic kernels have the form

K(Oi,Oj ,θ) = ψ(Oi;θ)Tψ(Oj ;θ), (5.1)

21
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where Oi = {oi1,oi2, . . . ,oiT }, i = 1, . . . , E, represents the sequence of feature vectors extracted
from the speech of the i − th speaker, ψ(Oi;θ) stands for a mapping, which transforms the
utterance to a feature vector of higher, fixed dimension and θ denotes a set of parameters upon
the mapping ψ(·) depends. Thus, the kernel can be seen as a distance metric of two vectors in
feature space (generated by the mapping ψ(·)), generally non-Euclidean. To correctly compute
the dot product in such a feature space a normalization matrix G has to be introduced, which
is the inverse covariance matrix of the transformed data. The kernel can be now rewritten to
the form

K(Oi,Oj ,θ) = ψ(Oi;θ)TGψ(Oj ;θ), (5.2)

where

G−1 = ε{(ψ(O;θ) − µψ)T(ψ(O;θ) − µψ)}, (5.3)

µψ = ε{ψ(O;θ)}, (5.4)

and ε represents the statistical expectation. In the following text the kernel function will be
used in the truncated form K(Oi,Oj), the content of θ should be clear from the context.
Note that unless stated otherwise, the notation f(·) will be used to distinguish functions and
ordinary variables.

5.1.1 Parametric Kernels

Parametric kernels deal with high-dimensional vectors called supervectors. The recent fea-
ture extraction methods have focused mainly on GMM means and adaptation matrices derived
from speaker independent models according to the speaker dependent data (see Chapter 4). A
very common extraction technique concatenates the GMM means so that a high-dimensional
supervector is formed. To ensure correspondence between two adjacent mixtures of two differ-
ent GMMs and same dimensionality of subsequently formed supervectors, it is appropriate to
MAP-adapt speaker’s Gaussian mixture models from an Universal Background Model (UBM).
Thus, the mapping ψ(·) has the form

ψ(O;λ) = [µT
1 , · · · ,µT

i , · · · ,µT
N ]T , (5.5)

where µi are the MAP-adapted GMM means (mixture weights and covariance matrices remain
the same), N is the number of mixtures in the UBM and λ is the set of parameters of the
generative model.

A different mapping proposed in [CSRS06a] takes into consideration the difference between
means of the model of a new speaker and UBM means, and can be written as

ψdiff(O; {λ, λ̂}) = ψ(O;λ) − ψ( · ; λ̂)

= [(µ1 − µ̂1)
T, · · · , (µi − µ̂i)

T, · · · , (µN − µ̂N )T]T ,
(5.6)

where µ̂i represents a mean of the original UBM and the notation ψ( · ; λ̂) represents the
mapping of UBM means, hence a mapping same for any sequence O related to a specific
speaker. Loosely speaking, the mapping ψ( · ; λ̂) is independent on the sequence of feature
vectors O related to one speaker.



CHAPTER 5. HYBRID GENERATIVE/DISCRIMINATIVE MODELS 23

In [Cam02] the proposed mapping, denoted as Generalized Linear Discriminant Sequence
(GLDS), is based on a vector function that transforms directly the feature vectors. The
mapping has the form

ψ(O;ϕ(·)) =
1

T

T∑

t=1

ϕ(ot) , (5.7)

ϕ(ot) = [ϕ1(ot), . . . , ϕj(ot), . . . , ϕJ (ot)]
T , (5.8)

where ϕ(·) represents an expansion of the input space into a vector of scalar functions,
ϕj : Rm 7→ R, m is the dimension of the input space and J is the dimension of the
vector function ϕ(·). In [Cam02] the considered feature expansion consisted of monomials
up to the l − th order, e.g. for monomials up to the second order of the feature vector
o = {o1, o2, . . . , oI} we get

ϕl=2(o) = [1, o1, . . . , oI , o
2
1, o1o2, . . . , o1oI , o

2
2, o2o3, . . . , o2oI , o

2
I ] , (5.9)

where dim(o) = I and dim(ϕl(o)) = [(I + l)!]/[ I! l! ]. After substituting (5.9) into (5.7) one
can notice, that the mapping (5.7) comprises first and second-order moments – the means and
correlations of feature vectors (higher moments will be obtained for higher order monomials)
[LYKZ08]. The main disadvantage of such a mapping is that the function ϕl(o) has to be
applied on each of the feature vectors, what may be quite expensive especially for longer utter-
ances. Further generalizations of GLDS and associated kernels allowing not only polynomial
degrees but also infinite dimensional expansions were studied in [LDB06, LDB07].

In [LYLK07] the vector function ϕ(o) was chosen as

ϕPS(ot) = [γ1(ot), . . . , γi(ot), . . . , γN (ot)] , (5.10)

where γm(ot) is the m − th mixture’s posterior specified in (4.3). The mapping based on
ϕPS(ot) is called the Probabilistic Sequence (PS) mapping and has the same form as (5.7)
except the vector function, hence

ψ(O;ϕPS(·)) =
1

T

T∑

t=1

ϕPS(ot) . (5.11)

When using such a mapping, it is useful to cover the part of the acoustic space of interest
with well distributed Gaussian mixtures over this area - e.g. to utilize some anchor models
chosen from the background population of speakers [LYKZ08].

Another kind of supervector extraction is based on MLLR transformation matrices com-
puted according to Section 4.2 and given in equation (4.10). The rows of such transformation
matrices are subsequently concatenated into one high-dimensional supervector. The mapping
ψ(·) can be expressed as

ψ(O; {W(k)}Kk=1) = [wT
(1)1, · · · ,wT

(1)I ,w
T
(2)1, . . . ,w

T
(2)I , . . . ,w

T
(K)1, . . . ,w

T
(K)I ]

T , (5.12)

where I is the dimension of feature vectors, K is the number of transformation matrices and
wT

(k)i denotes the i− th transposed row of the matrix W(k).
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5.1.1.1 Mean supervector based kernels

A basic, frequently used and well-working kernel is the one in (5.2), where the matrix G

is assumed nearly always diagonal (as its size is often huge and there are not enough data
for its full estimation, e.g. to ensure its invertibility) – in some cases even replaced by the
identity matrix [WR02].

In [CSR06] two kernels were proposed – Supervector Linear Kernel (SLK) and L2 Inner
Product Kernel (L2IPK). The SLK is based on the approximated Kullback-Leibler Divergence
(KLD) and in [MHV03] even the unapproximated KLD was utilized – the kernels were denoted
as Probabilistic Distance Kernels (PDKs).

Supervector Linear Kernel (SLK) was derived from KLD. To ensure the validity of
Mercer’s condition (see (3.38)) an approximation of KLD [Do03] was computed. Assuming
diagonal covariances the resulting kernel can be written in the form

KSLK(Ospk1,Ospk2) =
N∑

i=1

ωi(µ
spk1
i )TC−1

i µ
spk2
i = ψ(Ospk1;λ)T ΩG̃ψ(Ospk2;λ) , (5.13)

G̃ : diag(G̃) = [diag(C−1
1 ), . . . ,diag(C−1

i ), . . . ,diag(C−1
N )]T , (5.14)

Ω : diag(Ω) = [ω1, . . . , ω1
︸ ︷︷ ︸

I

, . . . , ωi, . . . , ωi
︸ ︷︷ ︸

I

, . . . , ωN , . . . , ωN
︸ ︷︷ ︸

I

]T , (5.15)

where ωi,µi,Ci are related to the GMM (see (3.14)) and G̃, Ω are zero matrices with diagonals
specified in (5.14), (5.15), respectively. The matrix Ci can be taken directly from the UBM
as the UBM’s covariances were not adapted. The matrix G̃ can be thought of as an approxi-
mation of (5.3) and Ω represents an additional weighting factor, where I = dim(o) = dim(µ).
There are several advantages of such a kernel [Cam02]. The matrix R = ΩG̃ can be factored
using Cholesky decomposition yielding R = UTU and all the supervectors can be transformed
before the SVM training as Y = Uψ(O;λ). Hence the kernel takes the form

KSLK(Ospk1,Ospk2) = Y TY , (5.16)

thus there is no need to multiply supervectors with R whenever the kernel function is eval-
uated, therefore the computational costs during the training will be significantly reduced.
Furthermore, the model compaction technique can be applied, thus the SVM decision hy-
perplane (3.35) with L support vectors can be computed in advance and the final decision
function can be expressed as

f(Oj) =

(

ΩG̃

L∑

k=1

αkyk
Tψ(Ok;λ)

)

ψ(Oj;λ) + b . (5.17)

L2 Inner Product Kernel (L2IPK) is derived from the function space inner product of
two GMMs and has the form

KL2IPK(Ospk1,Ospk2) =

∫

Rn

gspk1(o)gspk2(o) do. (5.18)
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The closed form solution has the form

KL2IPK(Ospk1,Ospk2) =

N∑

i=1

N∑

j=1

ωiωjN
(

µ
spk1
i − µ

spk2
j ;0,Ci + Cj

)

, (5.19)

where 0 stands for a zero vector. Under the assumption that means corresponding to the
i− th and j − th Gaussian for i 6= j lie far apart, (5.19) can be simplified to the form

KL2IPK(Ospk1,Ospk2) =

N∑

i=1

N∑

j=1

ω2
iN (µspk1i − µ

spk2
j ;0, 2Ci). (5.20)

Probabilistic Distance Kernels (PDKs) were proposed in [MHV03] and as already men-
tioned, they utilize even the unapproximated KLD. The symmetricity of such a dissimilarity
measure was preserved using

D(p(o|λ1) || p(o|λ2)) =

∞∫

−∞

p(o|λ1) log

(
p(o|λ1)

p(o|λ2)

)

do +

∞∫

−∞

p(o|λ2) log

(
p(o|λ2)

p(o|λ1)

)

do. (5.21)

and the validity of the kernel was ensured with the help of the equation

KPDK(Ospk1,Ospk2) = e−const1D(p(o|λ1) || p(o|λ2))+const2 , (5.22)

where const1, const2 represent scale and shift factors, respectively, involved because of stabil-
ity reasons. In the case of GMM there is no analytic solution of (5.21) and some numerical
approximations have to be employed (e.g. [Do03]), but in the case of a full covariance GMM
with a single mixture, the distance in (5.21) can be computed directly yielding

D(N (·;µ1,C1) ||N (·;µ2,C2)) = tr
(
C1C

−1
2

)
+ tr

(
C−1

1 C2

)
− 2I +

+ tr
[(

C−1
1 + C−1

2

)
(µ1 − µ2)(µ1 − µ2)

T
]
,

(5.23)

where I = dim(o). Thus, not only mean vectors are involved, but also covariance matrices
(however just for single mixture models). It is easy to see, that for C = C1 = C2 and C

assuming diagonal, the distance (5.23) degenerates to

D(N (·;µ1,C) ||N (·;µ2 ,C)) = d(µ1,µ2;C) = 2
∥
∥
∥C− 1

2 (µ1 − µ2)
T
∥
∥
∥

2
. (5.24)

It can be proven (see [Do03]), that for two multi-mixture GMMs g1(o) and g2(o), the KLD
D(g1(o)||g2(o)) ≤ ∑N

i=1 ωid(µ
1
i ,µ

2
i ;Ci). Hence, the KLD is upper bounded by the sum of

distances of two adjacent mixtures. Based on the last observation another kernel was proposed
in [DC06]. It can be expressed as

KPDK2(O
spk1,Ospk2) = e−0.5

∑N
i=1 ωid(µ

spk1
i ,µspk2

i ;Ci)

= e
−
∑N

i=1 ωi

∥
∥
∥
∥
C

−

1
2

i (µspk1
i −µ

spk2
i )T

∥
∥
∥
∥

2

= e
−

∥
∥
∥
∥(ΩG̃)

1
2 (ψ(Ospk1;λ)−ψ(Ospk2;λ))T

∥
∥
∥
∥

2

,

(5.25)

where N is the number of UBM mixtures, ωi,Ci are the i− th UBM mixture’s weight and co-
variance matrix, respectively, and µ

spk1
i ,µspk2i are adjacent, speaker dependent, MAP-adapted

means. Matrices Ω and G̃ were specified in (5.15) and (5.14), respectively.
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5.1.1.2 One-class MLLR kernels

In this section we will focus only on supervectors constructed from one transformation
matrix (global transformation) common for all the model means.

The kernel function considered can be a simple linear inner product (5.1) of MLLR based
supervectors as used in [SFK+05], nevertheless one could also transform the means according
to the formula (4.9) and utilize kernels described in Subsection 5.1.1.1.

More sophisticated and more interesting kernel approach was proposed in [KC07]. It arises
from (5.13), where means µi are transformed according to equation (4.9), hence

K(Ospk1,Ospk2) =
N∑

i=1

(

∆
1
2
i (Aµi + b)

)T(

∆
1
2
i (Hµi + d)

)

, (5.26)

where [A, b ] and [H,d ] are global transformation matrices for speakers spk1 and spk2,
respectively, and ∆i = ωiC

−1
i . After expanding equation (5.26) we get

K(Ospk1,Ospk2) =

N∑

i=1

(

∆
1
2
i Aµi

)T(

∆
1
2
i Hµi

)

+

N∑

i=1

(

∆
1
2
i Aµi

)T(

∆
1
2
i d

)

+

+
N∑

i=1

(

∆
1
2
i b

)T(

∆
1
2
i Hµi

)

+
N∑

i=1

(

∆
1
2
i b

)T(

∆
1
2
i d

)

.

(5.27)

Let us have a look on the first term in (5.27). Some notations shall be stated, tr(A) stands
for the trace of the matrix A, ek is a zero vector with 1 on its k− th position, ∆ik is the k− th
diagonal element of the matrix ∆i, I represents the number of rows in A and ak equals the
transpose of the k − th row of A. Then (assuming diagonal covariance matrices Ci)

N∑

i=1

(

∆
1
2
i Aµi

)T(

∆
1
2
i Hµi

)

=
N∑

i=1

tr

(

∆
1
2
i Aµiµ

T
i HT∆

1
2
i

)

=
N∑

i=1

tr
(

∆iAµiµ
T
i HT

)

=

=

N∑

i=1

tr

[(
I∑

k=1

∆ikeke
T
k

)

Aµiµ
T
i HT

]

=

=
N∑

i=1

I∑

k=1

tr
[

eke
T
kA

(

∆ikµiµ
T
i

)

HT
]

=

=

I∑

k=1

tr

[

eT
k A

(
N∑

i=1

∆ikµiµ
T
i

)

HTek

]

=

=

I∑

k=1

aT
k

(
N∑

i=1

∆ikµiµ
T
i

)

hk =

=
I∑

k=1

aT
kRkhk .

(5.28)
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All the other terms in (5.27) can be rearranged in a similar fashion, what results in

N∑

i=1

(

∆
1
2
i Aµi

)T(

∆
1
2
i d

)

=
I∑

k=1

dka
T
k rk , (5.29)

N∑

i=1

(

∆
1
2
i b

)T(

∆
1
2
i Hµi

)

=

I∑

k=1

bkr
T
k hk , (5.30)

N∑

i=1

(

∆
1
2
i b

)T(

∆
1
2
i d

)

=

I∑

k=1

bkdkδk , (5.31)

where rk =
∑N

i=1 ∆ikµi and δk =
∑N

i=1 ∆ik. Now, the kernel (5.26) can be rewritten as

K(Ospk1,Ospk2) =

I∑

k=1

aT
kRkhk + dka

T
k rk + bkr

T
k hk + bkdkδk =

= ψ(Ospk1; [A, b ])TQ ψ(Ospk2; [H,d ]) .

(5.32)

The matrix Q is symmetric, positive-definite (the kernel satisfies the Mercer’s condition
(3.38)) as it arises from (5.13) and consists of I blocks of size (I + 1) × (I + 1), where
each block Qk can be expressed as

Qk =

(
Rk rk
rT
k δk

)

. (5.33)

The matrix Q depends only on the UBM, therefore is the same for all speakers and can be
computed in advance. Another advantage of the block diagonal property of Q is the possibility
to easily compute the square root of Q and thus apply the model compaction technique as
discussed in Section 5.1.1.1.

It should be also noted, that the dimension of MLLR based supervectors (I × (I + 1);
I = dim(o)) is in comparison with dimension of mean supervetors (I×N) often significantly
lesser, as the number N of Gaussian mixtures in the UBM is often high.

5.1.1.3 Multi-class MLLR kernels

The extension to the multi-class case is straightforward. The regression tree is involved,
thus several transformation matrices are computed at a time. It should be noted, that at the
supervector construction, some matrices may occur repeatedly in cases when two separate
classes with insufficient amount of data descend from the same parent class (see Figure 4.1).
The crucial problem is the construction of the regression tree. The approaches in Section 4.4
do not directly concern the dissimilarities between speakers. They mainly focus on clustering
of features close in the acoustic space without an explicit knowledge how do these features
characterize the speaker’s identity. A method how to handle such a problem was introduced in
[SFK+05], where the regression tree is designed according to broad phonetic classes depicted in
Figure 5.1. Each of the classes contains a set of mixtures for which a separate transformation
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Non-speech Speech

Obstruents Sonorants

Stops Fricatives Vowels Sonorant
Consonants

Unvoiced Voiced High NasalLow RetroflexUnvoiced Voiced

Speaker’s utterance

Figure 5.1: Regression tree based on phonetic classes.

matrix will be computed. The use of an text-independent GMM is now unfeasible – one
cannot decide which mixture belongs to which phonetic class. The possible solution would
be to utilize the Large Vocabulary Continuous Speech Recognition (LVCSR) system based
on a set of Hidden Markov Models (HMMs) with states formed by GMMs, where each HMM
represents an elementary linguistic unit (e.g. monophone, triphone, syllable, etc.). Thus, a
decision about the phonetic class pertinence can be made. Such an LVCSR system can be
adapted according to formulas in Section 4.2 and the regression tree depicted in Figure 5.1.
Hence, the resulting matrices will correspond to proposed phonetic broad classes.

Another method was presented in [KC08]. It uses an N -mixture UBM with diagonal
covariances and an open-loop phonetic recognizer (phonetic recognition without lexical or
phonotactic constraints). The training data are partitioned with the use of an open-loop
phonetic recognizer into several clusters in order to match the phonetic classes. Let us consider
a two MLLR-class case – clusters will be created for obstruents and sonorants (see Figure 5.1).
The proposed UBM has the form

g(x) = ϑS

N/2
∑

i=1

ωiN (x;µi,Ci) + ϑO

N∑

i=N/2+1

ωiN (x;µi,Ci) , (5.34)

where ϑS, ϑO are the weights for mixture components associated to sonorants and obstruents,
respectively. They are calculated as the percentage of frames assigned to particular clusters.
Each of the N/2 Gaussian mixtures is trained using the Expectation Maximization (EM)
algorithm separately (from the appropriate data cluster) and they are combined at the end to
form the UBM given in (5.34). Note that UBM weights have to be rescaled to sum to unity.
All three models (one N -mixture UBM and two N/2-mixture models) are employed in the
adaptation phase. Firstly an occupation threshold Toccup has to be specified as in Section 4.4.
The open-loop phonetic recognizer is used again to redistribute the test utterance frames
between participating phonetic classes. For classes, where the number of frames is higher then
Toccup, the N/2-mixture models (trained for appropriate clusters) are adapted. For classes
not satisfying the criterion, the N -mixture UBM will be adapted. The higher MLLR-class
case can be derived in analogy with before mentioned technique.
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Such an approach is in principle very similar to the LVCSR system adaptation, but it
is much more easier to control the influence of mixtures in each of the phonetic classes.
Generally, the number of mixtures associated to each class can be unequal (different from
N/2), but the authors proclaim that the performance decreases.

The last point to discuss is which kernel to use when multiple matrices are present. The
kernel function can be chosen similarly to Section 5.1.1.2. One can consider only a simple
linear inner product of MLLR based supervectors, or transform the model according to the
formula (4.9) and use kernels from Subsection 5.1.1.1, or extend the approach described at the
end of Subsection 5.1.1.2 as was done in [KC08]. The extension is straightforward if UBMs
in the form of equation (5.34) are used. Nevertheless, with some effort the method could be
easily extended also to cases when the LVCSR system is in use.

Let’s have a look on UBMs defined as in (5.34). The kernel function (5.26) takes now the
form

K(Ospk1,Ospk2) = ϑSKS(Ospk1,Ospk2) + ϑOKO(Ospk1,Ospk2) =

= ϑS

N/2
∑

i=1

(

∆
1
2
i (ASµi + bS)

)T(

∆
1
2
i (HSµi + dS)

)

+

+ ϑO

N∑

i=N/2+1

(

∆
1
2
i (AOµi + bO)

)T(

∆
1
2
i (HOµi + dO)

)

.

(5.35)

Thus, the problem can be divided into two subproblems solved separately forKS(Ospk1,Ospk2)
and KO(Ospk1,Ospk2). Two solutions are obtained

KS(O
spk1,Ospk2) = ψS(O

spk1; [AS, bS ])TQS ψS(Ospk2; [HS,dS ]) , (5.36)

KO(Ospk1,Ospk2) = ψO(Ospk1; [AO, bO ])TQO ψO(Ospk2; [HO,dO ]) , (5.37)

where ψS(·) is the sonorant part and ψO(·) is the obstruent part of MLLR based supervectors.
The matrices QS, QO are block diagonal with blocks defined as in (5.33). The final kernel
results in

K(Ospk1,Ospk2) =
[

ψS(Ospk1)T ψO(Ospk1)T
] [ ϑSQS 0

0 ϑOQO

] [
ψS(O

spk2)
ψO(Ospk2)

]

, (5.38)

where the conditional part of ψS(·), ψO(·) was omitted because of lucidity. Properties of
Q mentioned at the end of Section 5.1.1.2 are preserved. It should be stated, that the two
approaches, either the use of the kernel (5.38) or the use of the kernel (5.13), where the
means are transformed according to the formula (4.9), are equivalent. The second method
outperforms the first one in terms of computational costs as there is no need to transform
each mean of the model [KC08] (this is useful especially when LVCSR systems are utilized).

5.1.2 Derivative Kernels

The derivative kernels are based on the work of Jaakkola and Haussler [JH99], who made
the first connection between generative and discriminative models at all. Further investiga-
tions were carried out by Smith and Gales. They have proposed generalizations in the form
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of score spaces defined by the mapping

ψf
F̃
(O; {λq}Qq=1) = ψF̃ f({p(O|λq)}Qq=1) , (5.39)

where {p(O|λq)}Qq=1 is a set of Q generative models, the function f(·) is called the score
argument, it determines the form of the output of the set of generative models and is mapped
by the score operator F̃ to a fixed-dimensional score space ψf

F̃
(O; {λq}Qq=1) [SG02]. The

purpose of the score operator is to extract useful discriminative information from generative
models – for derivative score spaces derivative operators are considered such as the zeroth-
order, first-order and higher-order derivatives with respect to the parameters of the generative
model. Nevertheless, because of computational complexity of higher-order derivatives mainly
the zeroth and first-order derivatives are studied. In this work only the case to the limit
Q = 2 and score argument based on logarithmic function will be discussed. A very detailed
description of the whole problem can be found in [Smi03]. The score space (5.39) for Q = 1,
known as Log-Likelihood Score (LLS) space, can be expressed in the form

ψLLS
∇ (O; λ̂, ρ) =

1

T

[

∇(0,ρ)
λ ln p(O|λ)

∣
∣
∣
∣
λ̂

]

=
1

T












ln p(O|λ̂)

∇λln p(O|λ)

∣
∣
∣
∣
λ̂

...

vec

(

∇ρ
λln p(O|λ)

∣
∣
∣
∣
λ̂

)












, (5.40)

where the term 1
T was introduced because of the sequence length normalization with T equal

the number of feature vectors in O, the function vec(·) transforms a matrix into a column
vector and ρ defines the order of the derivative. The score space for Q = 2, known as
Log-Likelihood Ratio Score (LLRS) space, can be expressed in the form

ψLLRS
∇ (O; {λ̂q}2

q=1, ρ) =
1

T



∇(0,ρ)
λ1,λ2

ln
p(O|λ1)

p(O|λ2)

∣
∣
∣
∣λ1=λ̂1
λ2=λ̂2



 =
1

T


















ln p(O|λ̂1) − ln p(O|λ̂2)

∇λ1 ln p(O|λ1)
∣
∣
λ̂1

−∇λ2 ln p(O|λ2)
∣
∣
λ̂2

...

vec

(

∇ρ
λ1

ln p(O|λ1)
∣
∣
∣
λ̂1

)

−vec

(

∇ρ
λ2

ln p(O|λ2)
∣
∣
∣
λ̂2

)


















.

(5.41)

The mapping used by Jaakkola and Haussler is a special case of (5.40) when only the first
derivative is considered and is also known as Fisher mapping or Fisher score. Its expected
value with respect to the observation o is zero and the mapping can be written in the form

ψFisher
∇ (O; λ̂) =

1

T
∇λln p(O|λ)

∣
∣
∣
∣
λ̂

. (5.42)

Further, let’s analyze the first-order derivatives with respect to mean and covariance of a
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GMM (hence, the Fisher score). These are given by

∇µi
ln p(O|λ) =

T∑

t=1

γi(t)C
−1
i (ot − µi)

T = ηi(εi(o) − µi)
TC−1

i , (5.43)

∇Ci
ln p(O|λ) =

T∑

t=1

γi(t)

2

[
−C−1

i + C−1
i (µi − ot)(µi − ot)

TC−1
i

]

=
ηi
2

[

−C−1
i + C−1

i [Ĉi + (µ − εi(o))(µ − εi(o))T]C−1
i

]

,

(5.44)

where γi(t) is the i − th mixture’s posterior specified in (4.3), ηi =
∑T

t=1 γi(t), the vector

εi(o) =
[
∑T

t=1 γi(t)ot

]

· η−1
i and the matrix Ĉi = εi(ooT) − ε2

i (o). The operator εi can be

also seen as a statistical expectation of features aligning to the i − th mixture of a GMM.
It is very easy to see that the derivatives vanish when the data perfectly fits the model
(e.g. for ML-estimates of λ; λ̂ = arg maxλ {ln p(O;λ)}), thus µi ≡ εi(o) and Ĉi ≡ Ci for
i = 1, . . . , N , where N is the number of GMM mixtures. When data lie away from the model,
absolute values of gradients in (5.43) and (5.44) increase, on the other hand, the closer are
the data to the model, the smaller are the gradient absolute values (under the assumption,
that the amount of data does not vary significantly – consider the influence of ηi – however,
this problem is solved involving the normalization term T ). Hence, we are able to measure
the data deviation from the model. As already mentioned, the MAP adaptation is utilized
to acquire speaker dependent GMMs. When the amount of training data is small, the UBM
is shifted to the speaker’s direction only partially. Therefore an additional information about
the direction of the data location comes very handy. LLRS space takes into consideration
not only deviation from the speaker’s GMM, but also from some other model λ̂2 – often
represented by the UBM. UBM is same for all the speakers, therefore it can be regarded as an
anchor point in the score space – a tool pointing to separate, speaker dependent data clusters.

It should be stated, that (5.44) results in a matrix. To be able to train the SVM, the
matrix should be rearranged to a vector (row-wise, eventually column-wise) utilizing the
function vec(·). If only diagonal covariances are assumed, the function vec(·) may be replaced
by the function diag(·). Note that the term ηi associated with each mixture can be regarded
as an alternative to the normalization term T .

Basic Derivative Kernel (BDK) is related to the kernel in equation (5.2). When utilizing
the Fisher mapping (5.42), the normalization matrix G−1 from (5.3) represents the Fisher
information (FI), which plays an important role in many scientific branches. Resuming the
preceding analysis of Fisher score related to generative models, the FI could be interpreted as
the amount of information that a sample provides about the value of an unknown parameter
λ [UC04]. However, the FI is less significant in our task as its only purpose is to ensure the
correctness of the dot product in the score space. Note that when training a SVM model of
one particular speaker, the score space vectors hand over to the training are build upon MAP-
adapted model of the current (target) speaker and all the utterances of all the participating
speakers (for LLRS space in (5.41) also UBM is involved). Loosely speaking, no other models
than the target speaker model are involved in the training phase of one SVM model.
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Generalized Derivative Kernel (GDK) was introduced in [LG08a]. It is based on the
GLDS mapping discussed in Section 5.1.1 and on the Fisher score, where only derivatives
with respect to the mean are considered. Hence, (5.42) can be rewritten to the form

ψGDK
∇ (O; λ̃) =

1

η̃i

T∑

t=1

γ̃i(t)C̃
−1
i (ϕ(ot) − µ̃i)

T , (5.45)

where λ̃ = {ω̃m, µ̃m, C̃m}Mm=1 are GMM parameters related to transformed features in the
new space generated by the vector function ϕ(·) defined in (5.8). The normalization term
changes now to η̃m =

∑T
t=1 γ̃m(t). After substituting (5.45) into (5.2) we get

K(Oi,Oj , λ̃) = ψGDK
∇ (Oi; λ̃)T G ψGDK

∇ (Oj ; λ̃)

=

M∑

m=1

1

η̃imη̃jm

Ti∑

t=1

Tj∑

s=1

γ̃m(t)γ̃m(s)km(oit,ojs)
(5.46)

km(oi,oj) = (ϕ(oi) − µ̃m)TC̃−1
m GmC̃−1

m (ϕ(oj) − µ̃m) . (5.47)

There are several issues concerning the solution of (5.46). For ϕ(oi) = oi, we get identical
kernel function to the BDK, but it is merely unfeasible to construct a GMM for other choices
of ϕ(·) that maps features to high-dimensional vectors (e.g. the monomial expansion as in
(5.9)). Therefore, several approximations and adjustments are needed, for details see [LG08a].

5.2 On Training of Dynamic Kernels

In previous sections the construction of supervectors and subsequently, proposal of kernels
dealing with such high-dimensional features were discussed. Now, we will take a closer look
at the treatment of input data and at some normalization techniques related to supervectors.
The result of the SVM classifier is in fact not a probability, it is the distance from the decision
boundary (the exact geometrical distance will be obtained as in (3.23)). The probability
outputs are very handy in situations when several systems are combined in order to obtain
an overall decision. Therefore, some methods concerning probabilistic outputs for SVM will
be given at the end of this section.

At the beginning, it should be noted that the hybrid modelling employing SVM and high-
dimensional vectors demands a huge amount of background data involving as much speakers
as possible. The background data are partitioned into two groups (recall that the SVM is a
binary classifier). One is used to train the UBM and the content of the other group (optionally
bigger, because of high-dimensional mappings) is used as negative examples (impostors) in the
SVM training – one-against-all training. Nevertheless, in [FNG01] another way was followed.
To train the SVM the All-Pairs technique described in [HT98] was applied. Thus, for each
pair of speakers a binary classifier was trained and the pairwise results were combined at the
end. Hence, during the training of a decision boundary between two different classes the data
from other classes were ignored. Obviously, the main disadvantage of such an approach is the
need to evaluate the output of each classifier, what may be intractable in cases when many
speakers are engaged (a solution intended for further work is given in Section 6).
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5.2.1 Dealing with Unbalanced Data

The problem concerns the fact that the amount of positive and negative examples (speaker
vs. impostors), submitted to the SVM training, is often highly disproportional (assuming no
pairwise coupling). In principle, each of the mappings described in sections 5.1.1 and 5.1.2
generates for each speaker’s utterance only one supervector. In the case, when the utterance
is long enough, it can be split into several parts and each of the parts can be mapped to the
new feature space separately. However, this does not solve the problem completely as the
number of impostor speakers is supposed to be huge, because of the one-against-all training.
The weighting has to be implemented directly in the formulation of the SVM problem stated
in (3.27) [MBJ99], thus

minimize




1

2
‖w‖2 + C+

∑

i:yi=+1

ξi + C−
∑

j:yj=−1

ξj



 (5.48)

subject to

∀i : yi(w
Toi + b) ≥ 1 − ξi , (5.49)

where w represents, in agreement with Section 3.3, the normal vector of the hyperplane H
defined in (3.22). Hence, we are able to adjust the cost of misclassifying positive and negative
examples separately – the setting C+ > C− implies that greater cost is set on misclassifying
positive examples and vice versa.

5.2.2 Normalization Techniques

At first, three techniques focused on feature vector normalization will be mentioned. These
are especially helpful when high-dimensional vectors and their dot products are utilized in
the SVM training. One of the well known problems in speaker verification systems is the
choice of the verification threshold. The task is influenced by many disturbing factors making
more difficult to correctly tune the threshold value. Namely: not precisely trained speaker
models, similar voices of speakers, inter and intra speaker variabilities, environment conditions
and many others, which reflect themselves more or less in the verification score. Hence,
subsequently, two common methods of score normalization will be reviewed. And at the end
a method dealing with channel variability compensation will be discussed.

Feature Space Whitening (FSW) deals with the fact that the support vector machine
is not invariant to linear transformations. Consider a set of N two dimensional vectors
X = {x1, . . . ,xN}. Let µ1,2 and σ2

1,2 be the expectation and variance of the first and second

dimension of the vectors in X, respectively. Assuming e.g. µ1 >> µ2 and/or σ2
1 >> σ2

2 leads
to domination of the first dimension in the dot product of the two vectors from X reducing
the dimensionality of the space to one [WR05]. Hence, it is desirable to normalize elements
of the vectors to zero mean and unit variance – whiten the data. Note that the unit variance
normalization is performed employing the matrix G from (5.3) and the kernel function in the
form of equation (5.2).
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Rank Normalization (RN) deals with the same problem as FSW, but in a different
manner. The elements of feature vectors are adaptively rescaled to obtain approximately the
uniform distribution [SFK+05]. The procedure is as follows:

• all the utterances of impostors in the background population and the given speaker
utterance are mapped to higher dimensional vectors,

• the elements of feature vectors are sorted along each dimension,

• value of each element in the feature vector of the given speaker is replaced by its rank
in the sorted list (along each dimension).

It is useful to further normalize the vectors along each dimension to a suitable interval, e.g.
[0, 1]. The disadvantage of RN are its computational costs.

Spherical Normalization (SN) arises from projections used by cartographers. It can
be thought of as a transformation that maps each feature vector onto the surface of a unit
hypersphere embedded in a space one dimension higher then the feature vector itself [WR05].
The value of the kernel function K(xi,xj) can take small as well as large values depending on
xi, xj and thus make the Hessian (3.36) badly conditioned or, in the worst case, even singular
– especially for polynomial kernels with high powers [WC00]. Such a situation can occur even
if elements of each feature vector were already normalized to a narrow interval (e.g. [−1, 1]),
because of the high-dimensionality of supervectors or score space vectors. Therefore, the SN
is applied in advantage before the evaluation of the kernel function. The form of SN mapping
φ : Rn 7→ Rn+1 used in [WR05] has the form

φ(x) =
1√

xTx + d2

[
x

d

]

, (5.50)

where d is an empirically set constant (for whitened data a reasonable choice can be d = 1).
One could also utilize the L2 vector norm ‖x‖2 insted of SN, but this would lead to information
loss (consider two distinct vectors x and 2x).

Zero and Test Normalizations are related to the verification score. The Zero Normal-
ization (Z-norm) method was proposed by [Rey97] and its purpose is to ensure zero mean and
unit standard deviation of scores for speech of impostor speakers. The Z-normalized score for
the s− th speaker and i− th sequence of feature vectors Oi (parametrized utterance) will be
computed according to

LZ(Oi|s) =
L(Oi|s) − µI

σI
, (5.51)

where L(Oi|s) denotes the score for speaker s and utterance i, µI and σI are estimated from
the background population of impostors as follows. The speaker model is tested against
impostor utterances yielding a set of scores related to the given speaker model. This set
is used to compute the Z-norm parameters. Note that the parameters for Z-norm can be
estimated offline during speaker model training.
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The Test Normalization (T-norm) introduced in [Auc00] is computed using the same
formula as Z-norm. The difference consists in estimation of µI and σI. A set of impostor
models is chosen beforehand. The T-norm parameters are then estimated from the set of
scores obtained during the testing phase, where all the impostor models are tested against the
i− th utterance. As expected, the disadvantage of T-norm are the increased computational
demands. Note that the T-norm is very similar to the cohort normalization [RDL+92], but
the score is now in addition normalized by the standard deviation. For instructions how to
adequately choose the cohort speakers for T-norm see e.g. [SR05].

These two techniques can be combined (as done very often) into the so-called ZT-norm,
where Z-norm is followed by the T-norm yielding a superior performance [CVC+06].

Nuisance Attribute Projection (NAP) was presented in [SQC04] and is suited for
SVMs. It reduces the influence of the channel variability in the speaker recognition task
by projecting out the supervector dimensions which are mostly vulnerable to changes of
environment conditions. The projection can be written in the form

x̄ =
(
I − ΓΓT

)
x , (5.52)

where in our case x = ψ(O;θ) defined in (5.1) with dim(x) = Ix, I is the Ix × Ix identity
matrix, Γ denotes Ix × Ip matrix, where Ip is equal to the number of dimensions that we
wish to project out. Γ’s columns are formed by eigenvectors vi corresponding to the Ip largest
eigenvalues λi obtained when solving the eigenvalue problem

A(DIAG(W1) − W )ATvi = λivi , (5.53)

where A = [x1, . . . ,xNx
] represents the data matrix with Nx vectors ordered in columns, 1 is

a column vector of all ones, the function DIAG(x) creates a zero matrix with diagonal equal
to entries of the vector x and W = [Wij ] is a Nx × Nx symmetric, weight matrix. It can be
chosen in several ways, e.g.

• Wchannel – Wij = 1 if xi and xj differ in the channel, 0 otherwise,

• Wsession – Wij = 1 if xi and xj correspond to the same speaker, 0 otherwise.

In the first case minimization of cross-channel distances is demanded, in the latter case min-
imization of the session variability is desired [SCB05]. The problem with Wchannel is that it
tries to put together also different speakers, although recorded on different channels. This
can be solved by centralizing the supervectors of one speaker. Denote As as the part of A

containing Ns supervectors pertaining to the speaker s. The centralization can be done with
the use of Ns × Ns matrix Js as Acs = AsJs, where Acs is the centralized matrix of the
speaker s and

Js = I − 1

Ns
1 1T . (5.54)

Hence, the speaker identity should be normalized out, but several recordings of sessions for one
speaker are needed to correctly estimate the mean value of speaker supervectors. Nevertheless,
the centralization is quite useful also for Wsession [CSRS06b].
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Some remarks should be stated. The eigenvalue problem (5.53) is symmetric. Hence, the
eigenvectors have unit lengths and they form even a orthonormal basis. If the problem would
not be symmetric, the columns of Γ would need to be normalized to unit lengths (for details
see the definition of the problem in [SQC04]). Note, that the dimension of the feature vector
after being projected (utilizing (5.52)) is preserved, only the rank (also called corank) of the
matrix A decreased – the vector x is projected onto a plane in the high-dimensional space.
The formulation of NAP was originally proposed for SVMs, but recently some attempts have
been made to extended it also to conventional GMMs [VM08]. And finally, it should be stated
that NAP demands a huge labeled set of background data to be trained.

5.2.3 Probabilistic Outputs for SVM

In this subsection several methods for adjustment of output of SVM classifiers will be
discussed. The output of the support vector machine can be thought of as a distance from
the decision boundary, which is in principle unbounded. Thus, it can take any values in
the interval (−∞,∞). Nevertheless, if only a close set of trials is considered, we can easily
identify the boundary values of the set of distances D = {di}Td

i=1. One trial represents one
verification attempt, when the identity of a claimed speaker is tested against the identity of
one reference speaker and di is one distance associated to one trial. The set D will be obtained
after submitting all the trials to the verification system. The first presented method maps
the set of results D onto the interval [0, 1] utilizing a simple linear function in the form

D[0,1] = {di : d
[0,1]
i = kdi + b, i = 1, . . . , Td} ,

k = (max
d

{D} − min
d

{D})−1 , b = −k · min
d

{D} . (5.55)

An analogical approach to the rank normalization can be exploited too. Hence, the results are
sorted and their values are replaced by their rank in the sorted list (subsequently normalized
to the interval [0,1], i.e. percentile). However, when additional trials accrue, the results have
to be remaped again as the boundary values of the set of distances may have changed.

Another, more sophisticated method, uses a GMM to rescale the results [KSKW07]. It
estimates the posterior probabilities p(f(xi)|yi = +1) and p(f(xi)|yi = −1) utilizing ML
approach and labeled data. The final decision is computed according to the Bayes rule

p(yi = +1|f(xi)) =
p(f(xi)|yi = +1)P (y = +1)

∑

j∈{1,−1} p(f(xi)|yi = j)P (y = j)
, (5.56)

where the function f(·) denotes the SVM decision boundary, yi represents the label of class
xi and the priors P (y = ±1) are estimated according to the training set. In [Pla99] the
probability p(yi = +1|f(xi)) is estimated directly and has the form of a sigmoid function

p(yi = +1|f(xi)) =
1

1 + exp(Af(x) +B)
, (5.57)

where A,B control the slope and the position of the inflection point of the sigmoid, respec-
tively. Both can be estimated via ML approach (see [Pla99]).
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5.3 Conclusion and Remarks

It is quite difficult to establish the best or most suitable mapping/kernel from the ap-
proaches described above. Each of the techniques has its benefits and disadvantages. Recently,
attempts to study the complementarity of parametric and derivative kernels have been carried
out [LG07]. After meeting some assumptions, derivative mappings can be seen as gradient
ascent updates of parametric ones. This is quite straightforward if considering the discussion
of the Fisher mapping in Section 5.1.2. Hence, the complementarity of such two kernels can
be anticipated. Actually, the information carried by supervectors based on GMM means and
supervectors based on adaptation matrices should be uncorrelated too. Mean supervector
kernels try to delimitate the part of the acoustic space specific for the speaker, whereas the
derivative kernels and kernels based on adaptation matrices represent a ”data error” from
which the generative model suffer. Thus, a combination of such systems would be suitable.
Note that when the generarative classifier in the form of GMM would be optimal (see Section
3.1), the information supported by the derivative mappings would be of no use.

Until now, the SVM was assumed as a tool utilizing proposed kernels. Nevertheless,
through the time several other machines were developed and exploited. E.g. the Sparse
Kernel Logistic Regression (SKLR) proposed in [KKS+06], which models directly the posterior
probabilities of the class membership, or the learning algorithm in [SMW08], which has the
advantage that it does not suffer from the strict Mercer’s kernel restrictions defined in (3.38).

In this chapter only MLLR based kernels have been discussed, but generally, the super-
vectors can be build on any other transformation matrix that possess a unique information
about the speaker’s identity – e.g. fMLLR matrix introduced in Section 4.3 [FLBG07].

The last remark concerns the dimensionality of supervectors, which is high indeed (several
thousands). Hence, methods for dimensionality reduction like Principial Component Analysis
(PCA), Linear Discriminant Analysis (LDA) or Heteroscedastic LDA (HLDA) may come
handy [QB02].



Chapter 6

Conclusion and Future Work

This report has focused on the process of augmentation of statistical models, especially
on augmentation of GMMs. Two group of approaches were discussed. The first, denoted
as parametric kernels, involved directly the parameters of statistical models or parameters
related to the statistical model (transformation matrices acquired in the adaptation process).
Supervectors were formed and mainly means were considered. However, the GLDS mapping
(assuming order of monomials greater then two), or probabilistic distance kernels described
at the beginning of Section 5.1.1, have utilized in a simple way also covariances. The latter
group, derivative kernels, was based upon derivatives of the statistical model. The derivative
mappings may be interpreted as a measure of errors related to data and model structure.
As stated in Section 2, supervectors can be seen as higher level features situated in a high-
dimensional feature space. Recalling Section 5.2.1, only a few supervectors (often only one)
related to one speaker are extracted – mapped into the high dimensional space. Hence, tools
as GMM or HMM that estimate class models are inappropriate. To cope with such a problem
a high amount of background data (data from non-target speakers) is demanded to delimitate
the speaker specific region. Subsequently, the SVM is used to define the boundaries between
speaker data and background data that belong to all the other, non-target speakers.

The problem of hybrid modelling is a new one and has a great potential to be further
developed. The basics have been already described in the last few years, but there are still
issues to deal with. Let’s mention some of them, most suitable for further work.

• As already pointed out, we are able to describe the shifting of each UBM mixture accord-
ing to the speaker data. Another source of information, when thinking of augmentation
of GMMs, would be the description of inner topology of one GMM that represents the
class model of one particular speaker. The inner topology can be thought of as a de-
scription of the relation between pairs of mixtures (e.g. relation in the sense of direction
or distance). To guarantee the consistency in the process of mixtures estimation in cases
when distinct utterances originating from one speaker are modeled, an adaptation of
the UBM has to be involved. The adaptation ensures same initial conditions in the
training process and defines connections between mixtures in the adapted GMM and

38
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the original UBM. Thus, it is easy to determine which two mixtures should be compared
when considering two GMMs (both adapted from the same UBM).

• The theoretical background for derivative kernels has been introduced by Smith [Smi03].
There are many opportunities mainly in the choice of the score-operator F̃ (see (5.39))
not investigated yet. Similar theoretical background should be developed also for para-
metric kernels. By now, the GMM means are extracted in a raw form (they are only
concatenated). However, the supervectors may be processed further to extract as many
information as possible. E.g. the GLDS mapping (see beginning of Section 5.1.1) could
be employed.

• In Section 5.2 two SVM training approaches were mentioned, the one-against-all training
and All-Pairs technique. The main disadvantage of the All-Pairs technique are the
computational costs (see Section 5.2). However, when one would suitably divide the
background data into few separate clusters and a decision boundary would be computed
only between the speaker model and data in each of the clusters, the number of classifiers
(decision boundaries) would decrease. It can be anticipated that such boundaries would
describe the speaker discrimination more properly. Such an approach could be further
investigated in the future work.

• Other problem of main importance refers to the background data submitted to the
training of the SVM classifier. The background data play a crucial role in the estimation
of SVM parameters (see the discussion in the beginning of the conclusion). Hence, two
problems has to be examined – what data should be used (criterion) and how should
they be chosen (method)?

• After the discussion in the conclusion of Section 5 a tool/kernel exploiting the com-
plementarity of derivative and parametric kernels would be of interest. Generally, a
common tool for fusion of mappings on the kernel level is demanded. Some investiga-
tions were already carried out by Longworth and Gales [LG08b].

• Another improvement, suitable for the future work, concerns the GMM covariances and
solves the following question. How could be the change in mixture covariances employed
into the high dimensional mapping in an useful and comfort way?

• In Section 5.1.1.2 a kernel induced by MLLR transformation matrices was proposed.
To fully exploit its possibilities, the approach should be extended also to the LVCSR
systems.

• One should employ and investigate also other classifiers than SVM.

The above specified points are sorted in accordance to the priority for my future work.
The approaches presented in this work were not discussed in much depth. The intention of
the submitted report was to become familiar with the task of hybrid modelling and related
methods. More detailed description of the whole problem and further investigations will be
the subject of the PhD thesis.
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