
University of Southern Denmark

Master Thesis

Classification of terrain based on
proprioception and tactile sensing
for multi-legged walking robot

Author:
Bc. Martin Bulín

Supervisors:
Dr. Tomas Kulvicius

Dr. Poramate Manoonpong

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Embodied AI & Neurorobotics Lab
Maersk Mc-Kinney Moller Institute

May 27, 2016

http://www.sdu.dk
http://www.kitt.evee.cz
https://sites.google.com/site/ktomsite/
http://manoonpong.com
http://ens-lab.sdu.dk


i

Declaration of Authorship
I, Bc. Martin Bulín, declare that this thesis titled, “Classification of terrain
based on proprioception and tactile sensing for multi-legged walking robot”
and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other insti-
tution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

Signed:

Date:



ii

“It is our choices... that show what we truly are, far more than our abilities.”

J. K. Rowling



iii

UNIVERSITY OF SOUTHERN DENMARK

Abstract
Faculty of Engineering

Maersk Mc-Kinney Moller Institute

Embodied AI & Neurorobotics Lab

Master of Science

Classification of terrain based on proprioception and tactile
sensing for multi-legged walking robot

by Bc. Martin Bulín

Proprioception and tactile sensing in insect-like legged robots is a fast,
illumination insensitive and biologically inspired way of ground perception.
In this thesis, 14 virtually generated terrains are classified based on the
mentioned sensor types for a simulated version of hexapod robot AMOS II.
A feedforward neural network framework equipped with a novel network
pruning algorithm has been developed for classification. We observe over
92% classification accuracy on deterministic terrain data and 72% on man-
ually noised data. The pruning algorithm removes unimportant synapses
(generally more than 90%) from a fully-connected network, while the classi-
fication accuracy does not drop significantly. The number of input neurons
is reduced by 65%, resulting in the minimal network structure for the classi-
fication problem. A theory of using minimal structures for feature selection
is proposed. The thesis outcome consists of a minimal neural network capa-
ble of terrain classification based on selected features of proprioceptive and
tactile sensory signals.

HTTP://WWW.SDU.DK
http://ens-lab.sdu.dk


iv

Acknowledgements
I would like to express my sincere gratitude to my advisor Dr. Tomas Kulvicius
for the continuous support of my work, for his valuable comments and
supervision of my master thesis.

Next, I would like to thank my second supervisor Dr. Poramate Manoonpong
for helping me get started with the simulation and for a great introduction to
neural networks during his courses at the University of Southern Denmark.

Finally, I would like to thank people from the Research Network for Self-
Organization of Robot Behavior in Leipzig for providing the LpzRobots
simulator, which was used for the data collection.



v

Contents

Abstract iii

1 Introduction 1
1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Master Thesis Objectives . . . . . . . . . . . . . . . . . . . . 6
1.3 Relation to the State of the Art . . . . . . . . . . . . . . . . . 6
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Classification Method 8
2.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Neuron Principle . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Learning Algorithm for Network Training . . . . . . . . . . . 10

2.3.1 Using Mini-batches . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Matrix Notations . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Forward Propagation . . . . . . . . . . . . . . . . . . . 12
2.3.4 Error Calculation . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 Parameter Update . . . . . . . . . . . . . . . . . . . . 12

2.4 Network Pruning Algorithm . . . . . . . . . . . . . . . . . . . 14
2.4.1 Pruning Method . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Algorithm Realization . . . . . . . . . . . . . . . . . . 14
2.4.3 Datasets for Evaluation of the Pruning Algorithm . . 17
2.4.4 Using Network Pruning for Feature Selection . . . . . 19

2.5 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . 20

3 Terrain Classification for Hexapod Robot AMOS II 21
3.1 Overall Process Summary . . . . . . . . . . . . . . . . . . . . 21
3.2 Experimental Environment Specification . . . . . . . . . . . . 23

3.2.1 Hexapod Robot AMOS II . . . . . . . . . . . . . . . . 23
3.2.2 AMOS II Simulation . . . . . . . . . . . . . . . . . . . 25
3.2.3 Tripod Gait Controller . . . . . . . . . . . . . . . . . . 27

3.3 Generation of Virtual Terrains . . . . . . . . . . . . . . . . . 28
3.3.1 Terrain Features . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Features Determination for Various Terrains . . . . . . 29
3.3.3 Terrain Noise . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Building a Feature Vector . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Feature Vector Normalisation . . . . . . . . . . . . . . 36
3.5.2 Signal Noise . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Generation of Datasets . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Training and Classification . . . . . . . . . . . . . . . . . . . . 40

3.7.1 Evaluation Measures . . . . . . . . . . . . . . . . . . . 41



vi

4 Experimental Evaluation 42
4.1 Verification of the Network Implementation . . . . . . . . . . 42
4.2 Performance Evaluation of the Pruning Algorithm . . . . . . 44

4.2.1 Evaluation on XOR Dataset . . . . . . . . . . . . . . . 44
4.2.2 Evaluation on MNIST Dataset . . . . . . . . . . . . . 45

Analysis of Minimal Structure in MNIST Dataset . . . 47
4.2.3 Comparison to Other Pruning Methods . . . . . . . . 48

4.3 Results of Terrain Classification . . . . . . . . . . . . . . . . . 49
4.3.1 Classification Performance . . . . . . . . . . . . . . . . 49

Comparison to Other Classification Methods . . . . . 52
4.3.2 Selection of Learning Parameters . . . . . . . . . . . . 53
4.3.3 Influence of Noise on Classification . . . . . . . . . . . 54
4.3.4 Time Needed for Classification . . . . . . . . . . . . . 55
4.3.5 Analysis of Used Sensor Types . . . . . . . . . . . . . 56

4.4 Terrain Classification Using Network Pruning . . . . . . . . . 57
4.4.1 Feature Selection for Terrain Classification . . . . . . . 61

5 Discussion 64
5.1 Methods Recapitulation . . . . . . . . . . . . . . . . . . . . . 64
5.2 Comparison of Results . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusion and Outlook 67

Bibliography 68

A1 Supplementary Data 70
A1.1 Sensory Data Examples . . . . . . . . . . . . . . . . . . . . . 70
A1.2 Generated Datasets . . . . . . . . . . . . . . . . . . . . . . . . 73
A1.3 Supplementary Figures for Feature Analysis . . . . . . . . . . 74

A2 Method Implementation 76
A2.1 Implementation of the Neural Network . . . . . . . . . . . . . 76
A2.2 Implementation of the Terrain Classification . . . . . . . . . . 79

A3 Structure of the Workspace 83

A4 Code Documentation 84
A4.1 Neural Network Framework KITTNN (API) . . . . . . . . . . 84
A4.2 Terrain Classification Scripts (API) . . . . . . . . . . . . . . . 85



vii

List of Figures

1.1 Illustration of a classification problem. . . . . . . . . . . . . 2

2.1 Structure of a feedforward neural network . . . . . . . . . . 8
2.2 A model neuron . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Used transfer functions: sigmoid and tanh . . . . . . . . . . 10
2.4 Training process flowchart. T1: Threshold for a terminating

condition based on a learning error. If the error is reduced to
be lower than this threshold, the learning process is stopped.
T2: Threshold for a terminating condition based on the num-
ber of iterations (epochs). The learning process is stopped
after a specified number of epochs, no matter how successful
the training has been. . . . . . . . . . . . . . . . . . . . . . 10

2.5 Pruning Algorithm: hypothesis formulation . . . . . . . . . 14
2.6 Overall flowchart of the pruning process . . . . . . . . . . . 15
2.7 The Pruning Algorithm: initialized variables are in bold,

red marked functions refer to 2.8 and 2.9 respectively . . . . 15
2.8 Synaptic pruning based on weight changes and current per-

centile value . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Evaluation of the classification accuracy after pruning . . . 16
2.10 2D XOR Data illustration . . . . . . . . . . . . . . . . . . . 18
2.11 XOR Dataset: minimal network structures . . . . . . . . . . 18
2.12 MNIST Data illustration (LeCun and Cortes, 1998) . . . . . 19
2.13 Analysis of the minimal structure examplified on digit 5

(MNIST dataset) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.14 Screenshot of the graphical user interface . . . . . . . . . . . 20

3.1 Terrain Classification: overall process diagram . . . . . . . . 21
3.2 AMOS II. (Manoonpong, 2011) . . . . . . . . . . . . . . . . 23
3.3 Structure of the AMOS’s leg. (Manoonpong, 2011) . . . . . 24
3.4 Structure of the two repositories: LPZRobots and GoRobots.

(Martius et al., 2009) . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Virtual alternative for AMOS II. . . . . . . . . . . . . . . . 26
3.6 2-neuron network oscillator (“Adaptive Embodied Locomo-

tion Control Systems”) . . . . . . . . . . . . . . . . . . . . . 27
3.7 Schematic diagram of tripod gait controller . . . . . . . . . 28
3.8 Similarity measures among various terrain types. . . . . . . 30
3.9 Examples of noisy terrains: terrain rock, angle sensors . . . 32
3.10 Thoraco Sensor (ATRf) output examples, 14 terrains . . . . 33
3.11 Coxa Sensor (ACRm) output examples, 14 terrains . . . . . 33
3.12 Femur Sensor (AFRh) output examples, 14 terrains . . . . . 34
3.13 Foot Contact Sensor (FRf) output examples, 14 terrains . . 34
3.14 Forming a feature vector out of a data file. . . . . . . . . . . 35



viii

3.15 Normalised feature vector examples . . . . . . . . . . . . . . 37
3.16 Examples of noisy signals: concrete, angle sensors . . . . . . 38
3.17 Three sets of data in a dataset. . . . . . . . . . . . . . . . . 39
3.18 Target vector for concrete . . . . . . . . . . . . . . . . . . . 39
3.19 Procedure of training and testing a network . . . . . . . . . 40

4.1 Learning process compared to another framework (Scikit-
neuralnetwork (sknn): (Champandard and Samothrakis, 2015)). 42

4.2 Comparison of average epoch processing time (1000 sam-
ples) to another framework (Scikit-neuralnetwork (SKNN ):
(Champandard and Samothrakis, 2015)), MNIST dataset . 43

4.3 Results of the pruning algorithm on XOR dataset. . . . . . 44
4.4 PA process illustration on XOR . . . . . . . . . . . . . . . . 45
4.5 Pruning Algorithm Results on MNIST Dataset. . . . . . . . 46
4.6 PA process illustration on MNIST . . . . . . . . . . . . . . 47
4.7 Feature Selection : MNIST Analysis. . . . . . . . . . . . . . 48
4.8 Comparison of the developed PA to other pruning methods

(10 observations). . . . . . . . . . . . . . . . . . . . . . . . . 48
4.9 Confusion matrix of classification results on a deterministic

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.10 Confusion matrix of classification results on a noisy dataset. 51
4.11 Training process with various learning rates. . . . . . . . . . 53
4.12 Training process with various networks differing in the num-

ber of hidden neurons. . . . . . . . . . . . . . . . . . . . . . 53
4.13 Classification accuracy vs. learning rate and network struc-

ture (10 observations) . . . . . . . . . . . . . . . . . . . . . 54
4.14 Additive terrain and signal noise: influence on the accuracy

(10 observations). . . . . . . . . . . . . . . . . . . . . . . . . 54
4.15 Analysis of time needed for proper classification (10 obser-

vations). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.16 Average epoch time (10 observations) depending on the num-

ber of simulation timesteps. . . . . . . . . . . . . . . . . . . 55
4.17 Evaluation of different sensor types separately (average of

10 observations, timesteps: 10, 40, 80). . . . . . . . . . . . . 56
4.18 Average epoch time for different sensor types. . . . . . . . . 57
4.19 Pruning Algorithm Results on AMTER Dataset. No noise. 58
4.20 Synaptic pruning of configurations A (reference), B (80 timesteps)

and D (noisy data). . . . . . . . . . . . . . . . . . . . . . . . 59
4.21 Synaptic pruning of configurations A’ (reference), C (100

hidden neurons), E (proprioceptive sensors) and F (tactile
sensors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.22 Active neurons in the network after pruning [%]: configura-
tions A, B, D (10 observations) . . . . . . . . . . . . . . . . 60

4.23 Active neurons in the network after pruning [%]: configura-
tions A’, C, E, F (10 observations) . . . . . . . . . . . . . . 60

4.24 Number of paths to the output layer for every feature of the
input example. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.25 Explanation of a path from input to output layer in a min-
imal structure. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.26 Used features of thoraco-coxa proprioceptive sensors for in-
dividual classes. . . . . . . . . . . . . . . . . . . . . . . . . . 62



ix

4.27 Used features of tactile sensors for individual classes. . . . . 62
4.28 Influence power of single features on classes: coxa sensors . 63
4.29 Influence power of single features on classes: tactile sensors 63

A1.1 Thoraco proprioceptive sensors, front legs . . . . . . . . . . 70
A1.2 Coxa proprioceptive sensors, front legs . . . . . . . . . . . . 70
A1.3 Femur proprioceptive sensors, front legs . . . . . . . . . . . 70
A1.4 Thoraco proprioceptive sensors, middle legs . . . . . . . . . 71
A1.5 Coxa proprioceptive sensors, middle legs . . . . . . . . . . . 71
A1.6 Femur proprioceptive sensors, middle legs . . . . . . . . . . 71
A1.7 Thoraco proprioceptive sensors, hint legs . . . . . . . . . . . 71
A1.8 Coxa proprioceptive sensors, hint legs . . . . . . . . . . . . 71
A1.9 Femur proprioceptive sensors, hint legs . . . . . . . . . . . . 72
A1.10 Tactile sensors, front legs . . . . . . . . . . . . . . . . . . . 72
A1.11 Tactile sensors, middle legs . . . . . . . . . . . . . . . . . . 72
A1.12 Tactile sensors, hint legs . . . . . . . . . . . . . . . . . . . . 72
A1.13 Used features of coxa-trochanteral proprioceptive sensors for

individual classes. . . . . . . . . . . . . . . . . . . . . . . . . 74
A1.14 Used features of femur-tibia proprioceptive sensors for indi-

vidual classes. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A1.15 Influence power of single features on classes: thoraco-coxa

sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A1.16 Influence power of single features on classes: femur-tibia

sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A2.1 KITTNN package : Implemented neural network framework 76
A2.2 kitt_neuron.py : Neuron class inheritance . . . . . . . . . . 77
A2.3 kitt_net.py : Neural Network Initialization . . . . . . . . . 78
A2.4 Terrain classification process - overall diagram. . . . . . . . 79
A2.5 Software architecture for LPZRobots and GoRobots. (Mar-

tius et al., 2009) . . . . . . . . . . . . . . . . . . . . . . . . 80
A2.6 The process of data acquisition from the simulation. . . . . 81
A2.7 The structure of rough data directory. . . . . . . . . . . . . 81
A2.8 Workflow of generating a dataset . . . . . . . . . . . . . . . 82



x

List of Tables

2.1 XOR problem definition . . . . . . . . . . . . . . . . . . . . . 17

3.1 Summary of proprioceptive sensors of AMOS II hexapod robot 25
3.2 Initialization of tripod_controller.h (see appendix A4) . . . . 27
3.3 Terrain features and their ranges . . . . . . . . . . . . . . . . 29
3.4 Parameters of virtual terrain types . . . . . . . . . . . . . . . 29

4.1 Comparison of f1-score on MNIST to another framework (SKNN ) 43
4.2 PA progress example on MNIST . . . . . . . . . . . . . . . . 46
4.3 Comparison of the developed PA to other pruning methods

(10 observations). Required accuracy on validation data: XOR:
0.99, MNIST: 0.85. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Classification results on generated datasets (see dataset pa-
rameters in Table A1.1). . . . . . . . . . . . . . . . . . . . . . 50

4.5 Classification report for a deterministic dataset and a noisy
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Comparison to other classification methods implemented by
(Pedregosa et al., 2011) . . . . . . . . . . . . . . . . . . . . . 52

4.7 Chosen configurations for PA demonstration. . . . . . . . . . 57
4.8 Results of the PA on terrain datasets. . . . . . . . . . . . . . 58

5.1 Studies of terrain classification for legged robots. . . . . . . . 66

A1.1 Generated datasets . . . . . . . . . . . . . . . . . . . . . . . . 73



xi

List of Abbreviations

AI Artificial Intelligence
AMOS II Advanced Mobility Sensor Driven-Walking Device - version II
ANN Artificial Neural Network
API Application Programming Interface
CPG Central Pattern Generator
GDA Gradient Descent Algorithm
GUI Graphical User Interface
KITTNN KITT Neural Network : the developed NN framework
k-NN k-Nearest Neighbours
NN Neural Network
PA Pruning Algorithm
RF Random Forest
SIFT Scale Invariant Feature Transform
SKNN SciKit-NeuralNetwork library
SURF Speed Up Robust Feature
SVMs Support Vector Machines



1

Chapter 1

Introduction

The question of how information about the physical world is sensed moti-
vated Frank Rosenblatt in 1958, when he presented his perceptron, a model
capable of learning and pattern recognition.

His invention has been evolved over half a century in the field of machine
learning, resulting in different kinds of artifical neural networks and deep
learning methods. Out of the broad array of applications, we can mention
the face recognition helping to find criminals, weather forecasting, searching
engines or self-driving cars. Scientists from Cornell University in New York
used deep learning to locate whales in the ocean so that ships could avoid
hitting them (Kaggle, 2013).

In this thesis, I focus on classification, a widely used area of machine learning,
using feedforward neural networks. The first part of the study is devoted
to developing a working classification framework, based on a fully-connected
network structure, which is commonly being used nowadays.

The novelty of the work consists of inventing a network pruning algorithm,
which is able to find a minimal network structure needed for classification.
The hypothesis is that some of the synapses are unimportant in the fully-
connected network and hence the classification accuracy will not drop sig-
nificantly after their removal.

In the second part of the study, the developed neural network framework is
used for terrain classification for a hexapod robot AMOS II (Manoonpong,
2011). The classification is based on proprioceptive (joint angles) and tac-
tile (ground contacts) sensing of the hexapod and the classification data is
virtually generated using the LpzRobots simulator (Martius et al., 2009).

The hypothesis is that using proprioceptive and tactile sensors, sensory data,
gathered in a period of time, will be needed for terrain classification, however,
then, the prediction will be performed instantly, as no further data processing
is required.

The invented pruning algorithm is used to find a minimal network structure
for the terrain classification problem. Additionally, based on the minimal
structure, the input vector features are analysed in terms of their contribu-
tion to classification.

Having the information about the terrain, the hexapod can adapt its gait
accordingly to save some energy and/or to be even able to traverse the
surface.



Chapter 1. Introduction 2

1.1 State of the Art

The idea of classification is based on training a model on a set of data by
setting some model parameters. A wide range of classification methods, dif-
fering one from each other in their mathematical backgrounds, are provided
nowadays, however, the classification procedure follows a conventional line:

1. model initialization;

2. learning process (using data A);

3. prediction (using never-seen data B).

To fit a classifier to a problem, one needs to define a problem data struc-
ture. Data consists of samples and discrete targets, often called classes. The
samples are sooner or later converted into so called feature vectors of a fixed
length. The length of feature vectors usually determines an input of a chosen
classifier and the number of classes set an output.

Basically, any kind of problem, ordinarily being solved by a human, can be
transformed to a classification task for an artificial agent, if we define classes
and find a numerical representation.

Overview of Classification Methods

The data samples usually consist of multiple features and the classes are
linearly inseparable in most of the cases. The goal is to separate the classes
in a high-dimensional space (illustrated in Fig. 1.1).

Figure 1.1: Illustration of a classification problem.

Support Vector Machines (SVMs); (Cortes and Vapnik, 1995) construct a
set of hyperplanes in the high dimensional space to separate the classes. The
position of the hyperplanes is based on so-called support vectors, which de-
fine distances to the nearest training-data points. Using the support vectors,
a hyperplane with the largest margin between two classes is created and used
for classification. The linear inseparability is solved by a kernel trick, which
maps the original finite-dimensional space into a much higher-dimensional
space.

The commonly known k-Nearest Neighbours (k-NN ) algorithm uses a more
straightforward way to classify samples into classes. Instead of finding the
separation planes, this approach computes distances from the classified sam-
ple to k nearest samples of the training data. Then the class is determined by



Chapter 1. Introduction 3

the majority vote of those known samples. This approach skips the training
process, however, the prediction is computationally expensive.

The Random Forest (RF) approach (Ho, 1995) is based on decision trees,
which learn simple decision rules inferred from the data features. Decision
trees are known for having troubles with over-fitting, therefore the Random
Forest uses many decision trees and finds a classification result by averaging
their outputs (bagging).

Each of those methods has some advantages and disadvantages on a particu-
lar type of data and its distribution. For instance, SVMs are a powerful tool
for binary problems with an outlier free distribution. For a multiclass data,
where many outliers are expected, one might want to choose Random Forest,
however, the decision trees usually take a longer time in classification.

To summarize, the best classification method has not been proved yet. How-
ever, neural networks (NN ) are being used in more and more fields nowadays.

Feedforward Neural Networks

Classification algorithms are often considered to behave intelligently while
successfully accomplishing a particular task. To measure the intelligence of
an artificial system, a comparison to the human behaviour is often used. If
the goal is to model the human behaviour artificially, neural networks are
certainly the most accurate imitation of a human brain out of the proposed
methods.

The perceptron (Rosenblatt, 1958) is a binary classifier mapping an input
vector X = [x1, x2, ..., xn] to an output fp(X); (Eq. (1.1)).

fp(X) =

1, if W ·X + b > 0
0, otherwise

(1.1)

where W = [w1, w2, ..., wn]T is a vector of weights and b is a bias, which
shifts the decision boundary away from the origin.

These parameters (W and b) are considered as perceptron’s memory. Finding
their optimal values, a single perceptron is capable of classifying linearly
separable samples of two classes. This searching for the parameter values,
based on some labeled data, is considered as learning.

To avoid the requirement of linear separability, multiple perceptrons are con-
nected into a directed graph, which forms a multilayer perceptron. Then,
replacing the fp() by another function, so-called transfer function (e.g. sig-
moid or tanh - see Fig. 2.3), every unit generates a continuous output. The
resulting structure is then called a feedforward neural network (see Fig. 2.1),
which is generally capable of multiclass classification of linearly inseparable
classes.



Chapter 1. Introduction 4

Network Pruning Algorithms

In general, increasing number of neurons in the network helps to deal with
outliers and improves the classification. On the other hand, to obtain gen-
eralization in systems trained by examples, the smallest system that will fit
the data should be used. Moreover, increasing number of synapses increases
the dimensionality of weight matrices and so slows down the training pro-
cess as well as the prediction. The aim of a network designer should be to
find a minimal structure, where only connections important for classifica-
tion remain, while the classification accuracy requirement is met. Two basic
approaches of getting such structure are available:

1. train a network that is larger than necessary and then remove the parts
that are not needed;

2. start from a small structure, then keep adding neurons and synapses
until the network is capable of learning.

In (Reed, 1993), the author makes a good overview of proposed pruning
algorithms. Pruning algorithms remove some of the synapses from a fully-
connected network, which complies with our option 1. The research question
is to distinguish synapses that are important for classification from those that
are not used.

A brute force pruning, meaning removing the synapses one by one with
an accuracy check after every iteration, results in O(MW 2) time for each
pruning pass, whereW is the number of weights (synapses),M is the number
of training patters and O(W ) is the forward propagation time. As this can
be slow for larger networks, most of the pruning algorithms take less direct
approaches, generally split into two groups:

1.a sensitivity calculation methods;

1.b penalty-term methods.

The first group (1.a) is based on estimating the sensitivity of the error func-
tion to removal of an element. In general, a network is trained, sensitivities
are estimated and then weights and nodes are removed. The disadvantage
of this approach is that correlated elements are not detected. This means
that after removal of one synapse, weights of the remaining synapses might
not be valid for the smaller network.

The penalty-term methods (1.b) reward the network for choosing an efficient
solution by adding terms to the objective function. For instance, weights
close to zero are not likely to influence the output much and so can be elim-
inated. Hence the cost function is modified so that backpropagation drives
unnecessary weights to zero and, in effect, removes them during training. In
this manner, the training and pruning are effectively done in parallel.

A performance evaluation of the brute force algorithm and an algorithm
presuming that zero weights do not influence the output, is presented in
section 4.2.3 of this study.

Moreover, having the minimal network structure, features important for clas-
sification can be effectively selected and analysed (see section 2.4.4).



Chapter 1. Introduction 5

Terrain Classification for Legged Robots

Multi-legged autonomous robots have become popular for their ability to
deal with various terrain types, which might be impassable for wheeled
robots. Terrain classification helps to adapt their gait and so to optimize
the walking performance. In general, legged robots are equipped by a broad
range of sensors. Several studies have been done on the terrain classification
topic, where each of them is based on a specific sensor type:

Starting with the vision-based classification methods, in (Zenker et al., 2013),
the authors present an online terrain classification system based on a monoc-
ular camera. The classification algorithm is based on extracting features
from images using either SIFT (Lowe, 2004) or SURF (Bay, Tuytelaars,
and Gool, 2006) and the classification is performed by SVMs. The per-
formance is evaluated on 8 terrain types with the accuracy of 90%. This
approach is currently used on the hexapod robot AMOS II, which is also the
target platform of this study.

In spite of the fact that the Matilda platform in (Mou and Kleiner, 2010)
uses belts, not legs, the topic is similar. Vision is used in combination with
laser and vibration readings to classify terrain for online adapting robot
velocities. The final classification result is provided as a combination of
single classifiers. The final classifier is robust towards changing illumination
and able to recognize 5 different terrains with an accuracy rate close to 100%.

Regarding a classification based on laser sensors, the laser range finder in
(Kesper et al., 2012) provides some information about terrain roughness. In
this case, it is not a terrain what is actually classified, but just a roughness
factor is computed and a proper gait with corresponding behaviour (also on
the AMOS II platform) is selected, based on the roughness estimation.

In (Hoepflinger et al., 2010), the author writes about classification based on
tactile (haptic) sensing. A force sensing device was integrated in a robotic leg
to obtain haptic feedback from a prescribed knee joint actuation. The results
of a multiclass AdaBoost classifier showed that tactile sensors are capable of
recognizing ground shapes, however, the algorithm performed slightly worse
when classifying different surface types.

The author of (Coyle, 2010) devoted his thesis to proprioceptive sensors of
a vehicle. In (Ordonez et al., 2013) using internal vibration data is also
considered as proprioception sensing. In (Bermudez et al., 2012), the author
uses vibration data from the on-board inertial measurement unit to classify
three types of rough terrain for a legged robot and reaches an accuracy over
90%.

In (Xiong, Worgotter, and Manoonpong, 2014), the authors use observations
of the motor signals, generated by the controller, to classify six surfaces with
a high accuracy.

Based on the related study, a combination of more sensor types seems to
be the best choice regarding the classification accuracy. However, some
requirements regarding the target platform, initial purpose of classifying
the terrain or another conditions. For instance, vision-based sensors can
hardly be used at night. Moreover, processing of data from more sensors



Chapter 1. Introduction 6

might exceed time limitations for classification. An interesting observation
from the literature is that terrain classification results are mostly successful,
however, in most of the studies, only a little number (3, 6, maximally 8 in
(Zenker et al., 2013)) kinds of terrains are used for classification.

1.2 Master Thesis Objectives

The main objectives of this study are:

1. To implement a general classification framework using feedforward neu-
ral networks;

2. To develop a new network pruning algorithm capable of finding the
minimal network structure for a given dataset;

3. To generate a dataset of virtual terrain types using the AMOS II sim-
ulation;

4. To classify the virtually generated terrain types using proprioceptive
and tactile sensing.

The implemented classification method will be capable of learning and clas-
sification of commonly known datasets as well as the terrain dataset. It will
also be compatible with the needs of the new pruning algorithm.

The pruning algorithm will be evaluated on commonly known datasets to
check the functionality. Then, it will be applied on the terrain classification
problem.

The terrain classification will be evaluated on the simulation data. As a
reference, deterministic data will be classified. Then a Gaussian signal noise
will be added to simulate a real world environment and the classification
performance on the noisy data will be compared to the reference.

1.3 Relation to the State of the Art

The target platform, hexapod robot AMOS II (see section 3.2.1), is equipped
with a wide range of sensor types. However, in this study, we use only
proprioceptive and tactile sensing for the terrain classification and in the
following lines the reasons for this choice are listed:

1. Biological inspiration. Based on (Bräunig and Hustert, 1980), in in-
sects, the cell bodies of the sensory neurons are located in the periph-
ery, close to the site of stimulus reception. It is presumed that these
neurons help the insect to sense the position of its legs and so to per-
ceive the shape of the surface. Proprioceptive sensors simulated as
joint angles exploit the same idea.

Tactile sensors are considered as a channel of communication for many
insects, as they have poor vision and sound perception (Meyer, 2006).

2. Insensitivity to light conditions. Vision-based classification methods
are proven to be accurate and very powerful, but those fail completely



Chapter 1. Introduction 7

in dark and must deal with illumination changes. Proprioceptive and
tactile sensing works in any light conditions.

3. Proprioception sensing is general. Although the evaluation is per-
formed on a hexapod robot in this study, proprioception sensing results
can be applied on any kind of robot with joints. In the future, possibly,
for two-legged walking humanoids.

4. Fast processing. The sensory data evaluation is presumed to be incom-
parably faster to the vision method, as no further processing, but a
direct classification, is performed on the data.

Secondly, a feedforward neural network was chosen as a classification method.
Besides a biological inspiration, neural networks were chosen as the most
mysterious approach, which still contains many research questions to be an-
swered.

One of them relates to searching and utilization of network minimal struc-
tures. Using a powerful pruning algorithm may contribute to optimization
of the network in terms of size and prediction time. As we want to clas-
sify the terrain online on a real platform, a minimal model fitting the data
will be a great benefit. Using neural networks, the minimal model might
be later combined with the central neural controller (Manoonpong, 2011),
which drives the target platform, AMOS II, and manages its behaviour.

1.4 Thesis Outline

The thesis consists of 6 chapters in total. The chapter 2 is devoted to the
developed classification framework. In section 2.3, the learning algorithm is
described. Then, section 2.4 introduces the new network pruning algorithm.

Chapter 3 contains the process of terrain classification. Firstly, in section 3.2,
the experimental environment is specified. Next, section 3.3 shows, how the
virtual terrains were created. Sections 3.4 and 3.5 are devoted to the data
acquisition and forming a feature vector. Generation of terrain datasets
is shown in section 3.6. Finally, the training and classification process is
described in section 3.7.

Results are presented in chapter 4. First of all, the classification framework
is verified on well-known datasets in section 4.1. Then the performance
of the pruning algorithm is evaluated in section 4.2. Results of the terrain
classification are put in section 4.3. Finally, the pruning algorithm is applied
on the networks trained on terrain datasets and the results are shown in
section 4.4.

The methods are recapitulated and the results compared in discussion (chap-
ter 5). The study is concluded and an outlook is provided in chapter 6.

Appendix A1 contains some supplementary data and results. In appendix A2,
one can find implementation details of the performed methods, while a com-
plete code documentation is in appendix A4. Appendix A3 shows a tree
directory structure of the workspace.



8

Chapter 2

Classification Method

Principles of feedforward neural networks, based on the perceptron idea (see
Eq. (1.1)), are used for developing a new classification framework.

As the first part of the study is devoted to the evolution of a new network
pruning algorithm, besides some standard functions, the new framework
implementation must be capable of:

1. pruning of the network during training process;

2. retraining the pruned network.

In this thesis, the implemented framework is called KITT Neural Network
(KITTNN ). Implementation details are provided in appendix A2.1.

2.1 Network Structure

In this work, a feedforward neural network is used, where none of the neu-
rons are connected to other neurons in the same layer or any neurons in
the previous layers and are connected to all neurons in the following layer
(Fig. 2.1).

Figure 2.1: Structure of a feedforward neural network

As the number of neurons in input and output layers are determined by a
chosen dataset, the network structure is defined by:

1. number of hidden layers;

2. number of neurons in each of the hidden layers.



Chapter 2. Classification Method 9

2.2 Neuron Principle

The behaviour of artificial neurons follows our understanding of how biolog-
ical neurons work. One unit consists of multiple inputs and a single output.
A model of neuron is shown in Fig. 2.2. The diagram complies with the
following notation:

a
(i)
k : activity of kth neuron in ith layer

w
(i)
l,k : weight of synapse connecting lth neuron in ith layer with kth neuron

in (i+ 1)th layer

neuron
(i)
k : kth neuron in ith layer

b
(i)
k : bias connected to kth neuron in ith layer

z
(i)
k : activation of kth neuron in ith layer

f() : transfer function (Eq. (2.2))

Figure 2.2: A model neuron

Assuming p being the number of neurons in ith layer, the activation of
neuron

(i+1)
k is computed as in 2.1

neuron
(i+1)
k =

p∑
l=1

a
(i)
l · w

(i)
l,k + b

(i+1)
k (2.1)

The sigmoid function given as in Eq. (2.2) is used as the transfer function
for computing the activities of individual neurons.

f(z) = 1
1 + e−z

(2.2)

The sigmoid function maps neuron activations into [0.0, 1.0] interval. This
approach is used by default in this work. Additionally, the tanh(z) function is
implemented (compared to sigmoid(z) in Fig. 2.3), in order to test one of the



Chapter 2. Classification Method 10

pruning methods based on weights sensitivity (evaluated in section 4.2.3).
The tanh(z) function maps the input z into [−1.0, 1.0] interval.

−15 −10 −5 0 5 10 15
neuron activation z

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ne
ur

on
 a

ct
iv

ity
 a

f(z): sigmoid
tanh(z)

Figure 2.3: Used transfer functions: sigmoid and tanh

2.3 Learning Algorithm for Network Training

In general, learning algorithms represent the part of artificial systems that
makes them behave intelligently when accomplishing a specific task. In clas-
sification, the goal of learning is to fit some training data to a model, which
generally means to set some parameters based on the chosen classification
approach.

Figure 2.4: Training process flowchart. T1: Threshold for a
terminating condition based on a learning error. If the error
is reduced to be lower than this threshold, the learning pro-
cess is stopped. T2: Threshold for a terminating condition
based on the number of iterations (epochs). The learning
process is stopped after a specified number of epochs, no

matter how successful the training has been.



Chapter 2. Classification Method 11

In case of feedforward neural networks, the learning goal is to find optimal
values for two groups of parameters - weights and biases.

A popular algorithm called Backpropagation is used to deal with the learning
task. The backpropagation abbreviation stands for backward propagation of
errors. The approach is based on an optimization method called Gradient
Descent Algorithm (GDA).

In this work, the implementation is made to be compatible with the KITNN
framework (appendix A2.1) and adjusted to the needs of the developed prun-
ing algorithm (section 2.4). The learning process is summarized by the
flowchart in Fig. 2.4. The procedure follows algorithmical steps found in
(Labs, 2014).

2.3.1 Using Mini-batches

The training procedure of multilayer perceptrons (see Eq. (1.1)) is based on
propagating one sample at a time through a network. However, more samples
can be send to the network, while activities and activations of neurons in
one layer are computed at the same time for all of those samples.

This group of samples is called a mini-batch. Using mini-batches can speed
up the process, however, it can bring some problems with finding the right
solution by the Gradient Descent method (evident from Eq. (2.8)). Usually,
the mini-batch size is left as a training parameter. In this work, it is set to
10.

2.3.2 Matrix Notations

Assuming feedforward neural networks and referring to Fig. 2.2, the following
notation is used for processing multiple samples.

X : network input: m-by-n matrix, where m is the number of samples and
n is the size of one sample

W (i) : p-by-r matrix of weights for synapses from neurons in layer i (layer
of p neurons) to neurons in layer (i+1 ); (layer of r neurons)

B(i) : vector of length p including biases for neurons in layer i (layer of p
neurons)

Z(i) : r-by-mmatrix of activations for neurons in layer i (layer of r neurons),
m is the number of processed samples

A(i) : r-by-m matrix of activities of neurons in layer i (layer of r neurons),
m is the number of processed samples

ŷ : network predicted output: q-by-m matrix, where q is the number of
output neurons andm is the number of processed samples (ŷ = f(Z(j)),
where j is the number of layers)

y : network actual output (known targets): q-by-m matrix, where q is the
number of output neurons and m is the number of processed samples

δ(i) : error vector of length p for p neurons of ith layer



Chapter 2. Classification Method 12

2.3.3 Forward Propagation

With reference to the previous sections, the following equations are used to
propagate a batch of samples X through a network and get a corresponding
matrix of outputs ŷ.

Z(2) = X ·W (1) +B(2) (2.3)

Zi+1 = Ai ·W i +B(i+1) (2.4)

A(i) = f(Z(i)) (2.5)

ŷ = f(Z(j)) (2.6)

2.3.4 Error Calculation

To get an idea about how wrong the predictions of the network are, the
network needs a teacher. For this reason the learning is called supervised,
as there is a batch of training data with known targets. Comparing the
predictions with the correct targets, one can calculate a prediction error.

The prediction error of the propagated batch of samples is expressed as a
cost function J . The goal is to minimize J .

J =
m∑

k=1

1
2(yk − ŷk)2 (2.7)

2.3.5 Parameter Update

Knowing the prediction error, the goal of the learning algorithm is to up-
date the network weights and biases in order to reduce the error for next
prediction. It is known, that some combination of the parameters makes J
(Eq. (2.7)) minimal. There is no chance to check all possible combinations
for bigger networks, therefore GDA is used here.

Partial derivatives dJ
dw for all weights w of chosen weight matrixW (i) belong-

ing to layer i are computed and set equal to zero ( dJ
dw = 0). Applying this

on a mini-batch, we get m derivatives ( dJ
dW (i) )k for m input samples.

GDA is then applied on the summation of these derivatives and so all exam-
ples are considered as one (Eq. (2.8)). In other words, one can understand it



Chapter 2. Classification Method 13

as every sample has a vote on how to find the minimal error and the result
is obtained as a compromise.

dJ

dW (i) =
m∑

k=1
(dJ
dw

)k (2.8)

Having several layers of a network results in several weight (and bias) ma-
trices, while the goal is to find optimal parameters of overall network. In
order to compute optimal parameters in all of the matrices, the sum rule in
differentiation (Eq. (2.9)) followed by the chain rule (Eq. (2.10)) are applied.

δ

δx
(u+ v) = δu

δx
+ δv

δx
(2.9)

(f ◦ g)′ = (f ′ ◦ g) · g′ (2.10)

Due to these properties, the error obtained at the network output (sec-
tion 2.3.4) is propagated backwards layer by layer through the network
(Eq. (2.12)) and derivatives dJ

dW (i) for all layers i are found (Eq. (2.13)). For
this procedure, the derivative of our transfer function is needed (Eq. (2.11)).

f ′(z) = f(z) · (1− f(z)) (2.11)

δ(i) = δ(i+1) · (W (i))T · f ′(Z(i)) (2.12)

dJ

dW (i) = (a(2))T · δ(i+1) dJ

dB(i) = δ(i+1) (2.13)

The parameters are then updated for the next iteration as shown in Eq. (2.14).

W
(i)
(t+1) = W

(i)
(t) + dJ

dW (i) (t)
B

(i)
(t+1) = B

(i)
(t) + dJ

dB(i) (t)
(2.14)

In this work, the learning algorithm is implemented in Python, using mostly
the numpy library for the expensive matrix operations. The implementation
complies with the needs of the pruning algorithm from section 2.4 and is
fully compatible with the KITNN framework for any type of data.



Chapter 2. Classification Method 14

2.4 Network Pruning Algorithm

The network pruning algorithm (PA) is the novelty of this study. The
state-of-the-art methods based on feedforward neural networks use a fully-
connected structure by default. This means that each unit is connected to
all units in the next layer. Hence a net structure is defined just by the
number of hidden layers and the number of neurons in each of those. The
question is if all of the generated connections are significant and necessary
for classification.

2.4.1 Pruning Method

The hypothesis is that some synapses of a fully connected feedforward net-
work can be removed without the net’s classification performance being in-
fluenced significantly. The problem is graphically illustrated in Fig. 2.5.

Figure 2.5: Pruning Algorithm: hypothesis formulation

The task is to identify the unimportant synapses. The basic idea of the
algorithm is as follows:

1. a fully-connected network is initialized and trained on some data in
order to reach as high accuracy as possible;

2. some of the synapses are removed and a classification ability of the
pruned net is tested;

3. if it has not dropped significantly, the removed synapses were unim-
portant

The way of removing synapses is called pruning algorithm (PA).

The idea behind the PA implemented in this study is based on weight changes
during the network training. It is presumed that a synapse, whose weight
does not evolve while the network is trained, does not contribute to classifi-
cation much.

2.4.2 Algorithm Realization

The pruning algorithm itself is an iterative process, however, as shown in
Fig. 2.6, two important steps are done in advance.



Chapter 2. Classification Method 15

Figure 2.6: Overall flowchart of the pruning process

First of all, the following variables are initialized:

net : a fully-connected KITTNN Network(); (see appendix A4.1) with an
oversized structure (many hidden neurons) and randomly set weights
and biases

percentile : algorithm variable, set to 75 by default

percentile levels : array of final variables, set to [75, 50, 20, 5, 1] by default

required accuracy : required classification accuracy for a chosen problem
(e.g. 0.95)

stability threshold : if the classification does not improve over several
learning iterations, this is the number of stable iterations to terminate
the training after

Additionally, some standard learning parameters like the learning rate, num-
ber of epochs and mini-batch size can be set and, of course, a dataset is
chosen.

Once the initialization is done, the network is trained with some optimal
learning parameters until it reaches the required classification success rate.
As mentioned above, the pruning algorithm is based on weight changes.
Therefore, the initial weights for synapses are kept. Then, the trained net-
work is passed to the pruning phase, which is shown in Fig. 2.7.

Figure 2.7: The Pruning Algorithm: initialized variables
are in bold, red marked functions refer to 2.8 and 2.9 respec-

tively



Chapter 2. Classification Method 16

Initially, a backup of the current network structure is made by creating a
network copy. The pruning is then performed using this copy. The pruning
method is shown in Fig. 2.8.

Figure 2.8: Synaptic pruning based on weight changes and
current percentile value

As discussed above, an initial weight value was saved for each synapse before
the training. Hence, for n being the total number of synapses, weight changes
∆wi are known (2.15).

∆wi = |w_initi − w_currenti|, i = 1, ..., n (2.15)

Based on these changes and on the current percentile value, a threshold
(th in Fig. 2.8) is determined. Then, all synapses with a lower change in
weight than this threshold are removed, and, if there is a neuron with no
connections left, it is removed as well.

If the percentile variable has been decreased so that it equals zero, the
threshold is set to the minimum of all weight changes. In this case, only one
synapse is then removed at a time.

Figure 2.9: Evaluation of the classification accuracy after
pruning



Chapter 2. Classification Method 17

After cutting some synapses, the network is checked for keeping the required
classification accuracy as shown in Fig. 2.9.

The evaluation is performed by testing the network on validation data. If the
classification accuracy has dropped, the network is retrained using training
data of the dataset.

If the classification accuracy has been kept after the pruning, the current net
structure is saved and considered as a reference for the next pruning loop.

If it is not possible to retrain the pruned net and to reach the required
accuracy, two possibilities arise:

1. Only one synapse has been removed during the last pruning step and
the accuracy has been broken. This means that even this single synapse
with the least change in weight is important for classification. There-
fore, the pruning is stopped and the current net structure (including
this last synapse) is saved as the minimal structure.

2. More synapses have been removed during the last pruning step, and
this broke the accuracy. In this case, the percentile level is decreased
(based on the initialized array of percentile levels) and so less synapses
are removed during the next pruning iteration.

In this manner, at some point of the pruning process, the algorithm
will come to removing only one synapse at once and then, finally, only
case 1 will remain.

Therefore, the algorithm is finite. Moreover, it guarantees that the classi-
fication success rate does not drop. The method is evaluated in detail in
section 4.2 and compared to two different approaches from (Reed, 1993) in
section 4.2.3.

2.4.3 Datasets for Evaluation of the Pruning Algorithm

Two datasets were used for verification of the pruning algorithm: XOR and
MNIST. Those are introduced in the following sections and the evaluation
is presented in sections 4.2.1 and 4.2.2.

The pruning algorithm was also applied on the terrain classification problem
(evaluated in section 4.4).

XOR Dataset

This dataset relates to the well-known XOR problem defined by a truth table
(Table 2.1).

Table 2.1: XOR problem definition

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0



Chapter 2. Classification Method 18

Formulating the XOR gate as a classification problem, it is represented by
two linearly inseparable classes with labels 0 and 1. In this case, each class
consists of 1000 samples, which have been generated using the developed
GUI (section 2.5). The composition of the two classes in a 2D space is
shown in Fig. 2.10.

Figure 2.10: 2D XOR Data illustration

The points (samples) have been generated pseudo-randomly, while it is guar-
anteed that the ’red’ samples are distributed half-and-half between the two
’red’ areas. The minimal distance between a ’blue’ and a ’red’ sample is
0.001 and it is possible to separate the classes using two lines.

The XOR dataset is essential for evaluation of the implemented PA, as the
minimal network structure capable of solving the problem is known. There
are two structures (Fig. 2.11), both considered as minimal. Geometrically,
the version shown in Fig. 2.11a creates the two lines in 2D space to separate
the classes, while the second one (Fig. 2.11b) transfers the problem from 2D
space into 3D space and creates a separation plane.

(a) Minimal structure 1
(b) Minimal structure 2

Figure 2.11: XOR Dataset: minimal network structures

The goal of the pruning algorithm is to end up with a network of the structure
in Fig. 2.11a, when the network is initially oversized. The evaluation is
presented in section 4.2.1.



Chapter 2. Classification Method 19

MNIST Dataset

The second testing problem is the well-known classification of handwritten
digits. The dataset is provided by (LeCun and Cortes, 1998). Some examples
of digit samples are shown in Fig. 2.12.

Figure 2.12: MNIST Data illustration (LeCun and Cortes,
1998)

The dataset has a training set of 60, 000 examples (later split into 50, 000
training and 10, 000 validation examples), and a test set of 10, 000 examples.
The digits have been size-normalized and centered in a fixed-size image.

In this case, the minimal network structure is not known. However, detailed
results of classification accuracy for various classifiers are provided, which is
useful for comparison.

2.4.4 Using Network Pruning for Feature Selection

In general, only the number of neurons (inputs and outputs) is determined
for a chosen dataset. The pruning algorithm brings an additional information
about the hidden part of the network. A minimal network structure is
obtained as the PA outcome. This means that all the neurons and synapses
contained in the network are important for classification.

Knowing that each of these units takes a part and is not useless, one can ask
what role a single neuron/synapse has with respect to the chosen dataset.

This can be investigated by tracking the connections from the input to the
output layer. Based on this approach, one can find some correlations be-
tween the feature selection of input vectors and the selected output class
(demonstrated on a MNIST example in Fig. 2.13). Evaluation on MNIST
dataset is shown in section 4.2.2.

Figure 2.13: Analysis of the minimal structure examplified
on digit 5 (MNIST dataset)



Chapter 2. Classification Method 20

2.5 Graphical User Interface

The graphical interface has been implemented as an extension for KITTNN
framework. It is actually not strictly needed for this study, but it provides
some interesting functions, which are worth being introduced. Anyway, any
type of visualization usually helps to understand a problem better.

Figure 2.14: Screenshot of the graphical user interface

This GUI is capable of:

1. Loading a dataset in a specific form and, if possible, visualizing it (see
XOR data in Fig. 2.10 for an example, this image is generated by the
GUI).

2. Generating a network of any hidden structure. The input and output
layers are defined by the chosen dataset. The network is then visualized
(as shown in Fig. 2.14).

3. Removing synapses of the network, while the visualization is interactive
with the structure changes.

4. Training the network, while the visualization is interactive, so the
weights changes can be seen online.

5. Performing some tests and plotting basic evaluations.

6. Adjusting the visualization view in sense of zooming, resizing or chang-
ing colors.

The visualization is not that useful for huge network structures, however, it
can be essential at some points of the workflow. Nevertheless, it is considered
as the very fist version for now and aimed to be upgraded in the future.



21

Chapter 3

Terrain Classification for
Hexapod Robot AMOS II

The classification problem in this thesis relates to AMOS II, an open-source
multi sensori-motor robotic platform (see Fig. 3.2). The task is to clas-
sify various terrain types based on proprioceptive (joint angles) and tactile
(ground contact) sensors. The overall process is based on simulation data
and as stated in chapter 2, feedforward neural networks are used for classi-
fication.

3.1 Overall Process Summary

The overall process consists of several modules. The workflow is illustrated
in Fig. 3.1 (a more detailed diagram can be found in Fig. A2.4).

Figure 3.1: Terrain Classification: overall process diagram



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 22

The very first step is to make the AMOS II simulation run (appendix A2.2).
Then a simple tripod gait controller is implemented (section 3.2.3). To gen-
erate various terrain types, the number of variable terrain features and their
ranges are determined (section 3.3.1). Based on these features (parameters),
a number of virtual terrains is defined (section 3.3.2) and an optimality of
these parameters is briefly analysed.

Next, AMOS II (its simulation alternative) is forced to walk on every defined
terrain type several times and for a sufficiently long period of time and
the data from all sensors are saved. This data is then verified and failing
experiments are removed. The data acquisition step is parameterized by a
standard deviation of an additive (Guassian) terrain noise and is run for
several values.

Having the clean simulation data from all sensors, a feature vector structure
is determined. Then a Gaussian signal noise is added.

Next, a dataset is created by splitting all the data into training, validation
and testing sets. As it is indicated in Fig. A2.4, several datasets are generated
and several networks trained during the process.

The dataset packages may differ in these parameters:

1. standard deviation of terrain noise;

2. standard deviation of signal noise;

3. number of simulation timesteps;

4. used sensors.

The number of samples is set to 500 and all terrain types are used for clas-
sification (resulting in 14 classes, see Table 3.4). An analysis of the dataset
parameters is presented in section 4.3.

The trained networks may differ in the following parameters:

1. dataset the network has been trained on;

2. neural network hidden structure;

3. learning rate;

4. number of training epochs.

The parameters of the learning process are evaluated in section 4.3.2.

A dataset with no additive noise is chosen and the classification performance
of a neural network trained on this deterministic dataset is considered as a
reference. Then, another network is trained on a noisy dataset, to simu-
late the conditions of real environment, and the classification results are
compared to the reference in section 4.3.1.

Finally, a trained network is pruned by the algorithm introduced in sec-
tion 2.4. Using the network minimal structure, an analysis of feature selec-
tion for terrain classification is performed in section 4.4.1.



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 23

3.2 Experimental Environment Specification

The final objective of this thesis was to implement an online terrain classi-
fier for selection of optimal walking gait on real hexapod robot AMOS II.
Therefore the real hexapod robot is presented in the following section 3.2.1.

However, as already stated above, the proposed approach will be evaluated
using simulated robot in a virtual environment. In this case, LPZ Robots
simulator (Martius et al., 2009) was used and a description is given in section
6.2.2.

3.2.1 Hexapod Robot AMOS II

The AMOS II abbreviation stands for Advanced Mobility Sensor Driven-
Walking Device - version II (Manoonpong, 2011). It is a biologically inspired
hardware platform of size 30x40x20 cm and weight 5.8 Kg (see Fig. 3.2). It
is mainly used to study a neural control, memory and learning for machines
with many degrees of freedom. The body and parts of the robot are inspired
by a cockroach.

Figure 3.2: AMOS II. (Manoonpong, 2011)

A wide range of sensors (for instance infra-red, reflexive optical, light-dependent,
laser, camera, inclinometer sensors) allows AMOS II to perform several
kinds of autonomous behaviour including foothold searching, elevator re-
flex (swinging a leg over obstacles), self-protective reflex (standing in an



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 24

upside-down position), obstacle avoidance, escape responses etc. (Manoon-
pong, 2011). However, only proprioceptive and tactile sensors are important
for this study. Therefore, we focus on joint angle sensors and foot contact
sensors. All of them are located on robot’s legs. The leg structure is shown
in Fig. 3.3.

Figure 3.3: Structure of the AMOS’s leg. (Manoonpong,
2011)

As shown in Fig. 3.2 and Fig. 3.3, the robot has 6 foot contact sensors in
total, one on each leg. Each of them returns a value from range [0.0, 1.0]
depending on how strong the foot contact is, i.e., it is equal 1.0 if the robot
stands on the leg with its full weight and it equals 0.0 when the leg is in the
air.

There are three joints on each of the robot’s legs. The thoraco-coxal (TC-)
joint is responsible for forward/backward movements. The coxa-trochanteral
(CTr-) joint enables elevation and depression of the leg and the last one,
femur-tibia (FTi-) joint is used for extension and flexion of the tibia.

These joints are physically actuated by standard servo motors. Angles of the
joints are measured by the servo motors and are considered as proprioceptive
sensors. As AMOS II has six legs and there are three joints on each leg, there
are 18 angle sensors in total. There is also one backbone joint angle, however,
as this one is not implemented in the simulation (see appendix A2.2), it is
omitted in this work.

In Table 3.1 all the proprioceptive sensors, their abbreviations and original
ranges are listed. The ranges are based on the individual servo motors loca-
tions and are manually set to avoid collisions. In section 3.5 a normalization
of these ranges is discussed.

Robot actuators (servo motors) can generate movements of variable compli-
ance by utilizing a virtual muscle model (see Manoonpong, 2011 for details).



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 25

Table 3.1: Summary of proprioceptive sensors of AMOS II
hexapod robot

abbr. sensor description original range
ATRf Angle sensor, Thoraco joint, Right front leg [-0.5, 0.5]
ATRm Angle sensor, Thoraco joint, Right middle leg [-0.5, 0.5]
ATRh Angle sensor, Thoraco joint, Right hind leg [-0.5, 0.5]
ATLf Angle sensor, Thoraco joint, Left front leg [-0.5, 0.5]
ATLm Angle sensor, Thoraco joint, Left middle leg [-0.5, 0.5]
ATLh Angle sensor, Thoraco joint, Left hind leg [-0.5, 0.5]
ACRf Angle sensor, Coxa joint, Right front leg [-0.5, 0.5]
ACRm Angle sensor, Coxa joint, Right middle leg [-0.5, 0.5]
ACRh Angle sensor, Coxa joint, Right hind leg [-0.5, 0.5]
ACLf Angle sensor, Coxa joint, Left front leg [-0.5, 0.5]
ACLm Angle sensor, Coxa joint, Left middle leg [-0.5, 0.5]
ACLh Angle sensor, Coxa joint, Left hind leg [-0.5, 0.5]
AFRf Angle sensor, Femur joint, Right front leg [-0.5, 0.5]
AFRm Angle sensor, Femur joint, Right middle leg [-0.5, 0.5]
AFRh Angle sensor, Femur joint, Right hind leg [-0.5, 0.5]
AFLf Angle sensor, Femur joint, Left front leg [-0.5, 0.5]
AFLm Angle sensor, Femur joint, Left middle leg [-0.5, 0.5]
AFLh Angle sensor, Femur joint, Left hind leg [-0.5, 0.5]
FRf Foot contact sensor, Right front leg [0.0, 1.0]
FRm Foot contact sensor, Right middle leg [0.0, 1.0]
FRh Foot contact sensor, Right hind leg [0.0, 1.0]
FLf Foot contact sensor, Left front leg [0.0, 1.0]
FLm Foot contact sensor, Left middle leg [0.0, 1.0]
FLh Foot contact sensor, Left hind leg [0.0, 1.0]

It is possible to generate various gaits using joint actuators and robot’s neural
locomotion control. The gait controller used to generate robot locomotion
is described in section 3.2.3.

3.2.2 AMOS II Simulation

The lpzrobots project, developed by a research group at the University of
Leipzig (Martius et al., 2009) under GPL license, is used for AMOS II virtual
representation. Some implementation details are discussed in appendix A2.2.
The project modules important for this study are shown in Fig. 3.4.

The simulation environment is set up with these initial parameters:

• controlinterval = 10

• simstepsize = 0.01

This results in setting the simulation sensitivity to 10 steps per second.



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 26

Figure 3.4: Structure of the two repositories: LPZRobots
and GoRobots. (Martius et al., 2009)

The initial robot position in the map is chosen randomly in order to generate
a different route every time the simulation is launched. The required terrain
to be simulated is passed to the simulation as an argument. Additionally, the
standard deviation value of Gaussian terrain noise (details in section 3.3.3)
is set as another argument.

The simulation is made to take one more argument, which is a simulation
noise represented by a float number. In this study it is fixed to zero though
and only the terrain noise combined with a signal noise is used.

The virtual visualization of AMOS II is illustrated in Fig. 3.5.

Figure 3.5: Virtual alternative for AMOS II.

Besides the backbone joint, all AMOS II actuators, proprioceptive and tactile
sensors are modelled in the simulation and LpzRobots framework is consid-
ered to provide an accurate simulated model of AMOS II.



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 27

3.2.3 Tripod Gait Controller

The main motivation for the terrain classification is to adjust the current
robot’s gait accordingly and this way save some energy. In this work a tripod
gait (three legs touching ground when walking) is used for classification. The
tripod pattern is the fastest and most common gait for hexapods.

To generate the tripod gait, a central pattern generator (CPG) is used
(“Adaptive Embodied Locomotion Control Systems”). It is implemented
as a 2-neuron neural network as shown in Fig. 3.6.

Figure 3.6: 2-neuron network oscillator (“Adaptive Em-
bodied Locomotion Control Systems”)

The initial conditions and parameters of the implemented controller are
shown in Table 3.2.

Table 3.2: Initialization of tripod_controller.h (see ap-
pendix A4)

parameter initial value description
aH1 0.0 activity of neuron H1
aH2 0.0 activity of neuron H2
oH1 0.001 output of neuron H1
oH2 0.001 output of neuron H2
bH1 0.0 bias for neuron H1
bH2 0.0 bias for neuron H2
wH1H1 1.4 weight of the synapse from H1 to H1
wH1H2 0.4 weight of the synapse from H2 to H1
wH2H1 -0.4 weight of the synapse from H1 to H2
wH2H2 1.4 weight of the synapse from H2 to H2
p1 0.35 parameter for Thoraco joints
p2 0.3 parameter for Coxa joints

Then, during the simulation, robot’s joints are controlled in every simulation
step by performing three actions:

1. The activation function application

ai(t+ 1) =
n∑

j=1
wijoj(t) + bi, i = 1, ..., n (3.1)



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 28

2. The transfer function application

f(ai) = tanh(ai) = 2
1 + e−2ai

− 1 (3.2)

3. Joint settings

With the reference to previous equations and variables names, the
actuators are set as shown in Fig. 3.7. The femur joints (red ones)
stay unchanged (set to zero). This setting generates a tripod gait for
AMOS II.

Figure 3.7: Schematic diagram of tripod gait controller

3.3 Generation of Virtual Terrains

Since the verification is based on the simulation only, the goal is to design
a virtual environment. For this purpose various terrain types need to be
virtually simulated.

A terrain is defined by four parameters: roughness, slipperiness, hardness
and elasticity. These parameters form a substance together (this process is
described in appendix A2.2).

Besides these four parameters represented as a substance handle, a terrain
constructor takes six more arguments (used in code part A2.2):

terrain_color : simulation ground color

"rough1.ppm" : an image in the .ppm format, a lowest common denom-
inator color image file format (PPM Format Specification), a bitmap
height file

"" : texture image (not used)

20 : walking area x-size



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 29

25 : walking area y-size

terrain_height : maximum terrain height

3.3.1 Terrain Features

Out of the listed ground parameters, some of them are picked up and being
called terrain features, as they define a specific terrain type.

Therefore, a virtual terrain type is defined by five features. Each of them is
a float number from an empirically stated range 1. (Table 3.3).

Table 3.3: Terrain features and their ranges

min value min meaning max value max meaning
roughness 0.0 smooth 10.0 rough
slipperiness 0.0 friction 100.0 slippy
hardness 0.0 soft 100.0 hard
elasticity 0.0 rigid 2.0 elastic
height 0.0 low 0.1 high

3.3.2 Features Determination for Various Terrains

To determine a terrain type, one has to come up with the five parameters
from Table 3.3.

In this work we use 14 terrain types. Their parameters (shown in Table 3.4)
have been set up manually. With respect to the feature ranges from Ta-
ble 3.3, the values have been normalized between 0 and 1.

Table 3.4: Parameters of virtual terrain types

# terrain title roughness slipperiness hardness elasticity height
1 carpet 0.3 0.0 0.4 0.15 0.2
2 concrete 1.0 0.0 1.0 0.0 0.0
3 foam 0.5 0.0 0.0 1.0 0.7
4 grass 0.5 0.0 0.3 0.3 0.5
5 gravel 0.7 0.001 1.0 0.0 0.3
6 ice 0.0 1.0 1.0 0.0 0.0
7 mud 0.05 0.05 0.005 0.25 0.2
8 plastic 0.1 0.02 0.6 0.5 0.0
9 rock 1.0 0.0 1.0 0.0 1.0
10 rubber 0.8 0.0 0.8 1.0 0.0
11 sand 0.1 0.001 0.3 0.0 0.2
12 snow 0.0 0.8 0.2 0.0 0.2
13 swamp 0.0 0.05 0.0 0.0 1.0
14 wood 0.6 0.0 0.8 0.1 0.2

A brief analysis of this setting has been performed in the following section.
1The upper range limits have been set up based on significant changes in the robot

behaviour for various parameter values.



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 30

Analysis of Terrain Similarity

In the following, a brief analysis of terrain similarities is presented. In gen-
eral, a (dis-)similarity between terrains should correlate with classification
results, i.e., the more two terrains differ from each other the better classifi-
cation results are expected, and vice versa.

In order to quantify and visualise similarity among various terrains, a sim-
ilarity measure was calculated as given in Eq. (3.3). The five qualities are
listed in Table 3.3 and in Table 3.4.

SMt1,t2 =

5∑
i=1

∣∣quality(i, t1)− quality(i, t2)
∣∣

5 (3.3)

The similarity measure equals 0 if two terrains are identical (have the same
parameter values) and equals 1.0 if two terrains are totally different.

The following Fig. 3.8 shows the similarity measures among generated ter-
rains.

co
nc
ret
e

mu
d
ice sa

nd
gra

ve
l

gra
ss
sw
am
p

roc
k
sn
ow
rub

be
r

ca
rpe

t

wo
od
pla
sti
c
foa
m

concrete
mud
ice

sand
gravel
grass

swamp
rock
snow

rubber
carpet
wood
plastic
foam

0.0
0.5
0.4
0.4
0.1
0.4
0.6
0.2
0.6
0.3
0.3
0.2
0.4
0.6

0.5
0.0
0.5
0.1
0.4
0.2
0.2
0.6
0.2
0.5
0.2
0.3
0.2
0.4

0.4
0.5
0.0
0.4
0.4
0.6
0.6
0.6
0.2
0.6
0.5
0.4
0.4
0.8

0.4
0.1
0.4
0.0
0.3
0.2
0.2
0.5
0.2
0.5
0.1
0.2
0.2
0.4

0.1
0.4
0.4
0.3
0.0
0.3
0.5
0.2
0.5
0.3
0.3
0.1
0.4
0.5

0.4
0.2
0.6
0.2
0.3
0.0
0.3
0.4
0.4
0.4
0.2
0.2
0.3
0.2

0.6
0.2
0.6
0.2
0.5
0.3
0.0
0.4
0.3
0.7
0.3
0.5
0.4
0.4

0.2
0.6
0.6
0.5
0.2
0.4
0.4
0.0
0.7
0.5
0.5
0.3
0.6
0.6

0.6
0.2
0.2
0.2
0.5
0.4
0.3
0.7
0.0
0.7
0.3
0.4
0.4
0.6

0.3
0.5
0.6
0.5
0.3
0.4
0.7
0.5
0.7
0.0
0.4
0.3
0.3
0.4

0.3
0.2
0.5
0.1
0.3
0.2
0.3
0.5
0.3
0.4
0.0
0.1
0.2
0.4

0.2
0.3
0.4
0.2
0.1
0.2
0.5
0.3
0.4
0.3
0.1
0.0
0.3
0.5

0.4
0.2
0.4
0.2
0.4
0.3
0.4
0.6
0.4
0.3
0.2
0.3
0.0
0.4

0.6
0.4
0.8
0.4
0.5
0.2
0.4
0.6
0.6
0.4
0.4
0.5
0.4
0.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.8: Similarity measures among various terrain
types.

The figure demonstrates that foam is very different from ice or, for instance,
sand is quite similar to mud. A low similarity measure can be seen among
concrete, carpet and rubber as all of them are moreless flat. Rubber seems
to be very different from swamp or snow, which is also a positive outcome.
Also the high grass-ice or rock-snow similarity measures make sense.



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 31

3.3.3 Terrain Noise

In general simulations are widely used coming with many benefits and being
usually the right way to start, however, the real world is always different
from the simulated one and these differences may influence the results sig-
nificantly.

In this work, 14 terrain types have been simulated based on five features
(Table 3.3). The parameters in Table 3.4 have been set up manually by
an intuition. Therefore, one should take into account that the real terrains
might be different from the virtual ones in some ways.

Secondly, if, for instance, there is a terrain defined as grass, this definition
cannot be unique, since there are many types of grass and those differ from
each other at least in the referred features.

Consequently, the terrain parameters shown in Table 3.4 are noised. Regard-
ing individual features and their upper limits from Table 3.3, the following
Eq. (3.4) shows, how the noise is added.

For noise generation, the normal (Gaussian) distribution is used:

feature_noise ∼ N(µ, σ2)

feature_noise = fRand(0, featureup_limit ∗ stdp) (3.4)

stdp : a standard deviation percentage, passed as a simulation argument

fRand() : a function generating a random float number using the normal
(Gaussian) distribution with zero mean and a specified standard devi-
ation defined by the feature’s range and percentage (stdp)

For instance, assuming roughness as a feature, the feature upper limit equals
10.0 (Table 3.3). Then having the stdp equal 0.1 for example, the noise value
is generated as a random number between −1 and 1.

Once the noise is generated, it is added to an original feature value (before
normalization as shown in Table 3.4) as given in Eq. (3.5).

feature_value += feature_noise (3.5)

Additionally, there is a limit checking as the parameters cannot take negative
values. The final form is set as shown in Eq. (3.6).

feature_value = max(feature_value, 0) (3.6)



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 32

Influence of Terrain Noise

Based on the explanation of adding the terrain noise, single samples repre-
senting various levels of the additive terrain noise may vary, but not neces-
sarily. For illustration, three noisy terrain examples (of different noise level)
for rock are shown in Fig. 3.9.

0 100 200 300 400 500 600 700 800
timesteps sensor by sensor

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ex
am

pl
es

atr_f
atr_m

atr_h
atl_f

atl_m
atl_h

acr_f
acr_m

acr_h
acl_f

acl_m
acl_h

afr_f
afr_m

afr_h
afl_f

afl_m
afl_h

noise_3p
noise_10p
noise_20p

Figure 3.9: Examples of noisy terrains: terrain rock, angle
sensors

The purpose of adding the terrain noise is to generate a variability among
samples of one terrain, which makes the terrain definition more flexible. As
shown in Fig. 3.9, the sample representing the 20%− noise class fluctuates
more in comparison to the others, especially for the femur-tibia sensors. This
might indicate a generation of an unusual rocky terrain.

3.4 Data Acquisition

The data comes from the 18 proprioceptive and 6 tactile sensors and one
needs to find a way how to form feature vectors (classification samples) out
of it (section 3.5), which is one of the most essential parts of the process.

As it is later described in more detail, several sensor values in time need to
be used to obtain the robot’s dynamics on various terrains. Therefore, to
generate a single sample candidate, the simulation must be run for a period
of time. We use the ’sample candidate’ term for data obtained from one
simulation run. Samples are then formed out of sample candidates.

To gather the data sample candidates, the simulator is launched several
times in order to generate several candidates for every terrain type. It was
set to let the robot walk for 10 seconds each time, which leads to 100 values
per sensor for one run (see simulation settings in appendix A2.2).



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 33

As shown in Fig. 3.3, the robot has 3 proprioceptive and 1 tactile sensor on
each leg. In the following figures (Fig. 3.10 - Fig. 3.13), examples for each
of these sensor types are shown for all referred terrains.

In Fig. 3.10, outputs of the Thoraco-Coxal joint angle sensor on the right
front leg are shown. Thoraco sensors produce similar outputs for all terrain
types, however little variances (mostly for grass) can be seen.

0 20 40 60 80 100
timestep

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

or
 v

al
ue

concrete
mud
ice

sand
gravel
grass

swamp
rock
snow

rubber
carpet
wood

plastic
foam

Figure 3.10: Thoraco Sensor (ATRf) output examples, 14
terrains

Fig. 3.11 presents outputs of the Coxa-Trochanteral joint angle sensor on
the right middle leg. These joints are responsible for the elevation and
depression of the leg and their signals vary especially at the decreasing parts
of the signals. This might indicate that the leg is depressed differently on
various terrains.

0 20 40 60 80 100
timestep

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

or
 v

al
ue

concrete
mud
ice

sand
gravel
grass

swamp
rock
snow

rubber
carpet
wood

plastic
foam

Figure 3.11: Coxa Sensor (ACRm) output examples, 14
terrains

The Femur-Tibia sensor outputs, for the joint sensor on the right hint leg,
are illustrated in 3.12. The signals indicate that this joint is not much used
compared to previous ones. This makes sense as there is no active movement



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 34

of this joint generated by the tripod gait controller (section 3.2.3). The signal
fluctuations must be caused by passive movements of the Femur-Tibia joint,
but still might be essential for classification.

0 20 40 60 80 100
timestep

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
se

ns
or

 v
al

ue
concrete
mud
ice

sand
gravel
grass

swamp
rock
snow

rubber
carpet
wood

plastic
foam

Figure 3.12: Femur Sensor (AFRh) output examples, 14
terrains

The biggest variance among signals for various terrains is obtained from
the foot contact sensors (example from the sensor on the right front leg in
Fig. 3.13). If the value of the foot contact sensor is 1, the robot stays on the
foot with its full weight, 0 indicates a leg in the air.

0 20 40 60 80 100
timestep

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

or
 v

al
ue

concrete
mud
ice

sand
gravel
grass

swamp
rock
snow

rubber
carpet
wood

plastic
foam

Figure 3.13: Foot Contact Sensor (FRf) output examples,
14 terrains

Examples of signals for all 24 sensors can be found in appendix A1.1.

As an optimal standard deviation value of the additive terrain noise is not
known, data for several values of this parameter were generated. The simu-
lation was gradually run for:

• σp = 0.0 (no noise);

• σp = 0.01 (1% relative noise);



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 35

• σp = 0.03 (3% relative noise);

• σp = 0.05 (5% relative noise);

• σp = 0.1 (10% relative noise);

• σp = 0.2 (20% relative noise).

The σp corresponds to the stdp parameter used in Eq. (3.4). The influence
of additive terrain noise is analysed in section 3.3.3.

The approach of storing the gathered data is described in appendix A2.2. As
Fig. A2.7 shows, 500 sample candidates are generated for every noise/terrain
configuration. This allows creating datasets of 500 samples per class.

3.5 Building a Feature Vector

Classification tasks are generally based on datasets consisting of samples and
corresponding targets. The samples need to be represented in a numerical
way in order to be processed by a computer and its appropriate algorithms.
In machine learning, this numerical representation of an object is called a
feature vector, an n-dimensional vector of numerical values. This section is
devoted to building a feature vector out of the data gathered from proprio-
ceptive and tactile sensors.

As the optimal structure is not known, several possibilities are tested and
therefore some new global process parameters appear at this point (men-
tioned already in section 3.1).

For this particular problem, the task is to form one feature vector out of
the content of one stored data file (see appendix A2.2), as each of these files
contains data for one sample (see Fig. 3.14).

Figure 3.14: Forming a feature vector out of a data file.

It is assumed that a proper terrain classification using proprioceptors at one
moment in time is at least difficult, if not impossible. Therefore the idea is



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 36

to let the robot walk for a while and take down the dynamics of the sensors.
Of course, the more timesteps are used for one sample, the more time the
classification takes. Because of these arguments the number of timesteps is
left as a global process parameter and it is a subject for later discussion.

Sensor selection defines another global process parameter. The anticipation
is that the feature vector becomes redundant using all of the 24 sensors,
as many of them may contain similar information. However, for now all of
them are used to show how the feature vector is built and it is also left for
later discussion.

With reference to Fig. 3.14, feature vectors have been constructed by fixing
the timesteps parameter and concatenating columns of the matrix into one
vector. This results into having data from all sensors one by one next to
each other and forming one feature vector together.

In Fig. 3.15 an illustration of the vector formation for three terrain types is
shown. The number of timesteps is set to 40 and all 24 sensors are used,
hence a feature vector of length 960 is obtained. The corresponding sensor
abbreviations (see Table 3.1) are added to the x-axis annotation. The 18
angle sensors are followed by the 6 foot contact sensors.

3.5.1 Feature Vector Normalisation

It is a good manner to keep the data normalised - mapped to [0.0, 1.0] in-
terval. The default range of foot contact sensors is already set to [0.0, 1.0],
so there is nothing to change. For the joint angle sensors, the following
approach, sometimes called feature scaling, is used to map the data.

For each element Si of signal S:

S′i = Si − rmin

rmax − rmin
(3.7)

rmin, rmax : bounds of the corresponding original sensor range (listed in
Table 3.1)

S′i : scaled element of the normalised signal

Also a [0, 1] interval overflow checking is added and values are adjusted if
needed (Eq. (3.8)). This is a cover for the case when ranges from Table 3.1
were not accurate.

S′i = min(max(S′i, 0), 1) (3.8)

The following figure (3.15) shows normalised feature vector examples for
three terrains. The influence of normalisation on classification results is
another subject for the discussion.



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 37

0 200 400 600 800 1000
timesteps sensor by sensor

−0.5

0.0

0.5

1.0

se
ns

or
 v

al
ue

s

atr_f

atr_m

atr_h

atl_f

atl_m

atl_h

acr_f

acr_m

acr_h

acl_f

acl_m

acl_h

afr_f

afr_m

afr_h

afl_f

afl_m

afl_h

fr_f

fr_m

fr_h

fl_f

fl_m

fl_h

concrete grass rock

Figure 3.15: Normalised feature vector examples

3.5.2 Signal Noise

In section 3.3.3 a few general reasons for adding a noise to simulation data
were discussed. In that case an additive Gaussian noise is used to gener-
ate variability in the data and to make the terrain types definitions (from
Table 3.1) more general.

For similar reasons a signal noise is also added to the sensory data. In
reality the data obtained from mechanical sensors are noisy (environmental
conditions, failures of electrical devices, etc.), while the data coming from
the simulated sensors are always deterministic.

In this case, a white Gaussian noise is added to the normalised feature vec-
tors. Similarly to equations in section 3.3.3, at first a noise is generated
using the normal distribution with zero mean and specified standard devia-
tion. This time, a vector of length n needs to be generated as a noise.

signal_noise = [sn1, sn2, ..., snn] (3.9)

sni ∼ N(µ, σ2), i = 1, 2, ..., n (3.10)

Then, the generated vector is added to a normalised feature vector from
section 3.5.1 (Eq. (3.11)).

noised_signali = raw_signali + sni, i = 1, 2, ..., n (3.11)



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 38

Finally, the noised signal is checked, whether its values do not overflow out
of the [0, 1] range.

noised_signali = min(max(noised_signali, 0), 1), i = 1, 2, ..., n (3.12)

Also in this case, it is difficult to estimate an optimal signal noise power
(standard deviation of the normal distribution). Therefore it is left as an-
other global process parameter and its influence is discussed in the results
part. It is defined as a percentage of the [0.0, 1.0] interval and as the sig-
nals are normed in advance, there is no need for another processing of this
parameter.

Influence of Signal Noise

Fig. 3.16 shows the influence of the signal noise on one sample of concrete
for joint angle sensors.

As expected, the higher the standard deviation of additive Gaussian noise is,
the more a corresponding signal fluctuates around the red signal representing
no signal noise.

0 100 200 300 400 500 600 700 800
timesteps sensor by sensor

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

se
ns

or
 v

al
ue

atr_f
atr_m

atr_h
atl_f

atl_m
atl_h

acr_f
acr_m

acr_h
acl_f

acl_m
acl_h

afr_f
afr_m

afr_h
afl_f

afl_m
afl_h

std: 0.1
std: 0.05
std: 0.03
std: 0.01
std: 0.0

Figure 3.16: Examples of noisy signals: concrete, angle
sensors



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 39

3.6 Generation of Datasets

In this section, the task is to transform all the data into so called datasets.
There are usually three sets of data used for classification tasks - training,
validation and testing data. These three sets must be disjunctive, meaning
they cannot have a single element in common. All these three sets together
form a dataset.

Figure 3.17: Three sets of data in a dataset.

Each set of data consists of samples and targets (class labels). The samples
are represented by normalised feature vectors (section 3.5) - lists of numerical
floating point values from [0.0, 1.0] interval. Every sample must be uniformly
assigned to precisely one target. The targets, in this case, match the virtually
created terrain types (listed in Table 3.4) in the following manner.

The target vector is of length 14, as there are 14 terrain types. Every terrain
type has an unique identificator (numbers listed in Table 3.1) corresponding
to positions in the target vector. In any case, the vector contains 13 ’zeros’
and 1 ’one’. The vector is then matched to a terrain type depending on the
position where the ’one’ is. For instance, a target vector corresponding to
concrete is illustrated on Fig. 3.18.

Figure 3.18: Target vector for concrete

Once there are two ordered lists - a list of samples and a corresponding list
of targets, these lists are split into the three sets shown in Fig. 3.17. There is
a parameter called data_split_ratio defining the proportions among the sets



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 40

sizes. By default the ratio is set to generate 80% training, 10% validation
and 10% of testing data.

The workflow of data generation procedure is illustrated in Fig. A2.8.

3.7 Training and Classification

Having a dataset enables to train a classifier, a machine learning tool that
is able to learn some behaviour on one part of some data (training and
validation) and then perform similarly on another "never seen" part of the
data (testing) - as shown in Fig. 3.17.

There are many classification methods differing in mathematical backgrounds
and each of them has some advantages and disadvantages on various types
of data. However, all of them have some general functionalities that comply
with some kind of convention. For instance, there are at least two procedures
that every classifier should be capable of:

model fitting : In this procedure, an initialized classifier is usually given
training samples and their corresponding targets. Additionally, it can
take some validation data and/or learning parameters. Then a model
is trained using some math behind the selected classification method.

unlabeled observation prediction : Once the model is trained, it is ca-
pable of predicting classes of unlabeled samples. It takes one or more
samples of testing data and returns the predicted target(s).

This convention enables testing different classification approaches on the
same data in the same way. Therefore also the implemented network library
KITTNN (see chapter 2) provides these functions and is capable of working
with datasets of the same structure as the public .py classifiers (see API in
appendix A4.1).

In the overall process diagram (Fig. 3.1) there is a box called classification
with full networks. The procedure behind this box is illustrated on Fig. 3.19.

Figure 3.19: Procedure of training and testing a network

This workflow is performed by the implemented framework KITTNN (chap-
ter 2, as well as by other classification methods (discussed in section 1.1) for
comparison. It is advantageous, that each of these tools can use the same
workflow and so the comparison is fair.



Chapter 3. Terrain Classification for Hexapod Robot AMOS II 41

There are several arguments (firstly listed in section 3.1) that differenti-
ate the final trained networks and their performances. The first one is the
dataset that the network is trained on. This parameter brings its own config-
uration (see its input parameters in Fig. A2.8) and so its setting parametrizes
the classifier as well.

Next, one needs to define the network initial structure in sense of number of
hidden layers and number of neurons in each of these layers. The input and
output layers are determined by the dataset. There are many parameters
to be defined for learning like batch size, initial random state etc. In this
work, only the learning rate and the number of epochs are used as training
parameters. The learning process follows the implemented backpropagation
algorithm described in section 2.3.

3.7.1 Evaluation Measures

A trained network is evaluated on testing data. This evaluation provides a
set of the most important classification metrics (Pedregosa et al., 2011).

accuracy : the set of labels predicted for a sample must exactly match the
corresponding set of true labels

precision : ability of the classifier not to label as positive a sample that is
negative

recall : the ability of the classifier to find all the positive samples

F1 score is interpreted as a weighted average of the precision and recall,
where an F1 score reaches its best value at 1 and worst score at 0. The
relative contribution of precision and recall to the F1 score are equal.
Formula:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(3.13)

confusion matrix : a confusion matrix C is such that Ci,j is equal to the
number of observations known to be in group i but predicted to be in
group j.

classification error : given as the cost function J in Eq. (2.7).

average epoch time : processing time of one training epoch, computed as
an average out of more observations (usually 10)

average classification time : processing time of propagating one sample
through the network (also an average out of more observations)



42

Chapter 4

Experimental Evaluation

In this chapter the methods introduced in the previous sections are evalu-
ated and results are presented. In section 4.1 the implemented classification
framework called KITTNN (see chapter 2 and API in appendix A4.1) is
verified by comparing to a publicly provided framework. The results of the
developed pruning algorithm are shown in section 4.2. The overall terrain
classification process is gradually evaluated in section 4.3 and the pruning
algorithm results on the terrain data are shown in section 4.4.

4.1 Verification of the Network Implementation

Classification performance of the implemented method KITTNN is com-
pared to a Scikit-NeuralNetwork (SKNN ) classifier (Champandard and Samoth-
rakis, 2015) presented in appendix A2.1. The evaluation is performed on two
datasets introduced in section 2.4.3.

The following Fig. 4.1 shows the progress of classification accuracy within
learning epochs. For each dataset/framework combination, 10 observations
were performed and mean values with standard deviation ranges are shown.

0 20 40 60 80 100
training epoch

0.0

0.2

0.4

0.6

0.8

1.0

cl
as
si
fic
at
io
n 
ac
cu
ra
cy

KITTNN on MNIST
KITTNN on XOR

SKNN on MNIST
SKNN on XOR

Figure 4.1: Learning process compared to another frame-
work (Scikit-neuralnetwork (sknn): (Champandard and

Samothrakis, 2015)).



Chapter 4. Experimental Evaluation 43

Regarding the XOR dataset, both nets start with the accuracy of about
0.5, as it has 2 classes and, naturally, with accuracy of about 0.1 for the 10
classes of the MNIST dataset. Individual observations differ more to each
other (see the standard deviation in Fig. 4.1) for XOR, as there are a lot less
training samples compared to MNIST (50 times less). However, both nets
are able to reach the accuracy of 1.0 on XOR within 100 epochs.

In Table 4.1, the f1-score (see Eq. (3.13) in section 3.7.1) is shown for indi-
vidual classes (digits) of the MNIST dataset. This evaluation is done on the
testing data.

Table 4.1: Comparison of f1-score on MNIST to another
framework (SKNN )

net 0 1 2 3 4 5 6 7 8 9 avg
KITTNN 0.94 0.98 0.91 0.90 0.93 0.89 0.93 0.93 0.90 0.91 0.92
SKNN 0.96 0.97 0.92 0.91 0.93 0.89 0.94 0.93 0.90 0.91 0.93

In Fig. 4.2, a comparison of average epoch processing time is shown.

This evaluation is done on the MNIST dataset only, as the training is quite
fast on XOR for both implementations due to the smaller amount and size
of samples. The average is computed out of 1000 samples, as we train 100
epochs in 10 observations.

KITTNN SKNN0

2

4

6

8

10

av
er
ag

e 
ep

oc
h 
tim

e 
[s
]

Figure 4.2: Comparison of average epoch processing time
(1000 samples) to another framework (Scikit-neuralnetwork
(SKNN ): (Champandard and Samothrakis, 2015)), MNIST

dataset

The implemented KITTNN framework cannot compete in speed with the
optimized stochastic GDA of SKNN library. However, importantly for this
study, the classification abilities have been verified.



Chapter 4. Experimental Evaluation 44

4.2 Performance Evaluation of the Pruning
Algorithm

This section presents results of the implemented pruning algorithm (intro-
duced in section 2.4). The input of the algorithm is given by a dataset and
an obviously oversized neural network with a fully-connected structure. On
the output, a pruned network of a minimal structure, but keeping a required
classification accuracy, is expected.

The evaluation of the algorithm is performed on the two datasets, XOR and
MNIST, described in section 2.4.3.

4.2.1 Evaluation on XOR Dataset

The XOR dataset is essential for testing the functionality of the algorithm, as
we know the minimal network structure for this problem ([2, 2, 1]). Initially, a
network with one hidden layer of 100 neurons is constructed as the algorithm
input (Fig. 4.4a). The desired structure is shown in Fig. 4.4b.

During the pruning process, three key network properties are observed:

1. network structure;

2. number of synapses in the network;

3. classification accuracy on a chosen dataset.

Those are shown with respect to the pruning step (see the pruning loop in
Fig. 2.7) all together in Fig. 4.3.

0 2 4 6 8 10 12
pruning step

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io
n 
ac

cu
ra
cy

0

50

100

150

200

250

300

350

400

450
nu

m
be

r o
f s

yn
ap

se
s

[2. 100. 2]

[  2.  52.   2.]

[  2.  20.   2.]

[ 2.  4.  2.] [ 2.  2.  1.]

Net structure

Figure 4.3: Results of the pruning algorithm on XOR
dataset.

The results are obtained by averaging 10 observations, so the outcome is
independent on initial conditions. For retraining the network after a pruning
step, training data is used. For verification, whether the network is capable



Chapter 4. Experimental Evaluation 45

of classification, validation data is used. Testing data is used to check the
accuracy after pruning (values in Fig. 4.3).

Algorithm parameters:

• initial network structure: [2, 100, 2];

• required classification accuracy on validation data: 0.9;

• learning rate: 0.5;

• percentile levels: [50, 20, 5, 0].

Algorithm outcomes:

• pruning steps: 10;

• final structure: [2, 2, 1];

• number of removed synapses: 294 (initially: 400, finally: 6);

• classification accuracy on testing data: 0.99.

(a) PA input: oversized and
fully-connected network

(b) PA output: minimal network
structure

Figure 4.4: PA process illustration on XOR

4.2.2 Evaluation on MNIST Dataset

Similarly, the algorithm is evaluated on the MNIST dataset. In this case,
the minimal structure is not known. The recommended size of the hidden
layer for MNIST classification is 15. In Fig. 4.1 the classification accuracy of
KITTNN framework on this dataset is presented. Apparently, it is possible
to reach a success rate around 90%. Hence these parameters are used:

• initial network structure: [784, 15, 10] (784, because the samples are
images of size 28x28, and 10, because we have ten digits);

• required classification accuracy on validation data: 0.89;

• learning rate: 0.1;

• percentile levels: [50, 35, 20, 10, 5, 0].

Fig. 4.5 shows a significant reduction of synapses while the classification
accuracy is kept on 0.89. The shown results are obtained by averaging 10
observations.



Chapter 4. Experimental Evaluation 46

0 10 20 30 40 50 60 70
pruning step

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io
n 
ac

cu
ra
cy

0

2000

4000

6000

8000

10000

12000

nu
m
be

r o
f s

yn
ap

se
s

[ 784.   15.   10.]

[ 771.   15.   10.]

[ 504.   15.   10.] [ 499.   15.   10.] [ 495.   15.   10.]

Net structure

Figure 4.5: Pruning Algorithm Results on MNIST
Dataset.

Results of the pruning algorithm on MNIST:

• pruning steps: 76;

• final structure: [495, 15, 10];

• number of removed synapses: 11075 (initially: 11910, finally: 835,
reduction: 92.9%);

• classification accuracy on testing data: 0.88776.

The figure 4.5 says that more than 90% of the synapses in the initial network
structure are redundant. Regarding the number of neurons in the network,
mostly the input layer is reduced. These results make a pretty good sense,
as shown in section 4.2.2.

The following Table 4.2 presents statistics of the first seven steps of one of
the performed observations. For each step we can see the current percentile
level (see Fig. 2.7), corresponding reduction in the network and retraining
results.

Table 4.2: PA progress example on MNIST

step 0 (initial) 1 2 3 4 5 6 7
percentile level 50 50 50 50 50 35 20 20
synapses removed X 5955 2978 1489 744 521 298 238
input neurons left 784 784 769 664 464 539 602 521
synapses left 11910 5955 2977 1488 744 967 1190 952
acc. after pruning X 0.9 0.887 0.851 0.817 0.858 0.880 0.878
retrained? X yes yes yes no no yes yes
epochs to retrain X 0 4 63 >100 >100 8 12



Chapter 4. Experimental Evaluation 47

In this example, the algorithm uses the percentile level of 50 in the first
three steps, meaning it cuts out a half of the synapses each time. In the
fourth step, the network is not able to retrain after cutting a half of the
remaining synapses, hence the percentile level is decreased to 35 and less
synapses are tried to be removed in the fifth step. However, the retraining
is not successful again (the accuracy of 0.89 is not reached in 100 epochs),
so the percentile level is decreased to 20. This time the pruned network is
able to retrain, so a new structure is saved and the algorithm continues with
the percentile level of 20 in the next steps.

The following figures (4.6) illustrate the transformation of the network.

(a) PA input: oversized and
fully-connected network

(b) PA output: minimal network
structure

Figure 4.6: PA process illustration on MNIST

Analysis of Minimal Structure in MNIST Dataset

As mentioned in section 2.4.4, minimal structures obtained from the pruning
algorithm can be further researched.

For instance, considering the MNIST dataset, there is an image (meaning a
vector of pixels) as the network input. As the output, there are 10 classes
corresponding to digits. Having the minimal structure, one can find out
which pixels are related to e.g. digit 7 class or which pixels are totally
useless for classification.

As illustrated in Fig. 2.13, paths from the input to the output layer can be
tracked. This way we can find paths for every output neuron and see which
input neurons are connected to it. Individual subpanels (a-j) in Fig. 4.7
show in red all input neurons (pixels of the 28x28 input images) that are
connected to the corresponding output neuron (digit 0-9). Pixels having no
path to the corresponding output neuron are in blue.

The subpanel (k) in Fig. 4.7 shows in red all pixels that have at least one
path to the output layer. The blue pixels have no connection and hence do
not contribute to classification.

As there are 15 hidden neurons, each input neuron can have maximally 15
connections and, naturally, minimally 0 connections in the final structure.
The subpanel (l) in Fig. 4.7 presents the number of connections to the hidden
layer for each input neuron. The results indicate that one neuron has 3
connections to the hidden layer at most.



Chapter 4. Experimental Evaluation 48

(a) digit: 0 (b) digit: 1 (c) digit: 2

(d) digit: 3 (e) digit: 4 (f) digit: 5

(g) digit: 6 (h) digit: 7 (i) digit: 8

(j) digit: 9 (k) all active pixels (l) synapses to H
0

15

Figure 4.7: Feature Selection : MNIST Analysis.

4.2.3 Comparison to Other Pruning Methods

In section 1.1, a few approaches of network pruning are discussed. In this sec-
tion, the developed pruning algorithm (PA) based on weight changes during
network training (see section 2.4) is compared to two different methods:

A pruning based on actual weight values: The learning algorithm uses
the tanh transfer function (see Fig. 2.3). The pruning approach from
section 2.4 is used, however, the removed synapses are chosen based
on actual weight values. Synapses with the weight closest to zero are
removed;

B brute force pruning algorithm: In every pruning step, one synapse is re-
moved and the network is retrained. If the retraining was unsuccessful,
the synapse is put back to the network;

(a) comparison on XOR (b) comparison on MNIST

Figure 4.8: Comparison of the developed PA to other prun-
ing methods (10 observations).



Chapter 4. Experimental Evaluation 49

The comparison was performed on XOR and on MNIST (see section 2.4.3)
by averaging results of 10 observations. The brute force approach (B) was
only done on XOR as it would take up to 11910 pruning steps and a long
evaluation time on MNIST. Regarding its performance on XOR, only one
synapse is removed in each of the first 98 steps. Then, removing also the sec-
ond synapse coming to a hidden neuron, this neuron dies as it has no input,
hence also synapses on its output are removed. Therefore more synapses are
removed per step after 98th iteration as shown in Fig. 4.8a. The minimal
structure is always found by the brute force approach.

Regarding the approach (A), finding the minimal structure is not guaran-
teed (see Table 4.3). Apparently, the way of selecting removed synapses is
not correct, which indicates that even synapses with a low weight may be
important.

Table 4.3: Comparison of the developed PA to other prun-
ing methods (10 observations). Required accuracy on vali-

dation data: XOR: 0.99, MNIST: 0.85.

XOR MNIST
steps synapses structure accuracy steps synapses structure accuracy

PA 10 6 [2, 2, 1] 0.9795 16 377 [252, 15, 10] 0.8396
A 34 27 [2, 8, 1] 0.9875 18 7269 [784, 15, 10] 0.6471
B 218 6 [2, 2, 1] 0.9685 X

4.3 Results of Terrain Classification

In this section, results of the overall terrain classification process (see chap-
ter 3) are presented and the global process parameters are analysed.

First of all, complete classification results based on the generated datasets
are listed. Then, more detailed results of a deterministic configuration are
compared to a realistic noisy configuration. Different classification methods
are also applied on the noisy dataset for comparison.

In section 4.3.2, the way of finding optimal learning parameters is presented.
Then, an analysis of terrain noise and signal noise influence is done in
section 4.3.3 and the time needed for classification is determined in sec-
tion 4.3.4. Classification using separately different sensor types is evaluated
in section 4.3.5.

4.3.1 Classification Performance

The generated datasets, differing from each other in the global process pa-
rameters, are listed in Table A1.1. For each of them, 10 observations of the
classification process were performed and the classification results presented
in Table 4.4 were computed by averaging these observations.

Based on the analysis in section 4.3.2, the network hidden structure consisted
of 1 layer with 20 neurons. The backpropagation learning rate was 0.5 and
the training process lasted for 500 learning epochs.



Chapter 4. Experimental Evaluation 50

With reference to Table A1.1, dataset 00_00_40_a (meaning no terrain
noise, no signal noise, 40 timesteps and all sensors) was selected for more
detailed analysis. Classification results on this dataset are considered as a
reference, because the data is deterministic and the results best possible.

Table 4.4: Classification results on generated datasets (see
dataset parameters in Table A1.1).

dataset accuracy precision recall f1-score error ep. time [s]
00_00_80_p 0.624 0.596 0.624 0.576 0.072 1.089
00_00_80_a 0.922 0.920 0.920 0.920 0.020 1.330
00_03_40_a 0.902 0.900 0.900 0.900 0.019 0.765
00_00_30_a 0.847 0.840 0.848 0.842 0.030 0.964
00_00_10_p 0.489 0.468 0.490 0.430 0.089 0.565
00_01_40_a 0.776 0.790 0.780 0.760 0.040 0.751
00_00_01_a 0.639 0.646 0.638 0.624 0.073 0.526
00_00_80_t 0.761 0.764 0.760 0.742 0.051 0.715
00_00_20_a 0.850 0.848 0.850 0.846 0.030 0.894
00_05_40_a 0.884 0.880 0.880 0.880 0.019 0.760
00_00_40_a 0.923 0.920 0.920 0.920 0.019 0.865
00_00_10_a 0.805 0.806 0.804 0.798 0.040 0.526
00_00_40_p 0.696 0.702 0.694 0.666 0.060 0.707
00_00_10_t 0.423 0.432 0.424 0.386 0.102 0.469
00_10_40_a 0.851 0.850 0.850 0.850 0.026 0.792
00_00_40_t 0.701 0.692 0.702 0.670 0.064 0.475
01_03_40_a 0.772 0.780 0.770 0.760 0.044 1.314
01_10_40_a 0.639 0.670 0.640 0.630 0.060 0.944
01_01_40_a 0.759 0.770 0.760 0.750 0.052 1.093
01_00_40_a 0.815 0.830 0.810 0.820 0.041 0.844
01_05_40_a 0.780 0.790 0.780 0.770 0.044 0.900
03_10_40_a 0.565 0.530 0.560 0.540 0.063 0.946
03_05_40_a 0.645 0.640 0.650 0.630 0.054 0.871
03_00_40_a 0.714 0.730 0.710 0.700 0.057 0.831
03_03_40_a 0.719 0.740 0.720 0.720 0.046 0.939
03_01_40_a 0.779 0.780 0.780 0.780 0.042 1.068
05_01_40_a 0.732 0.740 0.730 0.730 0.052 1.018
05_05_40_a 0.651 0.660 0.650 0.640 0.056 0.933
05_10_40_a 0.601 0.610 0.600 0.600 0.062 0.954
05_03_40_a 0.677 0.710 0.680 0.670 0.052 0.949
05_00_40_a 0.685 0.720 0.690 0.680 0.055 0.835
10_10_40_a 0.459 0.460 0.460 0.430 0.087 0.983
10_03_40_a 0.621 0.630 0.620 0.600 0.070 0.824
10_01_40_a 0.594 0.630 0.590 0.580 0.072 1.131
10_00_40_a 0.614 0.610 0.610 0.590 0.067 0.822
10_05_40_a 0.543 0.580 0.540 0.530 0.074 0.875
20_01_40_a 0.459 0.480 0.460 0.440 0.093 1.071
20_00_40_a 0.463 0.470 0.460 0.440 0.087 0.827
20_05_40_a 0.436 0.450 0.440 0.410 0.091 0.947
20_10_40_a 0.371 0.360 0.370 0.360 0.090 0.993
20_03_40_a 0.439 0.470 0.440 0.420 0.091 0.923

The following Fig. 4.9 illustrates a confusion matrix (see section 3.7.1) for
classification on the reference deterministic dataset (00_00_40_a). The



Chapter 4. Experimental Evaluation 51

recall rate for all terrains is shown on the diagonal. Additionally, we can
see that 15% of carpet samples was mistakenly labeled as grass and 10% of
grass samples as carpet. Similarly, the network had difficulties to distinguish
rock from grass and wood or foam from swamp. However, in general, the
classification on the deterministic dataset was successful.

ca
rp
et

co
nc
re
te

fo
am

gr
as
s

gr
av
el

ice m
ud

pla
sti
c

ro
ck

ru
bb
er

sa
nd

sn
ow

sw
am

p
wo

od

carpet
concrete

foam
grass
gravel

ice
mud

plastic
rock

rubber
sand
snow

swamp
wood

0.75 0.040.15 0.04 0.02

1.0

0.96 0.02 0.02

0.1 0.050.74 0.08 0.020.01

0.990.01

1.0

1.0

1.0

0.030.07 0.84 0.010.05

0.010.95 0.04

0.990.01

1.0

0.070.02 0.04 0.01 0.86

0.03 0.02 0.090.02 0.84

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.9: Confusion matrix of classification results on a
deterministic dataset.

Fig. 4.10 shows a confusion matrix of classification results on a noisy dataset
03_03_40_a (3% relative terrain noise, 3% relative signal noise, 40 timesteps
and all sensors - see Table A1.1).

ca
rp
et

co
nc
re
te

fo
am

gr
as
s

gr
av
el

ice m
ud

pla
sti
c

ro
ck

ru
bb
er

sa
nd

sn
ow

sw
am

p
wo

od

carpet
concrete

foam
grass
gravel

ice
mud

plastic
rock

rubber
sand
snow

swamp
wood

0.7 0.010.070.010.01 0.040.010.030.11 0.01

0.52 0.260.03 0.02 0.17

0.670.03 0.05 0.15 0.1

0.13 0.010.440.02 0.070.010.26 0.030.03

0.04 0.010.790.02 0.04 0.1

0.03 0.070.89 0.01

0.01 0.99

0.04 0.96

0.030.020.010.160.01 0.75 0.02

0.01 0.02 0.02 0.49 0.46

0.04 0.05 0.9 0.01

0.150.85

0.01 0.230.050.01 0.03 0.110.01 0.010.530.01

0.010.090.010.020.150.02 0.010.030.07 0.010.58

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.10: Confusion matrix of classification results on
a noisy dataset.



Chapter 4. Experimental Evaluation 52

A complete analysis of the relation between a noise level and classification
performance is presented in section 4.3.3. However, assuming that the chosen
noise level simulates a real environment, Fig. 4.10 predicts results of the
method on the real platform.

In this case, grass (44%) and rubber (49%) result with the worst recall.
On the other hand, samples of mud, plastic or sand are classified very well.
A complete classification report comparing the deterministic results to the
noisy results is shown in Table 4.5.

Table 4.5: Classification report for a deterministic dataset
and a noisy dataset.

deterministic data noisy data supportprecision recall precision recall
carpet 0.88 0.75 0.75 0.70 100
concrete 0.97 1.00 0.72 0.52 100
foam 0.83 0.96 0.70 0.67 100
grass 0.74 0.74 0.63 0.44 100
gravel 1.00 0.99 0.54 0.79 100
ice 0.99 1.00 0.91 0.89 100
mud 0.96 1.00 0.93 0.99 100
plastic 1.00 1.00 0.93 0.96 100
rock 0.77 0.84 0.65 0.75 100
rubber 0.98 0.95 0.78 0.49 100
sand 1.00 0.99 0.63 0.90 100
snow 0.99 1.00 0.98 0.85 100
swamp 0.95 0.86 0.79 0.53 100
wood 0.88 0.84 0.42 0.58 100
avg / total 0.92 0.92 0.74 0.72 1400

Comparison to Other Classification Methods

Using the noisy dataset 03_03_40_a, the classification performance of the
developed framework KITTNN was compared to other classification ap-
proaches presented in section 1.1 (Table 4.6).

Table 4.6: Comparison to other classification methods im-
plemented by (Pedregosa et al., 2011)

method method param. accuracy precision recall f1-score
KITTNN hidden neurons: 20 0.719 0.740 0.720 0.720
SKNN hidden neurons: 20 0.812 0.820 0.810 0.810
RF estimators: 10 0.647 0.650 0.650 0.640
SVMs kernel: ’rbf’ 0.545 0.570 0.550 0.500
k-NN neighbours: 10 0.733 0.740 0.730 0.720

The comparison to SKNN indicates that theKITTNN implementation might
be optimizable. However, in general, the results proved the suitability of us-
ing neural networks.



Chapter 4. Experimental Evaluation 53

4.3.2 Selection of Learning Parameters

This section is devoted to an analysis of parameters belonging to the network
and the learning process. The goal was to determine:

1. hidden structure of the network;

2. learning rate for the backpropagation;

3. number of learning epochs (iterations).

To perform the analysis, the deterministic dataset (00_00_40_a - see Ta-
ble A1.1) was used.

0 50 100 150 200 250 300
training epoch

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io
n 
ac

cu
ra
cy

0.01
0.05
0.1
0.5
0.9

Figure 4.11: Training process with various learning rates.

In Fig. 4.11, the training process (progress of accuracy over iterations) is
illustrated for five learning rates. The results are obtained by averaging 10
observations and (standard deviation) error bars are shown. The experiment
was performed using a network with 20 hidden neurons.

0 50 100 150 200 250 300
training epoch

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io
n 
ac

cu
ra
cy

5
7
10
20
50
100

Figure 4.12: Training process with various networks dif-
fering in the number of hidden neurons.



Chapter 4. Experimental Evaluation 54

It was determined to use one hidden layer. The accuracy progress over
training epochs for six networks differing in the number of hidden neurons
is shown in Fig. 4.12. An overall analysis for these two parameters (learning
rate and network structure) is performed in Fig. 4.13.

0.0
1
0.0

3
0.0

5
0.0

7
0.1 0.3 0.5 0.7 0.9

learning rate

[960, 5, 14]

[960, 7, 14]

[960, 10, 14]

[960, 15, 14]

[960, 20, 14]

[960, 30, 14]

[960, 50, 14]

[960, 100, 14]

ne
tw

or
k 
st
ru
ct
ur
e

0.06

0.21

0.15

0.42

0.36

0.67

0.07

0.54

0.15

0.26

0.23

0.53

0.66

0.76

0.59

0.69

0.07

0.17

0.58

0.54

0.71

0.8

0.88

0.58

0.26

0.51

0.79

0.88

0.78

0.88

0.77

0.76

0.22

0.21

0.79

0.84

0.86

0.89

0.91

0.78

0.17

0.15

0.8

0.87

0.88

0.92

0.92

0.71

0.37

0.3

0.7

0.86

0.91

0.88

0.83

0.79

0.62

0.66

0.7

0.72

0.91

0.92

0.89

0.86

0.22

0.54

0.79

0.88

0.88

0.91

0.88

0.78

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.13: Classification accuracy vs. learning rate and
network structure (10 observations)

Based on the results, 20 neurons in one layer were chosen to form the hidden
structure of the network. The learning rate was set to 0.5. The number of
training epochs (based on Fig. 4.11 and Fig. 4.12) were set to 500.

4.3.3 Influence of Noise on Classification

Two types of noise were added to the deterministic data during the process:
a terrain noise (described in section 3.3.3) and a signal noise (section 3.5.2).
Both were parametrized by a standard deviation value. Fig. 4.14 shows the
influence of these values on the classification performance.

0.0 0.01 0.03 0.05 0.1 0.2

standard deviation of terrain noise

0.0

0.01

0.03

0.05

0.1

st
an

da
rd
 d
ev

ia
tio

n 
of
 s
ig
na

l n
oi
se

0.92

0.78

0.9

0.88

0.85

0.81

0.76

0.77

0.78

0.64

0.71

0.78

0.72

0.65

0.56

0.69

0.73

0.68

0.65

0.6

0.61

0.59

0.62

0.54

0.46

0.46

0.46

0.44

0.44

0.37

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4.14: Additive terrain and signal noise: influence
on the accuracy (10 observations).



Chapter 4. Experimental Evaluation 55

4.3.4 Time Needed for Classification

As discussed in section 3.4, the assumption is that the robot needs to make
several steps and record the sensory data over a period of time, to classify the
terrain with proprioceptive and tactile sensors. In this section, the period of
time needed for proper classification is analysed. Assuming that one second
in reality is equal to 10 simulation steps, Fig. 4.15 shows the classification
accuracy for six different numbers of simulation steps. The classification was
performed on the deterministic dataset (00_00_40_a - see Table A1.1).

1 10 20 30 40 80
number of timesteps

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io
n 
ac

cu
ra
cy

Figure 4.15: Analysis of time needed for proper classifica-
tion (10 observations).

Surprisingly, the classification result based on a single timestep is not bad.
In other words, the robot will be able to classify the terrain in real time
with more than 0.6 probability of success. In general, the more timesteps
are used, the better the result is.

1 10 20 30 40 80
number of timesteps

0.0

0.5

1.0

1.5

2.0

av
er
ag

e 
ep

oc
h 
tim

e 
[s
]

Figure 4.16: Average epoch time (10 observations) depend-
ing on the number of simulation timesteps.



Chapter 4. Experimental Evaluation 56

However, the equally good results for 40 and 80 timesteps indicate, that one
period of the tripod gait will be enough (see the periodic sensory signals in
appendix A1.1). Moreover, with the increasing number of timesteps, also
the feature vector size and network dimensionality increase, and, as shown
in Fig. 4.16, the processing time as well. Based on this analysis, 40 was
chosen as the default number of timesteps in this study.

4.3.5 Analysis of Used Sensor Types

Two types of sensors are used for terrain classification for the hexapod robot
AMOS II:

1. proprioceptive sensors (3 on each leg, 18 in total);

2. tactile sensors (1 on each leg, 6 in total).

The results presented so far are obtained using both of these two types to-
gether. In this section, the sensor types are evaluated separately. Fig. 4.17 il-
lustrates the training process using the sensor types one by one and compares
their classification performance to a combined configuration. The evaluation
is performed for three values of simulation timesteps (see section 4.3.4): 10,
40, 80.

0 100 200 300 400 500
training epochs

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io
n 
ac

cu
ra
cy

all:10
all:40
all:80

proprio:10
proprio:40
proprio:80

tactile:10
tactile:40
tactile:80

Figure 4.17: Evaluation of different sensor types separately
(average of 10 observations, timesteps: 10, 40, 80).

Fig. 4.17 shows that the combination of the two types performs with the
highest classification accuracy, namely even with 10 simulation steps (1 sec-
ond of real time) compared to 40 (4 seconds), resp. 80 (8 seconds), for only
one of the sensor types. Having more time for classification (4 or 8 seconds),
the six tactile sensors are more successful than the proprioceptive ones, how-
ever, they fail when the classification needs to be fast (1 second). Complete
classification results for all of these configurations can be found in Table 4.4.



Chapter 4. Experimental Evaluation 57

The number of used sensors affect the size of the feature vector and hence
also the size of the network input layer. The dimensionality of the network
matrices influences the processing time. An average epoch time out of 10
observations is shown for the two sensor types in Fig. 4.18.

all proprio only tactile only
used sensors

0.0

0.5

1.0

1.5

2.0

av
er
ag

e 
ep

oc
h 
tim

e 
[s
]

Figure 4.18: Average epoch time for different sensor types.

4.4 Terrain Classification Using Network Pruning

In this section, the developed pruning algorithm (section 2.4) is applied on
the terrain classification problem (chapter 3). The datasets containing the
terrain data are listed in Table A1.1. On each of them, a neural network
was trained, evaluated and saved (classification results in Table 4.4). These
trained nets were used as the input of the pruning algorithm to obtain the
following results.

The configurations listed in Table 4.7 were chosen for demonstration of the
PA on terrain classification:

Table 4.7: Chosen configurations for PA demonstration.

dataset ter./sig.
noise timesteps sensors hidden

neurons
A 00_00_40_a 0/0 40 all 20
B 00_00_80_a 0/0 80 all 20
C 00_00_40_a 0/0 40 all 100
D 03_03_40_a 0.03/0.03 40 all 20
E 00_00_40_p 0/0 40 proprioceptive 20
F 00_00_40_t 0/0 40 tactile 20

The result of the pruning algorithm applied on the default configuration (A)
is illustrated in Fig. 4.19. The required classification accuracy, number of



Chapter 4. Experimental Evaluation 58

synapses and network structure are shown with respect to the pruning step.
The result was obtained by averaging 10 observations.

0 20 40 60 80 100 120
pruning step

0.0

0.2

0.4

0.6

0.8

1.0
cl
as

si
fic

at
io
n 
ac

cu
ra
cy

0

5000

10000

15000

20000

nu
m
be

r o
f s

yn
ap

se
s

[956.20.14.]

[888.19.14.]

[735.18.14.]

[349.16.14.] [344.16.14.] [340.16.14.] [336.16.14.] [333.16.14.]

Net structure

Figure 4.19: Pruning Algorithm Results on AMTER
Dataset. No noise.

The number of synapses were reduced from 19400 to 516. Complete results
for all the listed configurations from Table 4.7 are presented in Table 4.8.

Table 4.8: Results of the PA on terrain datasets.

required
accuracy

structure
before

synapses
before

structure
after

synapses
after

accuracy on
testing set

pruning
steps

A 0.9 [960, 20, 14] 19400 [330, 16, 14] 516 0.8807 123
A’ 0.75 [960, 20, 14] 19400 [69, 10, 13] 123 0.6437 27
B 0.9 [1920, 20, 14] 38680 [399, 16, 14] 531 0.8859 363
C 0.65 [960, 100, 14] 97400 [136, 33, 14] 204 0.7384 28
D 0.7 [960, 20, 14] 19400 [331, 17, 14] 534 0.6787 76
E 0.65 [720, 20, 14] 14680 [116, 8, 12] 182 0.6601 92
F 0.65 [240, 20, 14] 5080 [44, 16, 13] 144 0.6601 46

As we can see, the network D, trained on the noisy dataset, ends with very
similar results as the reference A configuration. The structural and synaptic
reduction of configuration B (using 80 timesteps) takes more pruning steps,
but also ends up with comparable results. As A, B requires the same accu-
racy, we can compare their synaptic pruning process in a graph (Fig. 4.20).
Additionally, configuration D is included, as its pruning progress is also
comparable.



Chapter 4. Experimental Evaluation 59

Figure 4.20: Synaptic pruning of configurations A (refer-
ence), B (80 timesteps) and D (noisy data).

Similarly, we can compare the remaining configurations (C, E, and F), as all
of them require the accuracy of 0.65 (Fig. 4.21. Additionally, the A (default)
configuration is pruned with the same required accuracy as C (0.75) and
added for comparison (listed as A’). Ideally, A’ would end up with the same
result as the huge network (C ).

Interestingly, when pruning E and F configurations, the PA decided to omit
some of the terrains completely (see Table 4.8 and Fig. 4.23), which is allowed
since only 65% of accuracy was required.

Figure 4.21: Synaptic pruning of configurations A’ (ref-
erence), C (100 hidden neurons), E (proprioceptive sensors)

and F (tactile sensors).



Chapter 4. Experimental Evaluation 60

The following Fig. 4.22 shows a relative amount of active neurons after prun-
ing for configurations A, B and D. Each configuration is also labeled by the
required accuracy and the initial number of neurons per a layer.

Figure 4.22: Active neurons in the network after pruning
[%]: configurations A, B, D (10 observations)

In Fig. 4.23, the same statistics for configurations C, E and F, completed
by A’, is shown. In general, input layers are reduced the most. The results
also indicate that proprioceptive sensing does not need so many hidden units
compared to tactile sensing.

Figure 4.23: Active neurons in the network after pruning
[%]: configurations A’, C, E, F (10 observations)



Chapter 4. Experimental Evaluation 61

4.4.1 Feature Selection for Terrain Classification

Section 2.4.4 presents an idea of using minimal structures for a feature selec-
tion. The idea is based on tracking paths from input neurons representing in-
dividual features to output neurons (classes). This approach was applied on
the minimal structure of the A configuration from Table 4.8, hence the anal-
ysis is performed on a network of structure [330, 16, 14] with 516 synapses.

Fig. 4.24 shows three sample examples (right y-axis). On the left y-axis,
the number of paths (see Fig. 4.25) to the output layer is counted for each
feature.

0 200 400 600 800 1000
features

0

50

100

150

200

250

nu
m

be
r o

f p
at

hs
 to

 o
ut

pu
t l

ay
er

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ex
am

pl
es

 o
f s

ev
er

al
 c

la
ss

es

grass rock foam

Figure 4.24: Number of paths to the output layer for every
feature of the input example.

Fig. 4.25 explains the meaning of a path in this context.

Figure 4.25: Explanation of a path from input to output
layer in a minimal structure.

Having these paths, we can distinguish features important for individual
classes. In Fig. 4.26, the analysis is done for every feature of the Thoraco-
Coxa joint angle sensors. Red dots mean that the feature has a path to the
corresponding class (terrain). The same analysis for tactile sensors is shown
in Fig. 4.27. Similar figures for coxa and femur joint angle sensors can be
found in appendix A1.3.



Chapter 4. Experimental Evaluation 62

atr_f atr_m atr_h atl_f atl_m atl_h
features : Thoraco-Coxa joint sensors

carpet
concrete

foam
grass
gravel

ice
mud

plastic
rock

rubber
sand
snow

swamp
wood

cl
as

se
s

not used features used features

0

1

ex
am

pl
es

 o
f s

ev
er
al
 c
la
ss
es

Figure 4.26: Used features of thoraco-coxa proprioceptive
sensors for individual classes.

Using this analysis, one might find the redundant parts of the feature vector,
as some of the features are unimportant for any of the classes. Moreover,
we can make statements about single features based on the classes they are
connected to. For instance, if a feature, belonging to the foot contact sensor
on the right front leg, fires for foam and does not fire for the other classes,
we might assume that this sensor is important if we want to classify foam
properly.

fr_f fr_m fr_h fl_f fl_m fl_h
features : Tactile sensors

carpet
concrete

foam
grass
gravel

ice
mud

plastic
rock

rubber
sand
snow

swamp
wood

cl
as

se
s

not used features used features

0

1

ex
am

pl
es

 o
f s

ev
er
al
 c
la
ss
es

Figure 4.27: Used features of tactile sensors for individual
classes.

To go even further with this analysis, also weights of the minimal network
structure can be used. For every feature and every class, the Fig. 4.29 shows
the sum of weights of the path from the feature to the class.



Chapter 4. Experimental Evaluation 63

The power of feature f, corresponding to input neuron ir, and class c, rep-
resented by output neuron oq, is computed as given in Eq. (4.1); (assuming
one hidden layer).

powerr,q =
Nhidden∑

k=1
wr,k + wk,q (4.1)

acr_f acr_m acr_h acl_f acl_m acl_h
features : Coxa-Trochanteral joint sensors

carpet
concrete

foam
grass

gravel
ice

mud
plastic

rock
rubber

sand
snow

swamp
wood

cl
as

se
s

−24

−16

−8

0

8

16

24

32

Figure 4.28: Influence power of single features on classes:
coxa sensors

Based on the results in Fig. 4.29, besides the knowledge if a feature affects
a particular class, we can also see the direction (positive/negative) and a
power of this influence. For instance, we can find a feature affecting plastic
or concrete positively and snow or mud negatively at the same time.

fr_f fr_m fr_h fl_f fl_m fl_h
features : Tactile sensors

carpet
concrete

foam
grass

gravel
ice

mud
plastic

rock
rubber

sand
snow

swamp
wood

cl
as

se
s

−24

−16

−8

0

8

16

24

32

Figure 4.29: Influence power of single features on classes:
tactile sensors

The results for the thoraco and femur sensors were generated in the same
manner and can be found in appendix A1.3.



64

Chapter 5

Discussion

The objectives of this thesis consisted of four subtasks:

1. implementation of the classification method;

2. development of the new pruning algorithm;

3. generation of datasets for virtual terrains;

4. terrain classification.

5.1 Methods Recapitulation

Firstly, I have implemented a neural network framework capable of classifica-
tion and I called it KITTNN (chapter 2). The network is of the feedforward
type and the Backpropagation learning algorithm is used for network train-
ing. As a framework extension, a graphical user interface was created to
visualize the training process of smaller networks.

The functionality of the KITTNN framework was verified in section 4.1 by
comparing to a public implementation (SKNN ). Two datasets, XOR and
MNIST, were used for training and the learning progress was observed over
training epochs. The results showed that KITTNN is slower than SKNN
in training, however, it is capable of learning and performs with the same
classification accuracy once it is trained (section 4.1).

Next, a new network pruning algorithm has been invented. The fundamental
idea is to use weight changes during network training for selection of the
unimportant synapses. The hypothesis saying that weights of unimportant
synapses do not evolve during the training has been experimentally proven.
The algorithm was firstly tested on the XOR dataset, where the known
minimal network structure [2, 2, 1] was successfully found.

Then the algorithm was used to prune a network for MNIST classification.
In this case the number of synapses were reduced from 11910 to 835, which
is a reduction of almost 93%, while the classification accuracy of the pruned
network was kept on 90%. Pruning the synapses, many of the neurons lost
all of their inputs and became inactive. The minimal structure regarding the
active neurons for the MNIST dataset is [495, 15, 10] (initially [784, 15, 10]).

The obtained structure showed that many of the input neurons (pixels of
the MNIST examples) were unimportant for classification, which lead to the



Chapter 5. Discussion 65

analysis of features for individual classes. In Fig. 4.7, features important for
particular digits are shown.

Regarding the third objective, a framework provided by (Martius et al.,
2009) was used to simulate the hexapod robot AMOS II walking on different
terrains. It was selected to generate 14 terrains in total, where each of them
was defined by 5 features: roughness, slipperiness, hardness, elasticity and
height (see Table 3.4). These parameters were influenced by a terrain noise
to generate more variability for samples of one class.

In total 24 sensors were used (18 proprioceptive and 6 tactile sensors). The
signals of these sensors were influenced by an additive signal noise to sim-
ulate the real world environment. Finally, feature vectors were built by
concatenating sensors one after each other and datasets were generated (a
complete list in Table A1.1).

The generated datasets are parametrized by:

1. terrain noise standard deviation;

2. signal noise standard deviation;

3. number of simulation timesteps (length of the sensory signal);

4. used sensors.

Each of the datasets was used for training of a KITTNN network, where
the trained networks were parametrized by learning rate, network structure,
number of training epochs.

The classification results were saved for all of these configurations, which
enabled to make a statistical analysis of the parameters.

Here are some observations:

1. Using deterministic proprioceptive and tactile sensory data gathered
in a period of 4 seconds, we get 92% of classification accuracy for 14
different terrain types.

2. Using a more realistic configuration with 3% of relative terrain noise
and 3% of relative signal noise, the classification accuracy drops to
72% (complete analysis in Fig. 4.14).

3. Compared to 1, when only 2 seconds are used to gather the sensory
data, the accuracy drops to 85%. Then, for 1 second the accuracy is
80% and if we want to classify real-time data, we get 64% (analysis in
Fig. 4.15).

4. The combination of both sensor types provides the best classification
results (hypothesis proved). Using the propriceptors only, the accuracy
drops from 92% to 69.6%. Using only tactile sensors ends with the
accuracy of 70.1% (see Fig. 4.17).

5. The optimal number of hidden neurons in the fully-connected network
is 20, a suitable learning rate can be 0.1 or 0.5 (see section 4.3.2).

Finally, the pruning algorithm was used to find a minimal network structure
for the terrain classification task. Regarding the reference configuration A
(deterministic dataset, 20 hidden neurons - see 4.7), the number of synapses



Chapter 5. Discussion 66

in the network were reduced from 19400 to 516 (97.35%) and the structure
changed from [960, 20, 14] to [330, 16, 14]. The classification accuracy of the
pruned network is 88.07% (see Table 4.8 for more detailed results).

Based on the change in the network structure, we know that at least 65% of
the features are unimportant and we can even locate them. Furthermore, we
can separate features important for individual classes and see the correlations
among the classes. Additionally, as shown in Fig. 4.29, we can see the
influence power of single features on the classes.

A proper analysis of network minimal structures is definitely a subject for
future work.

5.2 Comparison of Results

Based on the literature, this approach is compared to results of 5 terrain
classification studies in Table 5.1. The comparison of the classification accu-
racy must be done with respect to the number of classified terrain types. In
this work, we distinguish far more terrain types than the other researchers.

Table 5.1: Studies of terrain classification for legged robots.

source sensors terrains accuracy platform environment

(Zenker et al., 2013) vision 8 0.900 hexapod
AMOS II reality

(Kesper et al., 2012) laser 3 X hexapod
AMOS II reality

(Xiong, Worgotter, and
Manoonpong, 2014) tactile 6 0.89 hexapod

AMOS II reality

(Mou and Kleiner,
2010)

vision
laser

vibration
5 0.96 Matilda

Robot reality

(Hoepflinger et al.,
2010) tactile 4/4 0.94/0.73 tetrapod

ALoF reality

this study proprioceptive
tactile 14 0.923 hexapod

AMOS II
simulation

deterministic

this study proprioceptive 14 0.696 hexapod
AMOS II

simulation
deterministic

this study tactile 14 0.701 hexapod
AMOS II

simulation
deterministic

this study proprioceptive
tactile 14 0.719 hexapod

AMOS II
simulation

noisy

this study proprioceptive 14 0.426 hexapod
AMOS II

simulation
noisy

this study tactile 14 0.362 hexapod
AMOS II

simulation
noisy

Considering the high number of detected terrains, our results seem to be very
positive. However, we must take into account that these results are based
on the simulation data. To make a fair comparison, the method should be
implemented on the real platform.



67

Chapter 6

Conclusion and Outlook

A feedforward neural network framework capable of learning and classifica-
tion, additionally equipped with a new pruning algorithm, has been devel-
oped. The hypothesis regarding the network pruning has been proven, as
there are many synapses (generally over 90%) in the fully-connected net-
works, which are unimportant for classification. Furthermore, the resulting
minimal structures seem to be useful for feature selection.

The developed framework has been used for terrain classification using 18
proprioception and 6 tactile sensors of a hexapod robot. Using 5 terrain
features, 14 different virtual terrain types have been generated.

We achieved over 92% accuracy on deterministic simulation data and 72%
on data that was manually noised. Regarding the mentioned sensor types,
the sensory data had to be gathered over one period of the tripod walking
pattern. Using data of one moment in time only, the accuracy drops to 64%
on the deterministic simulation data.

Application of the pruning algorithm for terrain classification showed that
the initially used network structure [960, 20, 14] was oversized. The number
of input neurons were reduced to 330 and important features were found for
individual terrains. The outcome of the process is a minimal, computation-
ally efficient, network. Furthermore, the network knows which features are
useful for a successful terrain classification.

To make a final evaluation of the overall study, the main objectives were met
and on top of that, some interesting results were obtained.

Regarding the terrain classification process, the implementation on the real
platform should be the next step. The proprioception and tactile sensing
was proved to work well together on the simulation data.

The field of neural networks provides a wide range of interesting questions to
be researched, especially in case of minimal network structures. The feature
selection idea has been outlined in this study.

Moreover, the synapses are removed from the network by setting weights to
zero, however, the dimension of matrices remains unchanged. Therefore, a
network shrinking algorithm might be proposed in the future work.

The application of the developed methods on specific types of data might
lead to understanding previously insolvable problems.



68

Bibliography

[1] Frank Rosenblatt. “The perceptron: A probabilistic model for informa-
tion storage and organization in the brain”. In: Psychological Review
65 (1958), pp. 386–408.

[2] Peter Bräunig and Reinhold Hustert. “Proprioceptors with central cell
bodies in insects”. In: Nature (1980), pp. 768–770.

[3] R. Reed. “Pruning Algorithms - A Survey”. In: IEEE Transactions on
Neural Networks (Volume:4 , Issue: 5) (Sept. 1993), pp. 740–747. url:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=248452.

[4] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine
Learning 20 (1995), pp. 273–297.

[5] Tin Kam Ho. “Random Decision Forests”. In: Document Analysis and
Recognition, 1995., Proceedings of the Third International Conference
on 1 (1995), pp. 278–282.

[6] Yann LeCun and Corinna Cortes. The MNIST database of handwritten
digits. 1998. url: http://yann.lecun.com/exdb/mnist/.

[7] D. G. Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International Journal Computer Vision 60 (2004), pp. 91–110.

[8] H. Bay, T. Tuytelaars, and L. V. Gool. “Surf: Speeded up robust fea-
tures”. In: ECCV (2006), pp. 404–417.

[9] John R. Meyer. Tactile Communication. [Online; accessed 25-May-
2016; General Entomology, ENT 425]. 2006. url: \url{https://
www.cals.ncsu.edu/course/ent425/tutorial/Communication/
tactcomm.html}.

[10] Georg Martius et al. Robot Simulator of the Robotics Group for Self-
Organization of Control. http://robot.informatik.uni-leipzig.
de/software/. last modified: 06. July 2015. 2009.

[11] E. Coyle. “Fundamentals and Methods of Terrain Classification Using
Proprioceptive Sensors”. PhD thesis. Florida State University Talla-
hassee, 2010.

[12] M. A. Hoepflinger et al. “Haptic terrain classification for legged robots”.
In: Robotics and Automation (ICRA), IEEE International Conference
3 (May 2010), pp. 2828–2833. url: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?tp=&arnumber=5509309.

[13] W. Mou and A. Kleiner. “Online learning terrain classification for
adaptive velocity control”. In: Safety Security and Rescue Robotics 26
(July 2010), pp. 1–7. url: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=5981563.

[14] Poramate Manoonpong. Open-source multi sensori-motor robotic plat-
form AMOS II. http://manoonpong.com/AMOSII.html. 2011.

[15] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=248452
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=248452
http://yann.lecun.com/exdb/mnist/
\url{https://www.cals.ncsu.edu/course/ent425/tutorial/Communication/tactcomm.html}
\url{https://www.cals.ncsu.edu/course/ent425/tutorial/Communication/tactcomm.html}
\url{https://www.cals.ncsu.edu/course/ent425/tutorial/Communication/tactcomm.html}
http://robot.informatik.uni-leipzig.de/software/
http://robot.informatik.uni-leipzig.de/software/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509309
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509309
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5981563
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5981563
http://manoonpong.com/AMOSII.html


BIBLIOGRAPHY 69

[16] F. L. G. Bermudez et al. “Performance analysis and terrain classifi-
cation for a legged robot over rough terrain”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems 7 (Dec. 2012).
url: http://ieeexplore.ieee.org/xpl/login.jsp?tp=
&arnumber=6386243.

[17] P. Kesper et al. “Obstacle-Gap Detection and Terrain Classification
of Walking Robots based on a 2D Laser Range Finder”. In: Nature-
inspired Mobile Robotics (2012), pp. 419–426. url: http://manoonpong.
com/paper/2013/CLAWAR2013_Kesper.pdf.

[18] Kaggle. The Marinexplore and Cornell University Whale Detection
Challenge. [Online; accessed 26-May-2016]. 2013. url: \url{http:
//www.lauradhamilton.com/10- surprising- machine-
learning-applications}.

[19] C. Ordonez et al. “Terrain identification for RHex-type robots”. In:
Unmanned Systems Technology XV 17 (May 2013). url: http://
proceedings.spiedigitallibrary.org/proceeding.aspx?
articleid=1689675.

[20] S. Zenker et al. “Visual terrain classification for selecting energy ef-
ficient gaits of a hexapod robot”. In: International Conference on
Advanced Intelligent Mechatronics 12 (July 2013), pp. 577–584. url:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=6584154&tag=1.

[21] Welch Labs.Neural Networks Demystified. Youtube. 2014. url: https:
//www.youtube.com/watch?v=bxe2T-V8XRs.

[22] X. Xiong, F. Worgotter, and P. Manoonpong. “Neuromechanical con-
trol for hexapedal robot walking on challenging surfaces and surface
classification”. In: Robotics and Autonomous Systems 7 (Aug. 2014),
pp. 1777–1790. url: www.elsevier.com/locate/robot.

[23] Alex J. Champandard and Spyridon Samothrakis. sknn: Deep Neu-
ral Networks without the Learning Cliff. [Online; accessed 06-May-
2016; nucl.ai Conference 2015]. 2015. url: \url{http://scikit-
neuralnetwork.readthedocs.io/en/latest/}.

[24] Poramate Manoonpong. “Adaptive Embodied Locomotion Control Sys-
tems”. Lecutre 3 - page 133 - Tripod Gait.

[25] PPM Format Specification. http://netpbm.sourceforge.net/
doc/ppm.html. Updated: 02 November 2013.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6386243
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6386243
http://manoonpong.com/paper/2013/CLAWAR2013_Kesper.pdf
http://manoonpong.com/paper/2013/CLAWAR2013_Kesper.pdf
\url{http://www.lauradhamilton.com/10-surprising-machine-learning-applications}
\url{http://www.lauradhamilton.com/10-surprising-machine-learning-applications}
\url{http://www.lauradhamilton.com/10-surprising-machine-learning-applications}
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1689675
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1689675
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1689675
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6584154&tag=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6584154&tag=1
https://www.youtube.com/watch?v=bxe2T-V8XRs
https://www.youtube.com/watch?v=bxe2T-V8XRs
www.elsevier.com/locate/robot
\url{http://scikit-neuralnetwork.readthedocs.io/en/latest/}
\url{http://scikit-neuralnetwork.readthedocs.io/en/latest/}
http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/ppm.html


70

Appendix A1

Supplementary Data

This section contains data and results, which complement the information
presented in previous sections.

A1.1 Sensory Data Examples

The following figures show signal examples for all 24 sensors (see Table 3.1).

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) ATRf

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(b) ATLf

Figure A1.1: Thoraco proprioceptive sensors, front legs

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) ACRf

0 20 40 60 80 100
timestep

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

se
ns

or
 v

al
ue

(b) ACLf

Figure A1.2: Coxa proprioceptive sensors, front legs

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) AFRf

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(b) AFLf

Figure A1.3: Femur proprioceptive sensors, front legs



Appendix A1. Supplementary Data 71

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) ATRm

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(b) ATLm

Figure A1.4: Thoraco proprioceptive sensors, middle legs

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) ACRm

0 20 40 60 80 100
timestep

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

se
ns

or
 v

al
ue

(b) ACLm

Figure A1.5: Coxa proprioceptive sensors, middle legs

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) AFRm

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(b) AFLm

Figure A1.6: Femur proprioceptive sensors, middle legs

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) ATRh

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(b) ATLh

Figure A1.7: Thoraco proprioceptive sensors, hint legs

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) ACRh

0 20 40 60 80 100
timestep

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

se
ns

or
 v

al
ue

(b) ACLh

Figure A1.8: Coxa proprioceptive sensors, hint legs



Appendix A1. Supplementary Data 72

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(a) AFRh

0 20 40 60 80 100
timestep

−0.4
−0.2

0.0
0.2
0.4

se
ns

or
 v

al
ue

(b) AFLh

Figure A1.9: Femur proprioceptive sensors, hint legs

0 20 40 60 80 100
timestep

0.0
0.2
0.4
0.6
0.8
1.0

se
ns

or
 v
al
ue

(a) FRf

0 20 40 60 80 100
timestep

0.0
0.2
0.4
0.6
0.8
1.0

se
ns

or
 v
al
ue

(b) FLf

Figure A1.10: Tactile sensors, front legs

0 20 40 60 80 100
timestep

0.0
0.2
0.4
0.6
0.8
1.0

se
ns

or
 v
al
ue

(a) FRm

0 20 40 60 80 100
timestep

0.0
0.2
0.4
0.6
0.8
1.0

se
ns

or
 v
al
ue

(b) FLm

Figure A1.11: Tactile sensors, middle legs

0 20 40 60 80 100
timestep

0.0
0.2
0.4
0.6
0.8
1.0

se
ns

or
 v
al
ue

(a) FRh

0 20 40 60 80 100
timestep

0.0
0.2
0.4
0.6
0.8
1.0

se
ns

or
 v
al
ue

(b) FLh

Figure A1.12: Tactile sensors, hint legs



Appendix A1. Supplementary Data 73

A1.2 Generated Datasets

The following Table A1.1 presents all generated datasets (see section 3.6)
used for terrain classification analysis (in section 4.3).

Table A1.1: Generated datasets

name ter. noise sig. noise timesteps sensors
00_00_80_p 0.00 0.00 80 proprioceptive
00_00_80_a 0.00 0.00 80 all
00_03_40_a 0.00 0.03 40 all
00_00_30_a 0.00 0.00 30 all
00_00_10_p 0.00 0.00 10 proprioceptive
00_01_40_a 0.00 0.01 40 all
00_00_01_a 0.00 0.00 01 all
00_00_80_t 0.00 0.00 80 tactile
00_00_20_a 0.00 0.00 20 all
00_05_40_a 0.00 0.05 40 all
00_00_40_a 0.00 0.00 40 all
00_00_10_a 0.00 0.00 10 all
00_00_40_p 0.00 0.00 40 proprioceptive
00_00_10_t 0.00 0.00 10 tactile
00_10_40_a 0.00 0.10 40 all
00_00_40_t 0.00 0.00 40 tactile
01_03_40_a 0.01 0.03 40 all
01_10_40_a 0.01 0.10 40 all
01_01_40_a 0.01 0.01 40 all
01_00_40_a 0.01 0.00 40 all
01_05_40_a 0.01 0.05 40 all
03_10_40_a 0.03 0.10 40 all
03_05_40_a 0.03 0.05 40 all
03_00_40_a 0.03 0.00 40 all
03_03_40_a 0.03 0.03 40 all
03_01_40_a 0.03 0.01 40 all
05_01_40_a 0.05 0.01 40 all
05_05_40_a 0.05 0.05 40 all
05_10_40_a 0.05 0.10 40 all
05_03_40_a 0.05 0.03 40 all
05_00_40_a 0.05 0.00 40 all
10_10_40_a 0.10 0.10 40 all
10_03_40_a 0.10 0.03 40 all
10_01_40_a 0.10 0.01 40 all
10_00_40_a 0.10 0.00 40 all
10_05_40_a 0.10 0.05 40 all
20_01_40_a 0.20 0.01 40 all
20_00_40_a 0.20 0.00 40 all
20_05_40_a 0.20 0.05 40 all
20_10_40_a 0.20 0.10 40 all
20_03_40_a 0.20 0.03 40 all



Appendix A1. Supplementary Data 74

A1.3 Supplementary Figures for Feature Analysis

Figures from this section complements the analysis of feature selection from
section 4.4.1.

acr_f acr_m acr_h acl_f acl_m acl_h
features : Coxa-Trochanteral joint sensors

carpet
concrete

foam
grass
gravel

ice
mud

plastic
rock

rubber
sand
snow

swamp
wood

cl
as

se
s

not used features used features

0

1

ex
am

pl
es

 o
f s

ev
er
al
 c
la
ss
es

Figure A1.13: Used features of coxa-trochanteral proprio-
ceptive sensors for individual classes.

afr_f afr_m afr_h afl_f afl_m afl_h
features : Femur-Tibia joint sensors

carpet
concrete

foam
grass
gravel

ice
mud

plastic
rock

rubber
sand
snow

swamp
wood

cl
as

se
s

not used features used features

0

1

ex
am

pl
es

 o
f s

ev
er
al
 c
la
ss
es

Figure A1.14: Used features of femur-tibia proprioceptive
sensors for individual classes.



Appendix A1. Supplementary Data 75

atr_f atr_m atr_h atl_f atl_m atl_h
features : Thoraco-Coxa joint sensors

carpet
concrete

foam
grass

gravel
ice

mud
plastic

rock
rubber

sand
snow

swamp
wood

cl
as

se
s

−24

−16

−8

0

8

16

24

32

Figure A1.15: Influence power of single features on classes:
thoraco-coxa sensors

afr_f afr_m afr_h afl_f afl_m afl_h
features : Femur-Tibia joint sensors

carpet
concrete

foam
grass

gravel
ice

mud
plastic

rock
rubber

sand
snow

swamp
wood

cl
as

se
s

−24

−16

−8

0

8

16

24

32

Figure A1.16: Influence power of single features on classes:
femur-tibia sensors



76

Appendix A2

Method Implementation

In this section, more detailed implementation information, related to the
new framework (appendix A2.1) and to the terrain classification process
(appendix A2.2), is provided.

A2.1 Implementation of the Neural Network

This section relates to chapter 2. The framework was implemented in pro-
gramming language Python and named KITTNN. A detailed API for the
presented classes is attached in appendix A4.1.

The following diagram (A2.1) shows the structure of the KITTNN .py pack-
age.

Figure A2.1: KITTNN package : Implemented neural net-
work framework

The KITTNN implementation is based on some general knowledge gained
at school and/or from (Labs, 2014), the idea is pretty straight forward.

The overall idea is based on the object-oriented programming. There are
three fundamental files containing the main classes corresponding to struc-
tural elements - a network, a neuron and a synapse (a connection).



Appendix A2. Method Implementation 77

kitt_neuron.py

The very basic units of a neural net are called neurons. In case of artificial
systems, these units are responsible for transferring all their inputs into one
output. The behaviour is moreless the same for all of the units, therefore a
class called Neuron implements some basic common functions.

Figure A2.2: kitt_neuron.py : Neuron class inheritance

Then, as Fig. A2.2 shows, three classes are inherited from the Neuron class.
Some special functions, like fitting a sample in case of input layers or pro-
ducing network outcome by output layers respectively, can be implemented
this way, while some common functions are shared in the mother Neuron
class.

kitt_synapse.py

Next, there is a class representing a neural connection - a synapse. An
instance of this class takes care of the corresponding weight and remembers
the two connected neurons.

Additionally, a function called remove_self() is implemented, which sets
the weight to zero and removes the synapse from a database of the corre-
sponding neural net. Then it also checks the two connected neurons, if they
have some other connections remaining. If not, they are labeled as dead, as
they are not a part of the network any more.

kitt_net.py

The network is initialized by creating an instance of NeuralNetwork() class
from kitt_net.py. The initialization process is illustrated in Fig. A2.3. Ba-
sically, the only parameter is the network structure, which is expected as a
.py iterable type.

For instance, a network with 2 input, 5 hidden and 3 output units would be
created as NeuralNetwork(structure=[2, 5, 3]). Number of hidden layers is
not limited.



Appendix A2. Method Implementation 78

Figure A2.3: kitt_net.py : Neural Network Initialization

A learning algorithm is added to the initialized network thereafter (see sec-
tion 2.3). The network class implements basic functions like fit(), predict()
in order to be used as a classifier. Moreover, it has some additional utilities
like copy_self() or print_self(), which are essential for this work (section 2.5,
section 2.4).

Scikit-learn Neural Network Library

In order to verify the functionality of the implemented neural network frame-
work (KITTNN ), a provided public library is used. As the official description
says (Champandard and Samothrakis, 2015), this library implements multi-
layer perceptrons as a wrapper for the powerful pylearn2 library that is
compatible with scikit-learn for a more user-friendly and Pythonic interface.

This step has been considered with the aim to test another implementation
of the learning algorithm rather than to obtain better classification results.
As the only learning parameters are the net structure, the learning rate and
the number of epochs, some other default parameters of the tested network
are shown in code part A2.1.

Part of Code A2.1: SKNN classifier specification (Cham-
pandard and Samothrakis, 2015)

class sknn.mlp.Classifier(layers, warning=None, parameters=None,
random_state=None, learning_rule=u’sgd’, learning_rate=0.01,
learning_momentum=0.9, normalize=None, regularize=None,
weight_decay=None, dropout_rate=None, batch_size=1, n_iter=None,
n_stable=10, f_stable=0.001, valid_set=None, valid_size=0.0,
loss_type=None, callback=None, debug=False, verbose=None)



Appendix A2. Method Implementation 79

A2.2 Implementation of the Terrain Classification

This section relates to chapter 3. The following Fig. A2.4 illustrates the
overall terrain classification process and presents an extended version of the
diagram in Fig. 3.1.

Figure A2.4: Terrain classification process - overall dia-
gram.

In the following sections, the individual steps of the terrain classification
process are explained in more detail.

LPZ Robots Simulation

This section extends the information from section 3.2.2. It is devoted to the
simulation of AMOS II using (Martius et al., 2009)

The lpzrobots project contains many subprojects. For this study, the most
important ones are:



Appendix A2. Method Implementation 80

selforg : homeokinetic controllers implementation framework

ode_robots : a 3D physically correct robot simulator

The project is implemented in C++ and needs a Unix system to be run. It
consists of two main GIT repositories to be forked - lpzrobots and go_robots.
The overall software architecture is shown in Fig. A2.5.

Figure A2.5: Software architecture for LPZRobots and
GoRobots. (Martius et al., 2009)

To introduce the elements in Fig. A2.5, ThisSim is an inherited class of
another class called Simulation and is initialized every time the simulation
is launched. It integrates all elements together, controls the environment as
well as the robot and sets up initial parameters. An instance of the Agent
class integrates all components of the agent (robot) by using the shown
classes.

Terrain Construction in main.cpp

The LpzRobots AMOS II simulator supports some terrain setting. In the
main simulation file (main.cpp - see A4), a ’rough terrain’ substance is being
initialized and passed through a handle to a TerrainGround constructor.

Part of Code A2.2: Setting a terrain ground in main.cpp
Substance roughterrainSubstance(terrain_roughness, terrain_slip,

terrain_hardness, terrain_elasticity);
oodeHandle.substance = roughterrainSubstance;
TerrainGround* terrainground = new TerrainGround(oodeHandle,

osgHandle.changeColor(terrain_color),
"rough1.ppm", "", 20, 25, terrain_height);



Appendix A2. Method Implementation 81

Data Storing

It is always recommended to store rough data before some processing, hence
the simulator creates .txt files of structure symbolized in code part A2.3
(with the reference to sensors abbreviations in Table 3.1).

Part of Code A2.3: Rough sensory data files structure
timestep_001;ATRf;ATRm;ATRh;ATLf;...;FRh;FLf;FLm;FLh
timestep_002;ATRf;ATRm;ATRh;ATLf;...;FRh;FLf;FLm;FLh
...
timestep_100;ATRf;ATRm;ATRh;ATLf;...;FRh;FLf;FLm;FLh

There is a .txt file of this structure for every single simulation run in the
root/data/ directory (see appendix A4).

All the data files are generated by a script called generate_txt_data.py (A4).
This script takes several arguments, like the number of jobs (simulation
runs), terrain types involved or the terrain noise std (σp). Then a loop based
on these parameters starts, where the simulation is launched and stopped
after ten seconds each iteration. This is performed by calling a bash com-
mand (since the simulation is .cpp based) and then killing the called process
from python. The corresponding .txt file is saved after each iteration by the
simulation and then copied by the python script to a corresponding folder
in root/data/.

Figure A2.6: The process of data acquisition from the sim-
ulation.

In this manner, .txt files for all terrains and all mentioned σp are saved into
a structure illustrated on Fig. A2.7. Each .txt file contains approximately
100 lines, one for each simulation step (as shown in code part A2.3). Every
line then contains values of the 24 proprioceptive sensors.

Figure A2.7: The structure of rough data directory.



Appendix A2. Method Implementation 82

Right after the data generation, a script called clean_txt_data.py (A4) is
used to check the created .txt files. As it takes a long time to generate all
the data, sometimes the simulation fails and the files are incomplete. Hence
the script checks whether there are enough timesteps (at least more than
95) and also if the steps are not messed. Files that fail during the inspection
are removed.

Datasets Storing

During the overall process description in section 3.6, some global process
parameters have been collected. These configurations are now passed as
arguments to the script called create_terrains_dataset.py and therefore sev-
eral datasets of various properties can be generated. The workflow of this
script is illustrated in Fig. A2.8.

Figure A2.8: Workflow of generating a dataset

The datasets files are saved in directory root/py/cache/datasets/
amos_terrains_sim/ (see A4). Their structure is based on a powerful
serializing and de-serializing Python algorithm implemented under a pack-
age called pickle (cPickle). On the same basis a package called shelve is used
to represent a dataset as a dictionary-link object. The files are saved with
the .ds suffix.



83

Appendix A3

Structure of the Workspace

root

simulation

gorobots_edu-fork

lpzrobots-fork

data

no_noise

noise_1p

noise_3p

noise_5p

noise_10p

noise_20p

py

cache

params

downloads

datasets

trained

pruned

kitt_nn

scripts

results

progress_reports

thesis



84

Appendix A4

Code Documentation

A documentation for the KITTNN framework implementation is provided in
appendix A4.1. The API for the implementation of the terrain classification
process is in appendix A4.2.

A4.1 Neural Network Framework KITTNN (API)

class kitt_nn.nn_structure.kitt_net.NeuralNetwork(structure)

The main class representing an artificial neural network.
@ structure (array-like) : len: number of layers; items: number of neurons per layer

def init : Creates neurons and makes a fully-connected structure.
def fit : Feeds the input with samples and trains the model.

@ train_X : array-like, shape (n_samples, n_inputs)
@ train_y : array-like, shape (n_samples, n_outputs)
@ val_X : array-like, shape (n_samples, n_inputs)
@ val_y : array-like, shape (n_samples, n_outputs)

def predict : Predicts the output.
@ test_X : array-like, shape (n_samples, n_inputs)

returns y_pred : array, shape (n_samples, n_outputs)
def copy : Creates a copy of self.

returns net_copy : kitt_net.NeuralNetwork

class kitt_nn.nn_structure.kitt_neuron.Neuron(net,layer,id)

The class representing a single neuron unit.
@ net (kitt_nn.NeuralNetwork) : mother network
@ layer (int) : mother’s layer id in the network
@ id (int) : position in the layer

def activate : Activates the neuron axon by the transfer function.
def set_bias : Sets the bias value from the bias matrix hold by the network.
def get_bias : Returns current bias value.

returns b : float
def set_dead : Removes the neuron from the net.



Appendix A4. Code Documentation 85

class kitt_nn.nn_structure.kitt_synapse.Synapse(net,from,to)

The class representing a single synapse.
@ net (kitt_nn.NeuralNetwork) : mother network
@ from (kitt_nn.Neuron) : Neuron, where the synapse comes from
@ to (kitt_nn.Neuron) : Neuron, where the synapse goes to

def set_weight : Sets the weight value from the weight matrix hold by the
network.

def get_weight : Returns current weight value.
returns w : float

def remove_self : Removes the synapse from the net.

class kitt_nn.nn_tool.nn_learning.BackPropagation(net)

The class representing the backpropagation learning algorithm.
@ net (kitt_nn.NeuralNetwork) : mother network

def train : Trains the mother network.
@ train_data : array-like, shape (n_samples, 2) [X, y]
@ val_data : array-like, shape (n_samples, 2) [X, y]

def try_to_train : Tries to retrain the mother network.
@ train_data : array-like, shape (n_samples, 2) [X, y]
@ val_data : array-like, shape (n_samples, 2) [X, y]
@ req_accuracy : float

returns retrained : bool

A4.2 Terrain Classification Scripts (API)

~/py/scripts/generate_txt_data.py

Runs the Amos II simulation and saves sensory data as .txt files.

@ nj (–n_jobs) : Number of simulation runs.
- type : int
- choices : [1, 2, ... 1000]
- default : 500

@ t (–terrains) : Terrain (id) to be generated.
- type : int
- choices : [1, 2, ... 14]
- default : [1, 2, ... 14]

@ n (–noise) : Terrain noise level to be generated.
- type : string
- choices : [’nn’, ’n1p’, ’n3p’, ’n5p’, ’n10p’, ’n20p’]
- default : ’nn’

@ nt (–n_timesteps) : Number of simulation timesteps.
- type : int
- choices : [1, 2, ... 1000]
- default : 100



Appendix A4. Code Documentation 86

~/py/scripts/clean_txt_data.py

Checks generated .txt files and remove bad/incomplete ones.

@ t (–terrains) : Terrain (id) to be checked.
- type : int
- choices : [1, 2, ... 14]
- default : [1, 2, ... 14]

@ n (–noise) : Terrain noise levels to be checked.
- type : string
- choices : [’nn’, ’n1p’, ’n3p’, ’n5p’, ’n10p’, ’n20p’]
- default : [’nn’, ’n1p’, ’n3p’, ’n5p’, ’n10p’, ’n20p’]

@ sl (–sample_len) : Minimum required sample length.
- type : int
- choices : [1, 2, ... 1000]
- default : 95

~/py/scripts/create_terrain_dataset.py

Creates a dataset out of the cleaned .txt data files and saves it using cPickle.

@ rt (–rem_terrains) : Terrain (id) to be avoided from the dataset.
- type : int
- choices : [1, 2, ... 14]
- default : []

@ tn (–terrain_noise) : Terrain noise level.
- type : string
- choices : [’nn’, ’n1p’, ’n3p’, ’n5p’, ’n10p’, ’n20p’]
- default : ’nn’

@ sn (–signal_noise) : Signal noise level.
- type : float
- choices : [0.0, 0.01, 0.03, 0.05, 0.1]
- default : 0.0

@ s (–sensors) : Sensors to be included.
- type : string
- choices : [atr_f, atr_m, ..., fl_h]
- default : [atr_f, atr_m, ..., fl_h]

@ ts (–timesteps) : Number of timesteps per sensor.
- type : int
- choices : [1, 2, ... 80]
- default : 40

@ ds (–data_split) : Ratio for train/val/test splitting.
- type : array-like of int ,s.t. sum = 1
- choices : [0.0, 0.01, ..., 0.99]
- default : [0.7, 0.1, 0.2]

@ ns (–n_samples) : Number of samples per terrain.
- type : int
- choices : [0, 1, ..., 500]
- default : 500



Appendix A4. Code Documentation 87

~/py/scripts/kitt_train.py

Trains a kitt_nn neural network on the given dataset and saves it using cPickle.

@ ds (–dataset) : Dataset file name.
- type : string
- choices : any string
- default : ”

@ s (–structure) : Hidden structure of the neural network.
- type : array-like of int
- choices : [1, 2, ..., 1000]
- default : [20]

@ lr (–learning_rate) : Learning rate for network training.
- type : float
- choices : [0.01, 0.02, ..., 1.0]
- default : 0.03

@ ni (–n_iter) : Number of training epochs.
- type : int
- choices : [1, 2, ..., 1000]
- default : 500

~/py/scripts/kitt_prune.py

Prunes the given trained network and finds a minimal structure of it with respect to the
given dataset.

@ n (–net) : Trained network file name.
- type : string
- choices : any string
- default : ”

@ ra (–req_accuracy) : Required classification accuracy of the pruned network.
- type : float
- choices : [0.0, 0.01, 1.0]
- default : [0.99]

@ lr (–learning_rate) : Learning rate for network re-training.
- type : float
- choices : [0.01, 0.02, ..., 1.0]
- default : 0.03

@ mi (–max_iter) : Maximum number of re-training epochs.
- type : int
- choices : [1, 2, ..., 1000]
- default : 100

@ ns (–n_stable) : Number of stable epochs for termination.
- type : int
- choices : [1, 2, ..., 1000]
- default : 15

List of Supplementary Scripts

create_mnist_dataset.py, create_xor_dataset.py, list_generated_datasets.
py, plot_cl_results.py, plot_feature_selection.py, plot_grid_search.py,
plot_nn_verification.py, plot_pa_results.py, plot_sample.py, plot_sensor.
py, plot_transfer_functions.py, reed_prune.py, set_and_store_params.py,
sknn_train.py, terrain_analysis.py, zero_prune.py

create_mnist_dataset.py
create_xor_dataset.py
list_generated_datasets.py
list_generated_datasets.py
plot_cl_results.py
plot_feature_selection.py
plot_grid_search.py
plot_nn_verification.py
plot_pa_results.py
plot_sample.py
plot_sensor.py
plot_sensor.py
plot_transfer_functions.py
reed_prune.py
set_and_store_params.py
sknn_train.py
terrain_analysis.py
zero_prune.py

	Abstract
	Introduction
	State of the Art
	Master Thesis Objectives
	Relation to the State of the Art
	Thesis Outline

	Classification Method
	Network Structure
	Neuron Principle
	Learning Algorithm for Network Training
	Using Mini-batches
	Matrix Notations
	Forward Propagation
	Error Calculation
	Parameter Update

	Network Pruning Algorithm
	Pruning Method
	Algorithm Realization
	Datasets for Evaluation of the Pruning Algorithm
	Using Network Pruning for Feature Selection

	Graphical User Interface

	Terrain Classification for Hexapod Robot AMOS II
	Overall Process Summary
	Experimental Environment Specification
	Hexapod Robot AMOS II
	AMOS II Simulation
	Tripod Gait Controller

	Generation of Virtual Terrains
	Terrain Features
	Features Determination for Various Terrains
	Terrain Noise

	Data Acquisition
	Building a Feature Vector
	Feature Vector Normalisation
	Signal Noise

	Generation of Datasets
	Training and Classification
	Evaluation Measures


	Experimental Evaluation
	Verification of the Network Implementation
	Performance Evaluation of the Pruning Algorithm
	Evaluation on XOR Dataset
	Evaluation on MNIST Dataset
	Analysis of Minimal Structure in MNIST Dataset

	Comparison to Other Pruning Methods

	Results of Terrain Classification
	Classification Performance
	Comparison to Other Classification Methods

	Selection of Learning Parameters
	Influence of Noise on Classification
	Time Needed for Classification
	Analysis of Used Sensor Types

	Terrain Classification Using Network Pruning
	Feature Selection for Terrain Classification


	Discussion
	Methods Recapitulation
	Comparison of Results

	Conclusion and Outlook
	Bibliography
	Supplementary Data
	Sensory Data Examples
	Generated Datasets
	Supplementary Figures for Feature Analysis

	Method Implementation
	Implementation of the Neural Network
	Implementation of the Terrain Classification

	Structure of the Workspace
	Code Documentation
	Neural Network Framework KITTNN (API)
	Terrain Classification Scripts (API)


