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The unreliable behaviour of deep neural networks for specific use cases slows
down their deployment in real world applications. The mainstream way to
catch up the remaining percents in performance relies on iterative tuning of
hyper-parameters, collecting new data and increasing computational power,
while the behaviour inside the trained model is usually kept shrouded in
mystery. As the commonly used network architectures have been found un-
necessarily complicated as well as limited, e.g. by the strict arrangment of
neurons into layers, this work proposes an alternative method to work with
neural principles and to design network architectures. The neural princi-
ples are combined with the theory of multi-agent systems and reinforcement
learning with the goal of generating tailored networks for given classification
tasks. The tailored networks are believed to shake off redundant parts and
to allow less restricted way of connecting neurons in comparison to standard
structures. This could possibly improve the performance as well as enable
targeted fixes in the network even after the training. The main loop of the
algorithm has been already implemented and tested on two basic 2D exper-
iments with expected results. The work is currently at the state of prooving
the scalability to multidimensional classification tasks.
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Chapter 1

Introduction

The remarkable progress over the recent years in the field that is solemnly
called artificial intelligence (AI) has put the public opinion in an ethical
dilemma of either supporting this dishy research direction or hesitating to
accept decision making machines at all. People from the outside of the AI
community have been justifiably wondering about the purpose of creating
machines that seem to be intelligent and even a few experts support the
worries and conspiracy theories. In my opinion, the current SotA is still
not even close to the general AI capable of a complex human-like behaviour
or even gaining consciousness. However, when it comes to solve a single
specific task (e.g. face recognition, language translation, speech analysis,
etc.), the performances of the latest AI methods are nearly perfect and in
many cases they even outperform humans, especially in terms of speed and
fatigue resistance. In these cases, the involvement of the AI in our everyday
life makes sense and can significantly help people, the Google search engine
is the one-for-all example. From my point of view, we should adhere to the
following principles when deploying AI systems in the real world:

• Ethical purpose; The great power must be used in the right direction.

• Motivation; The decision to deploy the AI system must make sense.

• Zero fault tolerance; The developed AI system must be reliable.

The first two of them are about the composition of the task and the data
origin. The reliability additionally depends on the quality of the AI method.

The first methods, nowadays known as the Good Old Fashioned AI (GOFAI),
were based on state space search techniques and on the decomposition to
symbolic rules defined by the developer. The rules were deterministic, their
behaviour was predictable and in case of a failure, the developer made the
required fix at the right place in the system. However, in case of more sophis-
ticated tasks the solution space became too large to be searched completely
and hence, the methods were enhanced with heuristics. Since then, although
the method has been capable of reaching a solution in a finite time, the war-
ranty of the optimality and rationality has been lost, the behaviour has
become unpredictable and targeted failure fixing has been disabled. Even
though the methods have evolved, we face the same situation in AI today.

The rise of deep learning over the last fifteen years has made artificial neu-
ral networks (ANNs) the monopolistic SotA method for classification tasks
and training neural networks on various datasets is undoubtedly one of the
hottest research directions nowadays.



Chapter 1. Introduction 2

The Gap. The only shortcoming that slows down the deployment of ANNs
in several domains (e.g. self-driving cars, healthcare) is their unreliable and
unpredictive behaviour in special situations. Due to the trial and error pro-
cedure of training ANNs nowadays and due to the complicated architectures,
the deep behaviour in trained models is shrouded in mystery and thus, tar-
geted fixes in these models are out of the question and it is impossible to
catch up the remaining percents in performance.

Instead of breaking the deadlock by tuning hyper-parameters, this work is
devoted to the developement of an alternative method for working with the
neural principles. Based on the theory of multi-agent systems, the reinforce-
ment learning is used to generate tailored network architectures enabled for
future targeted adjustments. The proposed method is aimed to be general
for any non-sequential classification data and initial experiments have been
already performed with expected results. Moreover, new unexplored research
directions have been opened for the future work.

1.1 Thesis Outline
This work is supposed to serve as a preliminary report of the ongoing research
related to the final dissertation thesis. Its purpose is to summarize related
studies that may represent the baseline as well as inspiration to some extend.
Next, it should state the objective of the global project and explain the
proposed method, ideally, including first experiments.

Chapter 2 is devoted to neural networks, starting with a timeline of signif-
icant breakthroughs and their inspiration in biological cells (Sec. 2.1). As
this work is about building networks, there are the mostly used architectures
in Sec. 2.2 sorted into the feedforward (Sec. 2.2.1) and recurrent (Sec. 2.2.2)
categories. The common backpropagation algorithm, its extentions and its
limitations are described in Sec. 2.3. Section 2.4 contains methods that did
not fit to the categories above and also special techniques that help deal with
the limitations of the learning algorithm. In Sec. 2.5, the SotA results and
top real-world applications are briefly mentioned. The last section (2.6) of
the second chapter is devoted to the architecture search algorithms that are
the most related to this work.

Chapter 3 is about the second cornerstone of this work - the theory of multi-
agent systems. The reinforcement learning procedure is captured in Sec.
3.1 with the extention to multi-agent reinforcement learning (MARL) in
Sec. 3.1.2. Commonly used control learning algorithms (RL policies) are
described in Sec. 3.1.1.

Chapter 4 defines the overall project objective and by splitting it into partial
goals also reveals the current state of the project.

Chapter 5 is devoted to the novelty of the project. Section 5.1 explains the
proposed method and Sec. 5.2 provides two initial experiments.

The design choices of the proposed method, eventual shortcomings and di-
rections of the future work are discussed in Chap. 6. Chapter 7 concludes
this thesis.
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Chapter 2

Neural Networks

The original model of an artificial neuron, trying to imitate key features
of a biological neural cell, dates back to 1943, when W. S. McCulloch and
W. Pitts came with a highly simplified version (McCulloch and Pitts, 1943).
A step-by-step elaboration over the years led to teachable systems nowadays
known as artificial neural networks. These systems, the way we have been
using them recently, are capable of learning and performing a human-like
behaviour when solving one particular task. When dealing with a specific
(not complex) task, the results are often fascinating (see top applications
in Sec. 2.5.2) and therefore methods based on the artificial neural network
principle are justifiably considered to be the state-of-the-art classifiers.

The artificial neural network collocation can be interpreted as a general
term standing for several slightly different classifiers having the neural basis
in common and differing mainly in architectures and data structures they
are capable of dealing with. There is a wide range of issues in many areas
of a human interest turnable into a machine-learning problem, while the key
to success (or at least the first step of it) always lies in a correct problem
formulation and data representation. Then, based on the task definition and
the type of data to be processed, the optimal ANN architecture is chosen. In
Sec 2.2, the mostly used network architectures are described and arranged
into two categories depending on the dynamics of data processing:

1. Feedforward architectures (static systems, Sec. 2.2.1);

2. Recurrent architectures (dynamic systems, Sec. 2.2.2).

Besides the architecture-wise sorting of ANNs, the other way is to go through
the most popular breakthroughs over time chronologically (Kurenkov, 2020).
As stated above, the first signs date back to the middle of the 20th century,
while the first real opening came in 1958 with the idea of a perceptron by
Frank Rosenblatt (see Sec 2.2.1.1). Thus the foundations of the majority of
today’s neural networks were laid and architectures solely composed of some
derivatives of these perceptrons work well and are still being used till today.

The perceptron’s promising capability of learning the basic OR/AND/NOT
functions was further extended into a multi-category classifier presented as
the ADALINE structure (Stanford University, 1960). However, the enthusi-
asm of having a tool to solve complex AI problems was suppressed shortly
thereafter, as it turned out perceptrons are not able to solve linearly insep-
arable tasks, such as the XOR problem. Today we know that those tasks
are solvable using multiple non-linear layers (i.e. hidden layers), but at that
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time the way of making hidden perceptrons learn had not been invented yet.
This epoch is known as the "AI winter", as especially skeptical conclusions
of the Minsky’s work Perceptrons (Minsky and Papert, 1969) caused a freeze
to funding and publications in AI.

The key Backpropagation learning algorithm (see Sec. 2.3) based on the chain
rule was firstly derived and implemented to run on computers by Finnish
student S. Linnainmaa in 1970 (Linnainmaa, 1970) and later on proposed to
be used for neural networks after analyzing it in depth in (Werbos, 1974),
who was, interestingly, loosely inspired by Sigmund Freud’s psychological
theories about modeling the human mind with the concept of a backwards
flow of credit assignment. Even though the math had been already de-
rived and the algorithm discovered, mostly because of the lack of academic
interest and the loss of the faith in tackling problems pointed out in Per-
ceptrons (Minsky and Papert, 1969), the approach was popularized more
than a decade later in (Rumelhart, Hinton, and Williams, 1986). Finally,
the mathematical proof that multiple layers allow neural networks to theo-
retically implement any function, and certainly XOR, was given in (Hornik,
Stinchcombe, and White, 1989). Since then, ANNs have become dishy again
and started to be applied to real-world applications, such as the Handwritten
Zip Code Recognition problem (LeCun et al., 1989).

Depending on the nature of a particular task, several network architectures
and optimization methods have been developed over the years. To briefly
list the most interesting breakthroughs in a chronological order:

1982 Hopfield network (Hopfield, 1982); The architecture is not actually re-
lated to the backpropagation learning and even dates back earlier. The
Hopfield network was considered a recurrent structure, however, not
really in the manner we imagine recurrent networks today. It served
as a content-addressable associative memory system (see Sec. 2.2.2.5).

• Self-organizing maps (Kohonen, 1982); Introduced by Finnish profes-
sor T. Kohonen, SOMs produce a low-dimensional (typically a two-
dimensional) discretized representation of the input space and is there-
fore a method to do dimensionality reduction using unsupervised learn-
ing (more in Sec. 2.4.4).

1986 Boltzmann machine (Hinton and Sejnowski, 1986); This approach can
be seen as a stochastic and generative counterpart of a Hopfield net-
work. The restricted version (RBM) is being used in deep learning for
weights pretraining till today (see Sec. 2.2.2.5).

1987 TDNN - Time Delay Neural Network (Waibel et al., 1987); Mainly
motivated by the speech recognition task, there was a call to consider
context dependencies in data. The time-delay network is a special
version of a multi-layer feedforward neural network with the ability
of context modeling and classification of patterns with shift-invariance
(more in 2.2.1.2).

• Autoencoders (Bourlard and Kamp, 1987); Based on the neural prin-
ciples, being unsupervised though, ANN structures started to be used
for compression and data encoding tasks (see Sec. 2.4.4).



Chapter 2. Neural Networks 5

1990 Backpropagation through time (Elman, 1990); The key idea for using
backpropagation on recurrent neural networks lies in unrolling loops
into several networks connecting one to another and limiting the num-
ber of time steps (see Sec. 2.2.2).

• Application in robotics, control engineering and games (Narendra and
Parthasarathy, 1990); At that time, ANNs started to be used as de-
cision makers in the third branch of machine learning - reinforcement
learning (see Sec. 3.1). The research in (Lin, 1993) showed a success-
ful application to tasks like wall following or door passing as well as
to playing logical games. Those programs soon reached their limits
though and were not even close to the well-known Alpha Go or Chess
artificial players we know today.

1993 Siamese (twin) network (Bromley et al., 1993); The idea of using the
same weights for two models working in tandem was highly popular-
ized in the era of deep learning, especially for computer vision tasks,
however, the original idea is much older (more in Sec. 2.4.4).

1995 Wake-sleep algorithm (Hinton et al., 1995); G. E. Hinton and his team
kept working on some extra tricks for a slightly different belief net
setup, which was later on deemed The Helmholtz Machine (Dayan et
al., 1995). It basically allowed the training of Boltzmann Machines to
be done much faster (see Sec. 2.2.2.5).

• Other (not ANN) methods; With the idea of the kernel trick (Cortes
and Vapnik, 1995) Support Vector Machines (SVMs) became a math-
ematically optimal way of training an equivalent to a two layer neural
network and started to be seen as superior to neural nets. Moreover,
also other methods, notable Random Forests (Ho, 1995) proved to be
very effective and had a lovely mathematical theory behind them.

1997 LSTM - Long Short-Term Memory (Hochreiter and Schmidhuber, 1997);
Most likely the key invention for sequential data modeling capable of
learning the long-term dependences in data was published in 1997,
however, its full power was also reached later with deep learning (more
in Sec. 2.2.2.1).

• BRNN - Bidirectional Recurent Neural Network (Schuster and Paliwal,
1997); In this approach, two recurrent layers of opposite directions of
the data flow are connected to the same output. Calling it a generative
deep learning, the output layer can get information from past (back-
wards) and future (forward) states simultaneously (see Sec. 2.2.2.3).

1998 CNN - Convolutional Neural Network (LeCun et al., 1998); One of the
most important ideas in the field of ANNs was published in 1998, when
Yan Lecun, inspired by the weight-sharing mechanism in TDNNs, used
a similar principle for positional-dependent features (especially useful
for images) and invented convolutional layers (see Sec. 2.2.1.3).

2002 Restricted Boltzmann Machines in deep learning; With the failure of
backpropagation for deep structures, the early 2000s were a dark time
for neural net research again. The restricted version of a Boltzmann
machine (see Fig. 2.20b) was initially invented under the name Har-
monium in 1986 (Smolensky, 1986), however, in 2002, G. Hinton and
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his team came with the idea to use RBMs for weights initialization in
networks with many layers (Hinton, 2002), which led to a fast learning
algorithm and significantly influenced the birth of deep learning.

2006 A fast learning algorithm for deep belief nets (Bengio et al., 2006);
This algorithm meant a breakthrough significant enough to rekindle
the interest in neural nets again. The movement in deep learning
started with this paper and the idea that neural networks with many
layers could be trained well, if the weights are initialized in a clever
way rather than randomly. Since then the deep learning has been here
and no winter is in sight.

2014 GRU - Gated Recurrent Unit (Chung et al., 2014); Alongside the
LSTM cell, GRU is the other gating mechanism that is commonly
being used in recurrent structures nowadays. The GRU cell has fewer
parameters and seems to be more efficient and faster, while LSTMs are
generally more accurate on datasets with longer sequences. The GRU
cell is described in Sec. 2.2.2.2.

• Attention mechanism; When processing a large amount of information,
attending to a certain part of it is one of the most powerful concepts
in deep learning nowadays. Important parts of the input data are
enhanced and the rest is faded out. The importance of individual
parts is learned and depends on the context. The mechanism was
firstly used in (Bahdanau, Cho, and Bengio, 2014) for sequence-to-
sequence learning (more in Sec. 2.4.2).

• GAN - Generative Adversarial Network (Goodfellow et al., 2014); GANs
are considered one of the most interesting recent ideas in deep learn-
ing. There is a generator part producing fake samples with respect to
the given dataset and trying to fool the second part - a discrimina-
tor, which is trying to learn boundaries between real and fake samples.
There are many real-world applications (more in Sec. 2.4.4).

2017 Transformer (Vaswani et al., 2017); The latest significant contribution
in the field of ANNs was introduced in 2017 and is primarily being used
for natural language processing tasks such as translation or text sum-
marization. It is designed to handle sequential data, but unlike RNNs,
it does not require the data to be processed in order. This feature
allows for parallelization and so saves training times (more in 2.2.2.4).
One the massively used concepts is called multi-headed self-attention.
The recent trend is to use pretrained systems based on Transform-
ers such as BERT (Bidirectional Encoder Representations from Trans-
formers) or GPT (Generative Pre-trained Transformer), which have
been trained on huge and general language datasets and can be fine-
tuned to specific tasks.

A complete list of important ANN techniques described in more detail is
presented in sections below (mainly Sec. 2.2 and Sec. 2.4), sorted out based
on the purpose rather than the year of invention.
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2.1 Biological Analogy
The human brain is historically considered the most sophisticated machine
ever observed. Its capability of solving complex tasks, learning new skills
and actually being somehow responsible for the human consciousness and
the way we perceive the world around us is shrouded in mystery. Due to its
complicated structure, it is one of the last, if not the only one, human organ
that we cannot accurately describe and explain its functionality. Both, the
enormous computational power as well as the curiosity to reveal the mystery,
make us try to mimic its behaviour artificially.

Let’s sum up the facts related to the purpose of this work. As far as we
know, the human brain consists of approximately 100 bilion neural cells
and each of these cells can have up to 15,000 connections with other neu-
rons via synapses. The neurons are capable of generating electrical signals
called action potentials, which allows them to transmit information quickly
(Benistant et al., 2016). The work of a single neuron consists of three basic
functions that are being processed in three main parts of a cell (see Fig. 2.1):

1. dendrites - receive signals (or information) from outside;

2. soma - processes the incoming signals and determines whether or not
to pass the information along;

3. axon - communicates the signals to other cells.

Figure 2.1: A biological neural cell.
(Wikimedia Commons, 2007)

The single cell itself does not seem that complicated and therefore, what
produces the behaviour solemnly called inteligence, must be the enormous
amount of the cells and virtually an infinite number of combinations of con-
necting them. Out of the many, there are several facts about the human
brain that are interesting for this work (Dent Neurologic Institute, 2021):

• Multitasking is impossible. Should it look like that from the outside,
we are actually super-quickly switching context instead.

• Brain is a powerful machine. The speed of information flow is about
250 mph. It is capable of about 1,000 processes per second. The
capacity of the memory is 1015 bytes.

• Asynchronous processing and fault tolerance - minor failures will not
result in memory loss. The architecture is decentralized.

• Neuroplasticity - in a lifetime, the brain is shaped partly by genes and
largely by experience. The size is tripled the first year of life, stops
developing in our late 40s and gets smaller as we get older. However,
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there is no evidence that the brain size matters. More importantly,
neurons as well as synapses can die and new ones can be born and
reorganized during a process called neurogenesis. Once a new neuron
is born, it moves (is guided by chemical signals) to its final location.
The final step of neurogenesis is the differentiation step, when the
neuron settles and starts to communicate with its neighbours.

• Brain areas - there are different circuits in the brain responsible for
different tasks. For example, reading aloud uses different pathways
than reading silently.

• Short term memory lasts about 20-30 seconds. Most people hold mem-
ory for numbers or letters around 7 seconds and can store up to 7 digits
in the working memory.

2.2 Architectures
The complexity of a complete structure of the biological brain is incalculable
and therefore, there is not the only general design of ANNs being used.
Instead, several highly simplified architectures have been developed over
the years, each of them designed for a specific task type in machine learning.
Those tasks are defined by the nature of the problem to be artificially solved.

The basic sorting of machine learning problems is illustrated in Fig. 2.2. As
a matter of fact, each of ML problems is described by numerical data and
its arrangment in terms of structure as well as eventual dependencies in it.

Figure 2.2: Task types in machine learning
(yellow ∼ focused in this work).

In this work, the proposed method is targeted for non-sequential classifica-
tion data (see Sec. 5.1). In the following sections, the most popular network
architectures are sorted into two categories depending on their dynamics:

architecture ∼

static, if z<t+1>
i 6= function(z<t>i ) ∀ i ∀ t

dynamic, if ∃ i, t : z<t+1>
i = function(z<t>i )

(2.1)

where z<t>i is the state of ith neuron at time t. Static systems (architectures)
are commonly called feedforward (Sec. 2.2.1) and dynamic architectures,
graphically illustrated with loops in them, are called recurrent (Sec. 2.2.2).
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2.2.1 Feedforward Architectures

There are no loops in feedforward architectures and the work of a single cell
is defaultly based on the principle of a perceptron (Rosenblatt, 1958). In
Fig. 2.3, with the reference to the biological template in Fig. 2.1, there are
dendrites carrying signals a(i)

k,1, ..., a
(i)
k,j that are being adjusted by parameters

b
(i)
k , w

(i)
k,1, ..., w

(i)
k,j , then the soma modelled as the blue part and finally the

axon holding the output signal a(i)
k (see notation in App. A1).

Figure 2.3: An artificial neuron.

The process of firing the neuron consists of two steps. At first, assuming j
being the number of input synapses (dendrites), the activation of the neuron
z

(i)
k is computed (Eq. 2.2).

z
(i)
k =

j∑
l=1

[a(i−1)
l · w(i)

k,l] + b
(i)
k (2.2)

with a(0) = x being the network input. Then we apply a chosen transfer
function (see Sec. 2.2.1.1) to get the neuron activity (Eq. 2.3).

a
(i)
k = f(z(i)

k ) (2.3)

2.2.1.1 Multi-Layer Perceptron (MLP)

The default (vanilla) neural network consists of multiple nodes arranged into
layers. In Fig. 2.4, there is an example of such a structure with 2 input nodes
(green), 1 output node (red) and one hidden layer of 3 nodes.

Figure 2.4: Example of a feedforward (MLP) architecture.
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In general, the size of the input layer is given by the problem dimension n and
the size of the output layer, assuming a classification problem, is determined
by the number of classes m. By default, the structure is considered fully-
connected, so for each node there is a synapse to all nodes in the following
layer. Arranging neurons into layers is one of the many deviations of the
artificial approach from the biological template, however, it enables fast
matrix computations for inference and learning procedures. Including a
hidden layer makes the classifier capable of solving linearly inseparable tasks
and in (Hornik, Stinchcombe, and White, 1989), it was proven that multiple
layers can theoretically implement any function. However, despite the proof
of a theoretical possibility, the optimal way of initialization and training
is not known. As basic as this structure is, it is still widely used under
names dense, feedforward, MLP or fully-connected. The network is trained
by tuning its parameters (weights and biases) using the backpropagation
algorithm explained in Sec. 2.3.

Transfer (activation) functions.1 The learning algorithm (Sec. 2.3)
needs the activation function to be (easily) differentiable. The most common
activation functions are hyperbolic tangent, sigmoid and ReLu (Fig. 2.5).

−5 −4 −3 −2 −1 0 1 2 3 4 5
z

−2

−1

0

1

2

f(z
)

tanh(z)
σ(z)
ReLu(z)

Figure 2.5: Common transfer (activation) functions.

2.2.1.2 Time Delay Network (TDNN)

This approach is a special version of the MLP with the capability of classifi-
cation of temporal patterns with shift invariance, such as speech for example.
The shift invariant classification means that there is no explicit segmentation
required prior to classification.

Figure 2.6: Single TDNN cell connected to the input layer.

1The illustrated transfer functions are used in other architectures as well.
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The idea was firstly presented in (Waibel et al., 1987)2 on the task of
phoneme recognition. In Fig. 2.6, there is an example of a single TDNN cell
and the way it is connected to features in the input layer.

There is no change in the functionality of the cell body (see the perceptron
in Fig. 2.3), but there is a difference in the arrangement of its inputs. As
shown graphically in Fig. 2.6 and mathematically in Eq. 2.4, there are
additionally past (time-delayed) features included. There is a window of τ
timesteps shifted over a stream of context-dependent features and the cell
activation z is then computed as a weighted sum of all the features from the
contextual window taken from the input sequence of features.

z =
n∑
i=1

τ−1∑
j=0

[x<t−j>i · wi,j ] + b (2.4)

For two-dimensional signals (such as time-frequency patterns or images)
there is a 2D context window. Usually there are multiple TDNN units (ψ
in Fig. 2.7) arranged into layers, while higher layers generally model coarser
levels of abstraction as they have inputs from wider context windows than
lower layers.

Figure 2.7: A time-shifted window over the input data
stream for a TDNN network.

The number of weights for each unit is given by the number of features
and the window size. The key idea is based on sharing the weights, as the
contextual window moves along the input sequence. In the backpropagation
training (see Sec. 2.3), the weight update is then computed as an average of
suggested updates for all window positions and thus the shift-invariance is
achieved.

In Fig. 2.8, there are two design choices illustrated: 1/ for time t, the
contextual window may include future timesteps as well as past timesteps

2The notation in the original paper is different to the one in this work.
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(here <t-6, t+3>); 2/ the number of timesteps can be subsampled in order
to reduce the number of operations (Peddinti, Povey, and Khudanpur, 2015).

Figure 2.8: The TDNN principle with subsampling (red)
and without subsampling (red + gray).

2.2.1.3 Convolutional Network (CNN)

Following the theory of receptive fields in the human visual cortex (Hubel and
Wiesel, 1959), there was the idea of so-called neocognitron in (Fukushima,
1980), which can be considered the origin of the CNN architecture. However,
the standard reference is from (LeCun et al., 1998), when a pioneering 7-
level CNN was applied to classify handwritten digits on bank checks in the
USA. The developement was inspired by the TDNN theory (Sec. 2.2.1.2)
and even the principle is identical with certain settings3.

The most common application is the visual imagery analysis and the moti-
vation for using CNNs instead of the MLP (Sec. 2.2.1.1) has two points:

• Parameters reduction - using the MLP, a typical 256x256 image on the
input results in 56, 000 ·ψ parameters, where ψ is the number of units
in the following hidden layer. In CNN the weights are cleverly shared
and thus their quantity is significantly reduced.

• Consideration of contextual dependencies - there is clearly a relation-
ship between space and pixels in images. Two nearby pixels are much
more correlated than two distant pixels and the CNN approach takes
this fact into account.

Compared to the MLP approach, many synapses are actually removed and
the decision which synapses remain is based on our understanding of the
space-importance property.

3The approach is identical to the TDNN (Sec. 2.2.1.2) in case of stride = 1 (1D data).
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Fig. 2.9 explains the principle of the convolution on a 1D input. There are
several hyper-parameters to be set when a CNN is designed:

• Filter size - the set of shared weights is called a filter. In Fig. 2.9a,
the filter consists of w1 and w2 and thus its size equals 2.

• Stride - the step size when moving the filter. In Fig. 2.9a, stride = 2.

• Padding - optionally, the input space can be padded by zeros around
its boundaries. There is no padding in the example in Fig. 2.9a.

• Number of filters - adding more filters is illustrated in Fig. 2.9b. Each
filter is then defined by its own set of weigths and is shared by connec-
tions to ψ units in the following layer.

The number of units ψ in the following layer depends on stride and padding.

(a) CNN (1D data): a single filter. (b) CNN (1D data): multiple filters

Figure 2.9: The CNN (1D data) principle.

The most common usage of the CNN architecture is for the classification (or
generally the analysis) of images. An image of width W and height H is
defined by a 2D matrix and thus a 2D convolution is applied. The concept
is very similar to the 1D case, here we just have 2D filters (w × h) and as
a result there is a 3D shaped hidden layer generated (width ψ1, height ψ2,
number of filters φ).

Figure 2.10: CNN principle (2D data). The yellow-marked
w×h filter in the input layer corresponds to the little yellow

cube in the hidden layer.

Besides the size, images are often described by several channels (usually R,
G, B) as well. This might seem to be the third dimension on the input,
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however, as the filter is not slided along the channels (it is only slided in the
width and height dimensions), the convolution is still considered 2D.

The 3D convolution can be applied to a video for example. Alongside the
width and height dimensions of the frames there is additionally the time
dimension. Unlike the channels case, ordering in time has a meaning for the
network to capture, therefore we slide the filter in three dimensions and the
hidden layer is 4-dimensional here (width ψ1, height ψ2, time ψ3 and number
of filters φ). As in the 1D case, the number of filters is chosen and the rest
depend on the stride and padding parameters.

Figure 2.11: CNN (3D data). For example a video (width,
height, time).

Convolutional layers are commonly combined with the max-pooling mecha-
nism and finished by standard feedforward layers (Sec. 2.2.1.1). There are
several well-known architectures listed in Sec. 2.5.1.

Pooling (Yamaguchi et al., 1990). This method is typically applied con-
sequently to convolutional layers (see Sec. 2.2.1.3) in CNNs, in order to
reduce the dimensions of the feature maps. The most popular type is called
max-pooling and its principle is illustrated in Fig. 2.12.

Figure 2.12: Principle of the max-pooling method.

2.2.1.4 Residual Network (skipping connections)

This method was firstly used in (He et al., 2015) in order to deal with the
vanishing gradient problem. In case of deep structures with many hidden
layers, the gradient updates propagated by the chain rule might be expo-
nentially decreasing and thus the early layers do not update well.

This approach provides an alternative path for the backpropagation algo-
rithm by adding connections that skip subsequent layers. There are two fun-
damental versions: 1/ addition (ResNet) and 2/ concatenation (e.g. DenseNet).
More in (Adaloglou, 2020).
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2.2.2 Recurrent Architectures

Unlike the restricted direction of the information flow in feedforward struc-
tures, recurrent networks have loops - outputs of units with a specific state
can generally be used as inputs to cells in the same or even previous layers.

Regarding the goals of this work, there are several interesting architectures
(special kinds of RNNs) described below (Sec. 2.2.2.5 - 2.2.2.5), but first, we
start with the common and nowadays mostly used RNN approach based on
the idea from 1986 (Rumelhart, Hinton, and Williams, 1986). Since then,
the crucial breakthroughs that have made RNNs the SoTA tool for context
modeling are:

• the backpropagation-through-time algorithm (Elman, 1990) - capability
of learning using the standard backpropagation algorithm (Sec. 2.3);

• the LSTM cell (Hochreiter and Schmidhuber, 1997) - capability of
learning long-term dependencies (Sec. 2.2.2.1);

• using RBM for weights initialization (Hinton, 2002) - capability of
learning for deep RNNs;

• Transformer (Vaswani et al., 2017) - mainly speeding up the learn-
ing process with the attention mechanism (Sec. 2.4.2) and positional
embeddings enabling parallel computations (Sec. 2.2.2.4).

In a form of a directed graph along a (usually temporal) sequence, such a
network is capable of dealing with contextual dependencies in data. Apart
from the TDNN approach (Sec. 2.2.1.2), the ability of processing input
sequences of a variable length is done in a much more sophisticated way. The
loops allow to work with an internal state (memory) for each cell. Typical
RNN tasks generally differ one from each other as illustrated in Fig. 2.13:

(a) one-to-one - a fixed-sized input to a fixed-sized output, no need of
RNN (e.g. image classification);

(b) one-to-many - sequence output (e.g. image captioning - an image is
taken as the input and the systems outputs a sentence);

(c) many-to-one - sequence input (e.g. sentiment analysis - a sentence is
classified to be of a positive or negative sentiment);

(d) many-to-many - sequence input and output (e.g. machine translation);

Figure 2.13: Sequence data - task types (Karpathy, 2015).
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Assuming the processed sequences are temporal (context-dependent over
time) and so sequential samples are indexed by <t>, the default RNN cell
is illustrated in Fig. 2.14a (Amidi and Amidi, 2018). For each timestep t,
the cell activation a<t> and the output o<t> are computed as follows:

a<t> = fa(waa · a<t−1> + wax · x<t> + ba) (2.5)

o<t> = fo(wya · a<t> + bo) (2.6)

where waa, wax, wya, ba, bo are parameters that are temporally shared and
fa, fo are chosen transfer functions (see Sec. 2.2.1.1).

(a) Default RNN - cell body. (b) Information flow in the default RNN.

Figure 2.14: Default RNN - cell body and data flow.

In general, RNN models are mostly used in the fields of natural language
processing and speech recognition. A particular model is designed for differ-
ent applications like for example machine translation, phoneme recognition
or sentiment analysis (defining the task type - see Fig. 2.13). The nature of
the RNN approach allows processing inputs of any length and as the weights
are shared over time, the model size does not increase with the input size.
However, several special versions have been developed over the years (Sec.
2.2.2.1 - 2.2.2.4) in order to deal with the main drawbacks of the default
version:

• The inability of learning and accessing long-term dependencies in data
have been addressed by the idea of gates in the cell body (LSTM - Sec.
2.2.2.1 and GRU - Sec. 2.2.2.2).

• The default RNN version cannot consider any future input for the
current state - a bidirectional version (BRNN - Sec. 2.2.2.3) can.

• The computation is relatively slow, which causes problems with train-
ing on large datasets. The computation time can be effectively reduced
using the latest popular approach called Transformer (Sec. 2.2.2.4).



Chapter 2. Neural Networks 17

2.2.2.1 Long Short-Term Memory (LSTM)

With respect to the number of layers, the multiplicative gradient can be
exponentially decreasing/increasing. This phenomena is known as the van-
ishing/exploding gradient problem (see Sec. 2.3) and it makes the default
RNN incapable of capturing long term dependencies in the data sequence.

Originally introduced in (Hochreiter and Schmidhuber, 1997), there are so-
called gates inside the cell body that filter the information passing through.
In the LSTM cell (Fig. 2.15), there is a cell state c<t> working like a conveyor
belt that affects the activation a<t> and is regulated by these gates:

• forget gate g<t>f - decides what information is thrown away from the
cell state using the sigmoid transfer function (Fig. 2.5), ff (·) = σ(·);

g<t>f = σ(wf · [a<t−1>, x<t>] + bf ) (2.7)

• input gate g<t>i - decides what information is stored in the cell state
using the sigmoid transfer function (Fig. 2.5), fi(·) = σ(·);

g<t>i = σ(wi · [a<t−1>, x<t>] + bi) (2.8)

• candidate gate g<t>c - creates new candidate values that could be added
to the cell state and so together with the input gate decides about the
update of the cell state using the hyperbolic tangent as the transfer
function (Fig. 2.5), fc(·) = tanh(·);

g<t>c = tanh(wc · [a<t−1>, x<t>] + bc) (2.9)

• output gate g<t>o - decides what information is sent to the output using
the sigmoid transfer function (Fig. 2.5, fi(·) = σ(·)) and combined with
the cell state generates the activation of the cell (Eq. 2.12);

g<t>o = σ(wo · [a<t−1>, x<t>] + bo) (2.10)

Finally, a new cell state c<t> and a new activation value a<t> are expressed
as follows:

c<t> = g<t>f × c<t−1> + g<t>i × g<t>c (2.11)

a<t> = g<t>o × tanh(c<t>) (2.12)

Figure 2.15: Long Short-Term Memory (LSTM) cell.
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2.2.2.2 Gated Recurrent Unit (GRU)

There have been several experiments over the years slightly adjusting the
body of the LSTM cell - a good comparison of those versions is provided
in (Greff et al., 2015). The most popular modified version of the general
LSTM template is called GRU (Chung et al., 2014). It combines the forget
and input gate into a single update gate and merges the cell state with the
hidden activation state. As illustrated in Fig. 2.16, the gates are:

• reset gate g<t>r - decides how much of the past information is forgotten
using the sigmoid transfer function (Fig. 2.5), fr(·) = σ(·);

g<t>r = σ(wr · [a<t−1>, x<t>] + br) (2.13)

• update gate g<t>u - the update to the activation of the cell is expressed
as follows (fu(·) = σ(·)):

g<t>u = σ(wu · [a<t−1>, x<t>] + bu) (2.14)

• candidate gate g<t>c - the new candidate values are given as follows
(fc(·) = tanh(·)):

g<t>c = tanh(wc · [g<t>r × a<t−1>, x<t>] + bu) (2.15)

Figure 2.16: Gated Recurrent Unit (GRU) cell.

Finally, the new activation value is expressed as follows:

a<t> = (1− g<t>u )× a<t−1> + g<t>u × g<t>c (2.16)

Both, LSTM and GRU versions, have been widely used in parallel. In gen-
eral, the LSTM is believed to work better for larger datasets, while the GRU
is simpler and so usually faster, but those conclusions might differ for specific
problems. The general learning procedure for RNNs is described in Sec. 2.3.

Finding a way of learning deep RNN networks (based on RBM pre-training
- Sec. 2.2.2.5) was the key step to make them the SoTA in sequential learn-
ing. The next significant improvements came with including the attention
mechanism (Sec. 2.4.2), using RNNs as a part of Generative Adversarial
Networks (GANs - Sec. 2.4.4) and also using the bidirectional architecture.
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2.2.2.3 Bidirectional Network (BRNN)

Even though it is not natural from the human point of view, as it is not pos-
sible for us to learn from future events, artificial systems can take advantage
of it as long as they use the standard learning procedure based on offline
datasets (all data collected beforehand).

The theory published in (Schuster and Paliwal, 1997) can be applied to all
previously described RNN cell types (default, LSTM, GRU). As shown in
Fig. 2.17, there are forward (fed in a normal time order) and backward (fed
in a reverse order) layers combined into a single network. The outputs of
the two layers are concatenated (or summed - depends on the implementa-
tion) at each time step and so the network has both backward and forward
information about the sequence.

Figure 2.17: Bidirectional Recurrent Neural Network
(BRNN) - the purple cells can be e.g. LSTM or GRU.

2.2.2.4 Transformer

The approach proposed in (Vaswani et al., 2017) utilizing the attention mech-
anism (Sec. 2.4.2) and positional embeddings has directly become the model
of choice (especially) for NLP problems, replacing the LSTM/GRU methods.

Figure 2.18: Transformer architecture (Alammar, 2018).
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The key feature is that Transformers do not require the sequential data
to be processed in order, which opens up parallelization possibilities and
so boosts the speed of the training phase. This allows training on larger
datasets than it was possible before, such as the Wikipedia Corpus (Davies,
2015). Commonly, a pre-trained model, such as BERT or GPT (see Sec.
2.5.1), is taken and then fine-tuned to a specific task. As briefly indicated
in Fig. 2.18, the architecture is based on a set of encoders and decoders.
A detailed explanation is provided in (Alammar, 2018). The latest upgrade
including an extra convolutional layer called Conformer was presented in
(Gulati et al., 2020).

2.2.2.5 Special Recurrent Structures

Besides the standard RNN architectures based on the default RNN cell and
its composition into a network (Fig. 2.14), there are several special methods
that can be considered recurrent. Regarding the goals of this work, learning
their structures and functionalities can be useful.

Hopfield Network (Hopfield, 1982)

In the Hopfield network, neurons are connected to every other neuron. There
are no layers, as the neurons are considered input before the training, hidden
during it and output afterwards.

Figure 2.19: A Hopfield network of three units.

As long as the connections are symmetric (wij = wji), there is so-called
global energy function E (Eq. 2.17) and each configuration of the network
is mapped to a certain energy value.

E = −
∑
i<j

si · sj · wij −
∑
i

bi · si (2.17)

where si ∈ {−1, 1} is the binary output of ith unit, bi is its bias and wij
is the weight of its connection to the jth unit. The weight update is per-
formed by the Hebbian rule: ∆w = si · sj (Hebb, 1949) and is usually done
asynchronously (can be done synchronously in theory). It is proven that as
the network learns a pattern, its energy decreases and always settles in a
local minima of the energy function. This feature makes the Hopfield net-
work capable of memorizing patterns and even of reconstructing the learned
pattern when given just a part of it. Therefore, it can be used as a content-
addressable (associative) memory with the capacity limited to 0.15N for N
being the number of units.
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Boltzmann Machine (Ackley, Hinton, and Sejnowski, 1985)

The structure of the Boltzmann machine (Fig. 2.20a) is identical to the
Hopfield network, however, the units decisions about whether to be on or off
are stochastic (Hinton, 2007). This makes the algorithm possibly capable of
escaping from a poor local optima while searching for good solutions. The
energy function of state vector v is defined as in Eq. 2.17 (E(v) = E) and
the probability of the Boltzmann equilibrium (or stationary distribution) is
given as the energy relative to energies of all possible binary state vectors:

P (v) = eE(v)∑
u

e−E(u) (2.18)

Boltzmann machines are used for two different computational problems:

1. a search problem - weights remain fixed and represent the cost function
of the optimization problem;

2. a learning problem - weights are adjusted (using ∂E(v)/∂wij = −svi ·svj )
so that a set of binary data vectors is a good solution to the optimiza-
tion problem defined by the weights.

(a) Boltzmann Machine (b) Restricted Boltzmann Machine

Figure 2.20: A (Restricted) Boltzmann Machine example.

The restricted version - RBM (Smolensky, 1986), shown in Fig. 2.20b, con-
sists of the visible layer and the hidden layer with no connections between
units of the same layer. During the learning phase (Hinton, 2002), visible
and hidden units are iteratively (layer by layer) updated until the reconstruc-
tion of the visible units is close enough to the original. Then the output of
the hidden layer can be used as the input to another Boltzmann machine.
Learning one hidden layer at a time is a very effective way of getting suitable
weights initialization for deep neural networks, as highest level features are
typically much more useful for classification than raw data vectors.

Elman/Jordan Network (Elman, 1990), (Jordan, 1997)

These two structures are commonly known as simple recurrent networks
(SRN). As shown in Fig. 2.21, they include a state layer containing context
nodes that maintain memory of the prior values and thus the application to
sequential data is allowed (Jones, 2017). In the case of the Elman network
(Fig. 2.21a) the state layer is fed from the hidden layer and in the case of
the Jordan network (Fig. 2.21b), the output layer is stored into the state
layer.
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(a) Elman network. (b) Jordan network.

Figure 2.21: Simple recurrent networks (SRN).

Multiple state layers can possibly be subsequently added and the learning is
done by the backpropagation algorithm (the BPTT version, Sec. 2.3).

Echo State Network (ESN) (Jaeger, 2007)

This recurrent architecture has a sparsely connected hidden layer (with typ-
ically 1% connectivity) and the hidden weights once randomly initialized
remain unchanged during training. The weights of synapses connected to
the output layer are the only trainable parameters. They are mostly known
as Liquid State Machines under the field of Reservoir Computing.

Independently recurrent neural network (IndRNN) (Li et al., 2018)

Apart from to the standard composition of the RNN (Fig. 2.14b), where
each cell is fully-connected within the same layer, this method is based on
skipping connections (Sec. 2.2.1.4) and each cell only gets its own past state
as the context information.Thus the learning is regulated to avoid the ex-
ploding/vanishing gradient problem and to capture long-term dependencies.

Recursive Neural Networks (Goller and Kuchler, 1996)

This network is created by applying the same set of weights recursively
over a variable-sized structured input and are capable of predicting another
structure or a scalar. The approach is known for its application in NLP and
first was introduced to learn distributed representations.

Neural Turing machines (Graves, Wayne, and Danihelka, 2014)

This approach is about coupling RNNs into external memory resources,
which they can interact with by attentional processes. The resulting sys-
tem is end-to-end differentiable, allowing it to be trained with the gradient
descent algorithm, while keeping the features of standard Turing machine.

Memristive Networks (Caravelli, Traversa, and Di Ventra, 2017)

Apart from the other methods, this one is interestingly about a physical de-
vice rather than just a theory. The memristors (memory resistors) are made
of a thin film material with a special way of resistance tuning. Networks
runable on these materials behaves like the Hopfield networks and they have
a more interesting non-linear behaviour compared to standard circuits.
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2.3 Learning Algorithm
As stated above, regarding the goals of this work, we assume a classification
problem on supervised (labeled) data to demonstrate the presented methods.
Therefore, the learning phase is mostly based on the well-known backprop-
agation algorithm (Linnainmaa, 1970) using the Gradient Descent iterative
optimization. The following math complies with the notation listed at the
beginning of this work supplied by the additions in App. A1.

By default, the algorithm was derived for feedforward architectures (Sec.
2.2.1) and the overall procedure follows these steps:

1. forward propagation of a batch of samples;

A(1) = f(W (1) ·X +B(1)) (2.19)
A(i) = f(W (i) ·A(i−1) +B(i)) (2.20)
A(q) = Y = f(W (q) ·A(q−1) +B(q)) (2.21)

2. error calculation based on the chosen loss function Lff ;

Lff = (U − Y )× (U − Y )
2 (2.22)

3. backpropagation of the prediction error;

∆(q+1) = (U − Y )× f ′[Z(q+1)] (2.23)

∆(i) =
[[
W (i+1)

]T
·∆(i+1)

]
× f ′[Z(i)] (2.24)

4. finding the optimal updates - taken over from (Bulín, 2017); Every
sample ξ has a vote dW (i)

(ξ) (resp. dB(i)
(ξ)) on how the parameters W (i)

(resp. B(i)) should change to get the minimal error and then the
result is obtained as a compromise of those votes. Index (i) indicates
the layer. Consider ∆(i)

(ξ) be the ξth column of the ∆(i) matrix, which
corresponds to the ξth sample. Analogically, A(i−1)

(ξ) is the ξth column
of the activation matrix A(i−1) in the (i− 1)th layer. Then we get the
votes as:

dW
(i)
(ξ) = A

(i−1)
(ξ) ·

[
∆(i)

(ξ)

]T
(2.25)

dB
(i)
(ξ) = ∆(i)

(ξ) (2.26)

5. parameters update; The batch_size value states how many votes
are processed together to make one update of the parameters (the
learning is called sequential for batch_size = 1). For batch learning
( batch_size > 1):

dW (i) =
batch_size∑

ξ

dW
(i)
(ξ) (2.27)

The same is analogically applied to biases. The learning_rate
value (µ), usually set 0 < µ << 1, is included in order to deal with
GDA problems (shown below). The update of the parameters is then



Chapter 2. Neural Networks 24

done as follows (<t> refers to a moment in time):

W (i)<t+1> = W (i)<t> + µ · dW (i)<t> (2.28)
B(i)<t+1> = B(i)<t> + µ · dB(i)<t> (2.29)

The procedure is commonly repeated over a specified number of epochs or un-
til a required value of the error is reached. In case of recurrent architectures
(Sec. 2.2.2), thanks to the method known as backpropagation-through-time
(BPTT) from (Elman, 1990), the same procedure can be analogically ap-
plied. As shown in Fig. 2.22, the RNN layer can be unrolled over a limited
number of time steps T and considered as subsequent feedforward layers.

Figure 2.22: BPTT unfolding an RNN through time.

Then the loss function and the parameters update are expressed as:

Lrnn =
T∑
t=1
L<t>ff (2.30)

∂Lrnn
∂W

=
T∑
t=1

∂L<t>rnn

∂W

∣∣∣∣∣
t

(2.31)

Limitations

The backpropagation learning has not been overcome for more than 50 years,
however, the procedure has three main shortcomings:

• Stucking at a local minima; Especially in case of deep structures, the
number of parameters is enormous and finding the optimal solution
(such parameters settings that makes the cost function minimal) is
challenging. In most cases, the algorithm gets stuck in a local (not
global) minima (addressed by momentum and ADA-based optimizers).

• Exploding/vanishing gradient; In case of many hidden layers, there are
many derivatives multiplied together. If these derivatives are large, the
gradient will increase exponentially until it eventually explode. Ana-
logically, it eventually vanishes if many small derivatives are multiplied
together.

• Computational limits due to the enormous number of operations in
deep structures.
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2.4 Optimization Methods
Network architectures described in Sec. 2.2 together with the learning al-
gorithm (Sec. 2.3) are the baseline in the field of ANNs. This section goes
more into detail and focuses on related methods that support the baseline
and help to overcome the learning limitations. Section 2.4.4 is devoted to
special methods that do not belong to any of the previous categories, but
still are interesting for the goals of this work.

2.4.1 Fundamental Techniques

As stated above, the pure backpropagation algorithm suffers mainly from
stucking in a local minima. Therefore, several methods adjusting the de-
fault learning equation have been proposed, in order to help the algorithm
converge.

Learning rate. The learning rate (µ) is a common learning hyper-parameter.
It helps to converge to the solution by little steps (Fig. 2.23). The value is
usually being tuned during the training.

Figure 2.23: Learning rate: (A) too low; (B) optimal; (C)
too high (red) / way too high (orange).

Momentum. The momentum mechanism can be added to the step of
parameters update (Eq. 2.28). The purpose is to prevent oscillations and to
keep traveling in the same direction along the gradient. Assuming α to be
the momentum rate, the change of Eq. 2.28 is shown in Eq. 2.32:

W (i)<t+1> = W (i)<t> + µ · [(1− α) · dW (i)<t> + α · dW (i)<t−1>] (2.32)

Weight decay. Sometimes the weights become too specialized to the train-
ing data and cause so-called over-fitting. To prevent it, this method, as one
of several regularization techniques, makes weights decay in proportion to
their sizes. The default update formula (Eq. 2.28), λ being a decay factor,
is adjusted as follows:

W (i)<t+1> = W (i)<t> + µ · (dW (i)<t> − λW (i)<t>) (2.33)

Optimizers. There are several optimization techniques for the GDA, to
name some of them: RMSProp, Adam, Nesterov, Adagrad, Adadelta. A
detailed explanation is provided in (Ruder, 2016).

Loss functions. The learning can be highly influenced by a correct choice
of the evaluation metric and the loss function. There are many on the menu,
well described in (Chollet et al., 2015).
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2.4.2 Attention

The mechanism presented in (Bahdanau, Cho, and Bengio, 2014) allows an
RNN to focus on specific parts of the input that are considered important.
In Fig. 2.24, there is an illustrative example on the task of image captioning.

Figure 2.24: Illustration of the attention mechanism on
the image captioning task (red circle ∼ focus).

In the background, the attention mechanism is parametrized by a simple
feedforward network. The additional trainable parameters α<t,j> express
the amount of attention the output y<t> should pay to the activation a<j>.
Then, the context c<t> at time t is defined as:

c<t> =
T∑
j

α<t,j> · aj where
T∑
j

αt,j = 1 (2.34)

For the output y<t> at time t, the attention weight responsible for context
at time step j is then computed as follows:

α<t,j> = exp(ε(a<t>, y<j>))
T∑
j′

exp(ε(a<t>, y<j′>))
(2.35)

where ε(a<t>, y<j>) is the score of the mentioned feedforward network at
time t and context step j. There are several metrics for getting the score ε
in the original paper. The attention mechanism is considered a revolution-
ary idea, as it is the key ingredience of the Transformer approach (SoTA
method on sequential data, Sec. 2.2.2.4). A well written survey of attention
applications can be found in (Chaudhari et al., 2019).

2.4.3 Dropout

Apart from other regularization methods (L1 - Laplacian, L2 - Gaussian),
the dropout mechanism (Hinton et al., 2012) is another method addressing
the overfitting problem.

Figure 2.25: Example of a dropped-out network.

As illustrated on the example in Fig. 2.25, selected nodes and the corre-
sponding connections are ignored during individual iteratioins of the training
phase. There is the probability hyper-parameter p deciding, for each node
individually, about its omission. During the testing phase then, all nodes
are considered as usual.
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2.4.4 Special Architectures and Methods

The following methods do not belong to any of the two categories (feedfor-
ward / recurrent - Sec. 2.2) in terms of the architecture type, purpose or
learning mechanism. Their backgrounds are related to this work though.

Generative Adversarial Network (GAN) (Goodfellow et al., 2014)

As shown in Fig. 2.26, there are two neural networks contesting one with
each other in terms of data distributions. The generator tries to fool the
discriminator by creating fake samples of the same distribution as the real
samples are. Its goal is to maximise the final classification error. The dis-
criminator is trained to minimise the final classification error and its goal is
to distinguish the real samples from the fake ones. This approach enables
the model to learn in an unsupervised manner.

Figure 2.26: The Generative Adversarial Network concept.

Autoencoder (AE) (Bourlard and Kamp, 1987), (Kramer, 1991)

The first applications date back to 1980s and since then the idea has been
popularized especially for its dimensionality reduction and feature learning
capabilities. The structure typically consists of two parts:

• an encoder that maps the input into a coded representation;

• a decoder that reconstructs the coded representation.

(a) Autoencoder (a bottleneck). (b) Autoencoder vs. PCA.

Figure 2.27: Autoencoders (handling nonlinear relations).

The dimensionality of the (coded) hidden layer (also called a bottleneck; blue
in Fig. 2.27a) is reduced compared to the original input layer. The goal is to
make the hidden layer keep as much information as possible. Based on the
nature of neural networks and apart from the standard Principal Component
Analysis (PCA), even nonlinear relations are handled (Fig. 2.27b).
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Self-Organizing Map (SOM) (Kohonen, 1982)

Another unsupervised dimensionality reduction method is based on compet-
itive learning (as opposed to loss-based methods) and its output is typically
two-dimensional (called a map of size ψ1×ψ2 - Fig. 2.28). Partly motivated
by the human cerebral cortex, the goal is to cause different parts of the out-
put map to respond similarly to certain input patterns. The algorithm is
well described in (Benistant et al., 2016).

Figure 2.28: Kohonen’s Self-Organizing Map example.

Siamese network (Bromley et al., 1993)

The original idea from 1993 has been popularized again with the rise of
deep learning. There are two models (also called twin networks) sharing the
same weights. They work in tandem on two different input vectors and their
outputs are then compared using either the triplet or the contrastive loss.
The approach is known for its application to the face recognition task. A
detailed explanation is available in (Benistant et al., 2016).

2.5 Popular Results
Regarding methods from previous sections, this section is devoted to a sum-
mary of best results or breakthroughs generated over the years.

2.5.1 Pre-trained models

There are several popular architectures addressing various tasks, mostly in
two domains: 1/ NLP, more and more using self-supervised training, and
2/ Computer vision, typically based on supervised learning. Those models
derived from training on large datasets, can be fine-tuned for specific tasks.

2.5.1.1 Natural language processing (NLP) models

By now, the Transformer architecture (Sec. 2.2.2.4) has been the latest hit
in the field of NLP.

GPT-3 by OpenAI (Brown et al., 2020)

Generative Pre-trained Transformer 3 is a language model with 175 billion
parameters (the largest model so far). It has achieved strong performance
on tasks like translation, answering questions as well as writing news articles
or generating codes.
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BERT by Google (Devlin et al., 2018)

Bidirectional Encoder Representations from Transformers allows to build
question answering models in a few hours on a single GPU. It is trained on
about 800 million words.

CodeBERT by Microsoft (Feng et al., 2020)

This model has been fine-tuned on millions of codes of six programming
languages on Github. It achieved an excellent performance on searching
natural language codes and generation of code documentation.

RoBERTa by Facebook (Liu et al., 2019)

Being a shortcut for Robustly Optimized BERT Pretraining Approach, this
model has been trained to predict intentionally hidden sections of text. It is
considered an optimised version of the BERT model trained on more data
for an extended amount of time.

2.5.1.2 Computer vision models

In the field of computer vision, models are commonly evaluated on the
ImageNet dataset (Deng et al., 2009), consisting of about 14 million hand-
annotated images. These methods have gradually attracted the community:

• AlexNet (Hinton et al., 2012) - introducing the dropout mechanism
(Sec. 2.4.3);

• GoogleNet/Inception (Szegedy et al., 2014) - using pruned connections
between layers to speed up the learning;

• VGG (Simonyan and Zisserman, 2015) - using a multiple stacked kernel
of a smaller size (3x3);

• ResNet (He et al., 2015) - introducing the skip-connections mechanism
(Sec. 2.2.1.4) to prevent the vanishing gradient problem;

• EfficientNet - Meta Pseudo Labels (Pham et al., 2021) - the current
SotA method, using a student/teacher pair of networks.

2.5.2 Top Applications

In (Chatterjee, 2019), there are several fields of the human interest listed,
where the theoretical methods have successfully been turned into practise:

• self-driving cars (Uber AI Labs at Pittsburg);

• virtual assistants (Siri, Amazon Alexa, Google Assistant);

• natural language processing (Transformer-based models);

• visual recognition (ImageNet-based models);

• other domains/tasks: healthcare, fraud detection, personalisations,
colorization of black and white images, adding sounds to silent movies,
game playing, election predictions, deep dreaming.
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2.6 Architecture Search
Previous sections (2.2 - 2.5) provide a comprehensive summary of various
ANN architectures, together with methods mostly addressing the shortcom-
ings of the general learning algorithm (Sec. 2.3). In most of these cases, the
network structure is fixed. This section, with respect to the objectives of this
work (see Chap. 4), is devoted to algorithms for searching the network ar-
chitecture in terms of neurons, synapses and their mutual interconnections.
In general, these algorithms are divided into two categories: 1/ the top-down
(pruning) methods and 2/ the bottom-up (building) methods.

2.6.1 Top-Down - Pruning Algorithms

These algorithms remove synapses from fully-connected networks, however,
apart from the dropout optimization technique (Sec. 2.4.3), the dropped-out
synapses are not turned back on for the testing phase and instead, the result-
ing pruned network is used for prediction. The general pruning procedure
consists of these steps (corresponding to Fig. 2.29):

1. design an oversized network structure for given classification data;

2. train the network until the maximal possible accuracy is reached;

3. remove selected synapses (depending on chosen pruning measure);

4. repeat step (3) as long as the original maximal accuracy is kept.

Figure 2.29: The principle of network pruning.

A detailed study on this topic is provided in (Bulín, 2017), where a new
pruning measure is introduced. It was shown that generally more than 90%
of the synapses are commonly redundant in fully-connected networks. More-
over, several experiments proved the ability of the presented algorithm to
select features and to find the minimal network structure for given data. As
a result, pruned networks are faster in the prediction phase and, as all re-
maining synapses are guaranteed to be important, the information flow can
be tracked and thus parts of such a network can be demystified. In (Bulín,
2017), the derived algorithm is compared to these related studies:

• Skeletonization (Mozer and Smolensky, 1988);

• Optimal brain damage (LeCun, Denker, and Solla, 1990);

• Sensitivity measure (Karnin, 1990).

The main drawback of the top-down approach is the need of (in practise
random) choice of the initial network. As long as the algorithm can only
remove parts (and not add new ones), the result is restricted by the initial
structure. Moreover, the resulting network is more efficient and the accuracy
is kept, however, the accuracy never improve compared to the original.
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2.6.2 Bottom-Up - Building Algorithms

These algorithms take elementary units (or blocks of units in some cases) and
connect them into a structure for a specific purpose. Not all the following
methods are about ANN architecture search exactly, but all of them are
related to this work and have at least a similar purpose.

Badger Architecture (Rosa et al., 2019)

The long-term goal of the Prague-based GoodAI company is to build gen-
eral artificial intelligence and the Badger architecture - their latest project,
among other related studies, is probably the closest one to this work.

Figure 2.30: The inner and outer learning loops in the
Badger architecture (Rosa et al., 2019).

As stated in the paper, they introduce a way how to adapt to new environ-
ments by "learning to learn learning algorithms". The learning procedure
is illustrated in Fig. 2.30. There is an agent made up of many so-called
experts sharing a universal expert policy. The overall goal is to make the
experts quickly adaptable, when a new environment is shown to the system.

First of all, the expert policy is trained over generations of agents on diverse
environments (outer loop) and then it is fixed. Then an agent is run in
a new environment and its adaptation emerges as a result of inter-expert
communication (inner loop). If needed, more experts are added by cloning
the old ones. At inference time, the roles of experts are assigned dynamically.

As the current state of the project, there is an evidence that: 1/ the fixed
shared policy can lead to adaptation during the inner loop; 2/ adding experts
can help find better solutions (and faster); A few related observations:

• the goal is the adaptation - the experts are not learned to deal with a
specific problem, but rather they are learned to adapt to any general
environment with a variable number of inputs;

• a stochastic universal policy - by default, one fixed policy is shared by
all experts and the policy is represented by a trained neural network;

• toy-tasks tested - by now, the approach needs more effort to be scaled
up to a real world setting.
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Neural Architecture Search (NAS) (Zoph and Le, 2016)

Apart from the previous one, this approach is a representative example of
the architecture search algorithm. In this case, reinforcement learning is
used to train an RNN, which composes the target network architecture (see
Fig. 2.31) for a given task automatically. The (RNN) controller is capable of
designing a CNN architecture that rivals the SotA methods on the CIFAR-10
dataset and an RNN architecture dealing with a language modeling task.

Figure 2.31: The Neural Architecture Search principle
(Zoph and Le, 2016).

An adjusted version of the algorithm determined to generate models for
mobile devices is called MnasNet (Tan et al., 2018). This version is mainly
focused on the trade-off between accuracy and inference latency. A few
observations related to this work:

• The controller network is trained by reinforcement learning, using the
accuracy of the generated network as a reward.

• The generated network is being described by hyper-parameters, such
as the filter size, stride and the number of filters (in case of CNN). Also,
the controller is trained to modify the architecture of the network, for
example using the skip-connections approach (see Sec. 2.2.1.4).

Evolving Neural Networks (NEAT) (Stanley and Miikkulainen, 2002)

This approach uses evolutionary optimization to construct deep learning
architectures that are, based on the published results, more compex than
the hand-made ones. It is based on searching the enormous space of hyper-
parameters, components and network topologies. The researchers claim that
the full potential of their approach is constrained by computational resources
and the results are based more on fast-learners instead of top-performers.

The generated network architecture is initialized by a graph of chromosomes.
In case of the original (NEAT) approach, each node represents a neuron.
Later then, the approach was applied to deep networks, where each node
represents a layer. The latest version called Coevolution DeepNEAT (Mi-
ikkulainen et al., 2017) implements two parallel graphs of chromosomes that
are combined during the fitness evaluation. Related observations:

• An arbitrary connectivity is allowed (layers not stricly fully-connected).

• Depending on the network size, elementary units are neurons or layers.

• The fitness (evaluation function) is based on how well the evolved
networks can be trained (using the GDA) to perform in the given task.
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Chapter 3

Multi-Agent Systems

Each independent unit capable of decision making is generally rated or
judged by the way it chooses its moves (actions) over time. That unit can be
a human, a single cell or even an artificial system of any complexity, where
the complexity can be given by the set of available actions. Every time the
selected action is taken, the state of the unit is updated and moreover, other
nearby units as well as the entire environment the units operate in can be
affected. This is related to the known decision-making theorem popularized
in (Nash, 1950) that highlights the importance of taking strategies of your
rivals into account, when building own strategy. The overall score (with
respect to the common goal of a group of units) is maximized in case of the
Nash equilibrium, which happens when none of the units wishes to adjust its
strategy even if each knows strategies of all other units.

The term multi-agent system refers to any environment containing multi-
ple independent units (agents) that interact with each other and with the
environment (Fig. 3.1). The theory is general and applicable to many do-
mains, for example human teams (companies), distributed software systems
or communication networks.

Figure 3.1: A multi-agent system - multiple (N) agents
interacting with each other and with the environment.

The key feature of such systems is the emergence principle, a phenomenon
that occurs when a system is observed to have properties its parts do not
have on their own and this unexpected behaviour emerges only when the
parts interact in a wider whole. This way the agents together are capable
of solving problems of complexity beyond the knowledge and abilities of
their own separately. The common behaviour of the system can even show
signs of intelligence despite the primitive nature of single units. To list the
characteristics of a multi-agent system:

• Agents have a local view only, the whole system and the addressed
problem are too complex for them.
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• Agents are independent, self-aware and autonomous to some extend.

• Controlling the agents is decentralized, none of them is designated as
the one in charge.

• By default, operations are executed asynchronously.

• Decomposition - complex tasks are decomposed to elementary tasks
addressed by elementary components.

• Reactivity - each action of any entity is a reaction on its current state.

A solid overview of multi-agent technologies is presented in (Dorri, Kanhere,
and Jurdak, 2018). In general, the interest in multi-agent systems has been
increasing lately. Typically, they are useful for projects, where more entities
have to cooperate, projects based on distributed systems or projects, where
conventional methods become inconvenient (for instance, caused by limits of
a single unit). They are predicted to be widely used in the future.

3.1 Reinforcement Learning
Alongside supervised and unsupervised learning methods, reinforcement learn-
ing is the third fundamental ML paradigm and due to its nature it fits the
best for learning in multi-agent systems. The approach is based on the
Pavlov’s theory of classical conditioning known as learning through asso-
ciation. The well-known experiment shows that using positive or negative
stimuli, a dog learns to response appropriately to a given situation.

In case of artificial systems, the same theoretical principle is used to train
an agent operating in an environment (Fig. 3.2). The method is defaultly
derived for a single agent learning (an extention to learning multiple agents
in the same environment is provided in Sec. 3.1.2).

Figure 3.2: Reinforcement learning loop (single agent).

Apart from supervised learning, this approach does not require labeled data,
nor even an explicit correction of suboptimal actions. Instead, using positive
and negative feedback signals, the goal is to find a suitable strategy (action
model) that would maximize the total cumulative reward of the agent. The
task is defined by the following terms:

• environment - world of operation responsible for informing the agent
about its current state and rewarding it for taken actions;

• state S<t> - situation of the agent in the environment at time t;

• action A<t> - selected agent’s move at time t based on state S<t>;
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• reward R<t> - feedback signal from the environment at time t based
on agent’s reaction A<t−1> to state S<t−1>;

• policy π - method mapping agent’s current state into action;

• value V π - future reward an agent would receive by following policy π.

The key feature of an agent is the policy responsible for decision making.
It is commonly evolving during the learning phase and as the policy is be-
ing generated, the agent faces a dilemma of exploring unknown states while
maximizing its reward at the same time. The problem of exploration vs.
exploitation trade-off is illustrated in Fig. 3.3. By default, the agent devel-
opes ist decision making strategy (policy) from the beginning of the training
process. It might seem that the best choice is to use (exploit) the learned
experience at each time step in order to maximize the cumulative reward.
However, the learned rules can easily be suboptimal (not optimal) from the
global point of view, as there are more state-action pairs in the environ-
ment that remain unexplored. Therefore, it is important (and challenging)
to carefully switch between exploring and exploiting.

Figure 3.3: The exploration vs. exploitation trade-off.

Markov Decision Process (MDP). If each state in a sequence depends
solely on the previous state and the transition from that state, it follows the
Markov property and the generator of this sequence is called MDP,formally
defined as a 4-tuple (ϕ, αS , pA, RA), where:

• ϕ is a set of states (a state space);

• αS is the set of actions available from state S;

• pA(S, S′) = p(S<t+1> = S′|S<t> = S,A<t> = A) is the probability
that action A in state S at time t turns into state S′ at time t+ 1;

• RA(S, S′) is the immediate reward received after transitioning from
state S to state S′ by taking action A.

If the agent cannot directly observe the underlying state, it must maintain
a probability distribution over the set of possible states and it is then called
Partially Observable MDP. The Markov property is useful especially for en-
vironments with longer episodes, as storing the complete past information
and using it for making decisions become readily infeasible.
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3.1.1 Control learning algorithms

The following methods are devoted to developing a strategy of choosing ac-
tions based on given states with the objective to maximize the cumulative
reward. Recently, the dominant methods are related to using deep learning
to make the agent’s crucial decisions. A comprehensive list of the key litera-
ture in deep RL is well listed in (OpenAI, 2018). In the following, the most
popular (model-free) methods are summarized.

Q-Learning (Watkins, 1989)

This model-free algorithm is based on updating Q-values at each time step,
which denotes of choosing action A given state S as follows:

ρ(S<t>, A<t>) = R<t> + γ ·max
A

Q(S<t+1>, A)−Q(S<t>, A<t>) (3.1)

Q(S<t>, A<t>) = (1− α) ·Q(S<t>, A<t>) + α · ρ(S<t>, A<t>) (3.2)

where ρ(S<t>, A<t>) is so-called temporal difference for state S and action A
at time t, α is a learning rate saying, how much the new information over-
rides the old one, and γ is a discount factor determining the importance of
future rewards. Having a table of values for A× S combinations, the action
A<t>? with maximal Q-value is selected given state S<t>.

SARSA (Rummery and Niranjan, 1994)

This special version of Q-Learning, with the name derived as the acronym for
the quintuple (S<t>, A<t>, R<t>, S<t+1>, A<t+1>), is an on-policy algorithm
for learning a MDP policy. Apart from using the optimal Q-value based on
the maximal reward of available actions (default - see Eq. 3.1), this approach
uses the future reward, received after taking next action A<t+1>, to derive
the temporal difference ρ2:

ρ2(S<t>, A<t>) = R<t> + γ ·Q(S<t+1>, A<t+1>)−Q(S<t>, A<t>) (3.3)

Deep Q-Network (Mnih et al., 2015)

The Q-Learning algorithm is simple enough and still powerful, however, it
is impractical for environments with high number of states and possible
actions. Even though the amount of memory and time for learning would
be enormous, many states would remain unexplored. This approach uses a
deep neural network to approximate the Q-value function. The state is given
as the input and the Q-value for all possible actions is on the output.

Policy Gradient Methods. In essence, policy gradient methods update
the probability distribution of actions so that actions with higher expected
reward have a higher probability value for an observed state. The gradient
ascent iterative optimization is used to learn the policy that maximizes the
cumulative future reward based on the objective function J(θ):

J(θ) = E[
T−1∑
t=0

R<t+1>] (3.4)

where θ is the policy parameter and E(·) is the expectation. In case of
the Monte Carlo method, random samples are taken to collect a trajectory
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updating the policy parameter. The alternative is the Deep Deterministic
Policy Gradient (DDPG) algorithm, which concurently learns a Q-function
(exploiting the Q-Network principle) and uses it to learn the policy. The
DDPG is considered to be a deep Q-learning for continuous action spaces.

Actor-Critic Methods. The Policy Gradient methods fail in case of
1/ noisy gradients causing unstable learning and 2/ gradients of high vari-
ance making the trajectories to have a zero cumulative reward. The Actor-
Critic methods address the instability and slow convergence problems by
subtracting the cumulative reward by a baseline. The critic estimates the
value function and the actor updates the policy distribution. Both parts are
parametrized by ANNs. The most popular approaches are:

• Q Actor-Critic - the critic uses the Q-value as the baseline;

• Advantage Actor-Critic (A2C) and Asynchronous Advantage Actor-
Critic (A3C) - see (Mnih et al., 2016);

• TD Actor-Critic (Parisi et al., 2018).

Inverse RL. One of the recent ideas is to infer the reward function of an
agent given its behaviour (Wulfmeier, Ondruska, and Posner, 2016).

Goal-Conditioned RL. Another active research area is adding a goal G
as the input to communicate a desired aim of the agent by learning so-called
contextual policy π(A|S,G) (Schaul et al., 2015).

3.1.2 Multiple Agents

The standard reinforcement learning principle (see Fig. 3.2) is defaultly
derived for training a single agent in the environment. Analogically, it can
be applied to multiple agents in the same environment, which turns the
process into a multi-agent reinforcement learning (MARL) problem. A solid
review of MARL systems is provided in (Zhang, Yang, and Basar, 2019).
Regarding this work, MARL has several design choices to be considered.

Shared vs. individual policy. As illustrated in Fig. 3.4, all the agents
can either share a single decision making system (policy π), implemented for
example in (Rosa et al., 2019) - see Sec. 2.6.2, or each agent can follow its
own individual strategy (option B/ in Fig. 3.4).

Figure 3.4: MARL: A/ shared vs. B/ individual policy.
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Joint vs. individual actions, states and rewards. Fig. 3.5 sums up
possible design choices regarding the definition of actions, states and rewards.
In both pictures (A/ and B/ in Fig. 3.5) the actions Ai can be considered and
applied either individually (red) or a single joint action A can be compiled
and used (purple). Next, a global state S of the environment is usually
defined (picture A/ in the figure), however, the task can be designed in a
way of multiple independent states Si for each agent individually (picture
B/). Analogically, there are more possibilities of defining the reward.

Figure 3.5: MARL: joint vs. individual actions, states and
rewards.

The synchronization. Finally, as the agents cooperate (or compete) in
the same environment, they interact one with each other. Then the syn-
chronization and the order of taking their possibly individual actions as well
as updating the states must highly affect the global performance. Three
possible ways of synchronization are illustrated in Fig. 3.6:

(A) Actions are executed at the same time (t-1) as well as the consecutive
states are generated together at the next time step t. In this case, the
agents are synchronized and the process is independent of their order.

(B) The agents are processed one by one. Each takes its action and receives
a new state immediately before the following agent makes its action.
This mode is dependent of agents order, but the new state of each
agent depends on his last action only.

(C) On the contrary, the last approach generates new states after the action
cycle of all agents and therefore, the states are influenced by actions
of the others as well.

Figure 3.6: MARL: the synchronization problem.
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Chapter 4

Project Objectives

This work is intended to be a preliminary report of the ongoing project
assigned for the final dissertation thesis. The overall objective of the whole
project is to develop an algorithm for generating a neural network tailored
for given data in terms of architecture and performance metric (Fig. 4.1).

Figure 4.1: Global view of the project objective. The pro-
posed algorithm (green) takes the given data and require-
ments as the input. Its task is to generate a network capable

of classifying the data while meeting the requirements.

The network generation process will be based on the common ANN learning
procedure and it will extend its features, not replace it completely. The new
features will be enabled by including principles of multi-agent systems and
reinforcement learning.

The following is a milestone list of the project and the checkboxes on the
left indicate the current state.

Partial goals:

X� (1) Study of related fields: neural networks and multi-agent systems;

X� (2) Task composition and a baseline algorithm implementation;

X� (3) Implementation of a GUI for algorithm tuning on 2D problems;

X� (4) Solution of the XOR problem (with the optimal network structure);

� (5) Solution of a more challenging 2D problem (new rules derivation);

� (6) Scaling to a multidimensional problem (MNIST);

� (7) Reaching the SotA performance on MNIST;

� (8) Application to any classification (yet non-sequential) data.
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Chapter 5

Multi-Agent based Neural
Network

Previous chapters provide theoretical backgrounds, crucial breakthroughs
over time and current SotA methods in machine learning areas that are
closely related to this project: neural networks (Chap. 2) and multi-agent
systems with reinforcement learning (Chap. 3). This chapter is devoted to
the new ideas that are used to fullfil the goals of this project (see Chap. 4).

Project objective. The overall goal of the project is to develop an algo-
rithm capable of building a neural network architecture tailored for given
data. This data is restricted to represent a classification problem of p
(<-1,1>-normalized) samples of dimensionality (n×1) sorted into m classes.
However, these numbers can originally come from any domain (vision, speech,
etc.) and hence, despite the data-tailored property of the generated network,
the algorithm is considered general. Scores of current SotA architectures will
be taken as the baseline to compare the performance of generated networks.

Key idea. The development of ANNs has originally been inspired by the
biological template (see Sec. 2.1). In contrast of the amazing capabilities of
a biological brain as a whole, the functionality of a single cell (Fig. 2.1) is
pretty elementary. Its responsibility is virtually just to sum up the incoming
signals and to decide whether to fire or not, while the cell itself is definitely
not capable of understanding or even observing the complex behaviour of the
whole brain. Accordingly, what makes the brain such a powerful machine is
the enormous number of the elementary units and the way they interact.

Following the principles of multi-agent systems, here we can find a perfect
analogy, as there are independent agents capable of primitive moves to in-
teract with each other and with the environment. They only have a local
view and the addressed problem of the system as a whole is too complex
for them, however, if many agents work together, the system can emerge an
intelligent behaviour dealing with a global task of a higher complexity.

Figure 5.1: Neural network as a multi-agent system.
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As indicated in Fig. 5.1, the idea is to consider the resulting neural network
to be a multi-agent system and individual parts of the network to be the
agents. The first step is to arrange the task so that the theory of multi-agent
systems, and especially the control learning algorithms (see Sec. 3.1.1), could
be applied to build a network architecture for the given data.

Principles. There are several design choices to be made in order to arrange
the task and to connect the two fields - a neural network dealing with a clas-
sification problem and the reinforcement learning in a multi-agent system.
The proposed methods adhere to the following principles:

• Upgrade (not a replacement) of the SotA methods; The proposed al-
gorithm is supposed to extend the capabilities of the commonly used
learning algorithm for ANNs (Sec. 2.3), not to replace it completely.
The new method, in a certain setting and assuming unlimited compu-
tational resources, must (theoretically) be able to reproduce the SotA
results for the given data.

• Decomposition-and-emergence workflow; The crucial idea of the work-
flow is to decompose the global problem as much as possible. The
decomposed subproblems (e.g. classification of samples of a specific
class) are supposed to be solved by individual parts of the network.
The final decisions of the most elementary tasks will be based on rules
of lowest-level elements (agents) and the desired behaviour is supposed
to emerge from the activity of the agents in the background.

• Deterministic elementary rules; The mentioned elementary agents rules
for selecting their moves are aimed to be kept simple and deterministic
(e.g. not based on another ANN - see control learning in Sec. 3.1.1).

• Problem-tailored (but flexible) architecture; The function of the gener-
ated network is supposed to be problem-specific (not a complex/adap-
tive AI - see the related method in Sec. 2.6.2). However, if new data
occurs in the given dataset, the network will be flexible enough to learn
the new data. The adjustments will be local only, applied to the right
places in the network purposefully.

• Network demystification; In general, commonly used ANNs are black-
boxes nowadays. To some extend, individual parts of the generated
network in this work will be observable from the outside (e.g. clas-
sification of a certain class, influence of a certain feature) and hence,
targeted changes will be enabled.

• Extendable and adjustable design choices; The following section (5.1)
determines the design choices used for initial experiments of the project.
However, there are many possible settings and even ways of how to ar-
range the task from the ground. Hence, it is expected that some of the
design choices might be adjusted with the ongoing research and more
experiments. At the same time, these choices must be extendable for
new features (e.g. adding the possibility of handling context-, time- as
well as position-, dependent data).
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5.1 Proposed method
As stated above, the following design choices have been determined for the
initial experiments (Sec. 5.2), however, might be adjusted with the ongoing
research. The overall view of the task is shown in Fig. 5.2.

Figure 5.2: Global view on the proposed method.

Initially, the network has no agents and the environment has an empty slot
waiting for a classification problem, defined by data and a classification
accuracy the network is required to reach, to be plugged in. The engine
(Sec. 5.1.1) is the executive tool of the environment. The network (Sec.
5.1.2) is generated from zero and its initialization depends on the problem
specification. The graphical user interface (Sec. 5.1.3) allows the user to
interact with the environment and to observe the network generation process.

5.1.1 Engine

The engine operates with the provided data in order to determine states
and rewards for individual agents at each epoch t of the generation process.
The algorithm shown in Fig. 5.3 is parametrized by the maximal number
of generation epochs T and required classification accuracy of the generated
network C (defined with the problem). During the first pass (t = 0), all
agents are in their initial states, take no actions and recieve new states only.
The condition Z1 is defined as follows:

Z1 = acc<t> >= C ∧ S<t>i == Soptimal ∀ i, ..., N (5.1)

where, assuming epoch t, acc<t> is the classification accuracy of the network
(validation data), S<t>i is the state of ith agent and N is the number of
agents. The loop in the yellow box in Fig. 5.3 is processed asynchronously
and the agents are ordered randomly. The state determination is based on
the SGD algorithm, specifically on the loss function - both the global one as
well as the error of each agent individually (see Sec. 5.1.2 and Tab. 5.1).

Figure 5.3: Network generation algorithm.
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5.1.2 Agents

There are two types of agents: neurons and synapses. As the network is
initialized, m neurons are generated (representing m classes) and each of
them gets n incoming synapses (one for each feature of the n-dimensional
data). Then the generation process (Fig. 5.3) is started and the only re-
sponsibility of the agents at every epoch t is to choose an action based on
the given state and the reward from the environment (engine). Each agent
has its own independent policy that is pretty basic currently and therefore
it is a subject to optimize with the ongoing research of the project.

The default rules used for the initial experiments (Sec. 5.2) are summarized
in Tab 5.1. In this default case, no reward from the environment is considered
and each state has only one strictly determined action to be performed.
Hence, the crucial part is to determine the state of each agent correctly.

agent state: initial useless missing incapable tuning low tuning high optimal
condition: t = 0 Eq. 5.2 X Fig. 5.4 ∆w > 0 ∆w < 0 Eq. 5.5

neuron action: - remove
self X add neuron

in front
increase
weight

decrease
bias -

condition: t = 0 Eq. 5.2 Eq. 5.3 Fig. 5.4 ∆b > 0 ∆b < 0 Eq. 5.5
synapse action: - remove

self return - increase
weight

decrease
weight -

Table 5.1: Default agents policies: one action per state (no
reward considered) with conditions to get into corresponding
states. The standard learning algorithm (Sec. 2.3) considers

gray columns only.

Determination of the state is based on the backpropagation algorithm (Sec.
2.3), however, apart from the common approach (gray columns in Tab. 5.1),
this method allows an agent to use information about the error on other
agents as well as over the past epochs to aquire its own state. Based on
simple rules, agents are allowed to choose out of more actions than just
tuning the weights or biases. In the following equations, ∆w<t>i refers to the
suggestion of the SGD algorithm to tune weight w of the ith agent (synapse)
at time t (|∆b<t>i works analogically for biases of agents-neurons).

• initial; No agent’s action is required and the state is undoubtedly
changed during the first iteration.

• useless; An agent is considered useless if its weight (bias) is not being
touched during the training (Bulín, 2017) and the consequent action
removes the agent from the network (in case of neurons, also their
connections are removed). For initial experiments (Sec. 5.2): ε1 = 20
and ε2 = 0.1.

Z<t>useless = t > ε1 ∧
t∑

τ=0
|∆w<τ>| < ε2 (5.2)

• missing; As long as a removed neuron can be replaced by a new one,
only synapses can aquire the missing state. A removed synapse is not
used in the network, however, it holds its useless state and can be
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returned if its target neuron SN gets into the incapable state.

Z<t>missing = S<t−1> == Suseless ∧ S<t>N = Sincapable (5.3)

• incapable; A neuron is considered incapable of dealing with its task if
the tuning suggestions of its bias ∆b as well as ∆wi of all incoming
synapses do not converge to zero over last ε3 epochs (set to ε3 = 30
for experiments in Sec. 5.2). Then an in-front neuron is added as
depicted in Fig. 5.4, incoming synapses are copied and a single output
is connected to the calling neuron in need. Hence the feedforward flow
in the network is guaranteed.

Figure 5.4: Adding a new neuron (yellow) in-front of the
calling one (blue).

• tuning; If the agent does not meet conditions of any other state, it is
in the tuning state. Depending on the polarity of the SGD suggestions
∆b (resp. ∆w), tuning-low and tuning-high states are distinguished.
The parameter update is computed with a learning rate (µ = 0.03 in
the experiments - Sec. 5.2) as follows (and analogically for b/db):

w<t+1> = w<t> + µ · dw<t> (5.4)

• optimal; When all the agents reach the optimal state and the required
classification accuracy C is reached, the generated network is consid-
ered optimal for the given data (Eq. 5.1). The agent is in the optimal
state, if the suggested change obtained from the SGD is below a thresh-
old ε3 (ε4 = 0.01 for experiments in Sec. 5.2). The optimal state can
be left again due to interactions of other agents (see Fig. 5.5).

Z<t>optimal = |dw<t−1>| < ε3 (5.5)

The behaviour of the agents can be described by the finite state machine
illustrated in Fig. 5.5. Their goal is to reach the optimal state by tuning
their parameters so that their errors are driven to zero. Eventually, neurons
are allowed to call for adding a new neuron if the situation seems unsolvable.
All agents can be removed from the network if they feel useless and removed
synapses are allowed to return back to their places if needed.

Figure 5.5: Agents states and allowed transitions. Orange
parts are reachable by synapses only (not by neurons).
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5.1.3 Graphical user interface (v1)

The purpose of the user interface is especially to help derive the algorithm
principles on low-dimensional classification problems. The version shown in
Fig. 5.6 allows to observe the network generation process for 2D data.

Figure 5.6: Graphical user interface (v1) for interaction.

There are six independent areas in the GUI (marked A-G in Fig. 5.6) capable
of the following:

(A) 3D projection of the generated network; Positions of the nodes are gen-
erated randomly, however, the colors and shapes match the notation
in this work (green square ∼ input; blue circle ∼ hidden; red triangle
∼ output).

(B) Process log and hyperparameters settings;

(C) Samples information (correctly classified/misclassified, sample error);

(D) Visualization of individual neurons and the samples in a 3D space;

(E) Parameters of the neurons (biases and incoming weights) and synapses
(weights) with the option to remove individual agents from the figures;

(F) Evolution of the states of individual agents over time;

(G) Evolution of the classification accuracy and the loss funcion over time.

5.2 Initial Experiments
The following 2-dimensional classification problems are used to verify the
default agent rules (the RL policy) presented in Sec. 5.1 and to help de-
rive more sophisticated rules in the future. These toy problems help to find
principles and to prove concepts with the hope of scaling on real multidi-
mensional tasks in the future.
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5.2.1 A basic 2D problem

This elementary (linearly separable) task defined by Tab. 5.2 can be solved
by a network of a single output neuron.

x1 x2 y
0 1 1

-0.5 0 1
0.5 0 0
0 -1 0

Table 5.2: A basic 2D problem definition.

The environment consists of three agents (the neuron and two incoming
synapses). The goal was to use the proposed algorithm to reach their optimal
states ending up with the expected minimal network structure (Fig. 5.7a).

(a) Known minimal architecture.
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(b) Generated architecture.

Figure 5.7: The 2D basic problem minimal architecture.

As shown in Fig. 5.8, the generation process finished after 85 epochs with
the expected architecture (Fig. 5.7b). In case of tuning states, Fig. 5.8 in-
dicates the decreasing error value driven to zero. The neuron (blue) reached
the optimal state after 6 epochs, followed by the synapses (green ∼ epoch 40
and orange ∼ epoch 85). Then the process ended and the neuron was per-
fectly aligned in the 2D space to separate the two classes (Tab. 5.2) with a
negligible loss value - (see Eq. 5.5) and the maximal classification accuracy.
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Figure 5.8: Evolution of the states over epochs (2D basic).
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5.2.2 The XOR problem

This well-known problem (Tab. 5.3) requires an extra hidden neuron to be
solved as the classes are linearly inseparable in the 2D space.

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Table 5.3: XOR function.

There are two known minimal network architectures (Fig. 5.9a) that are
considered minimal for this task. Apart from the previous problem, here we
need to add one extra neuron into the initial network. The goal was to end
up with one of the expected architectures using the proposed algorithm.

(a) Known minimal architectures.
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(b) Generated architecture.

Figure 5.9: The XOR problem minimal architecture.

In each out of 50 experimental runs, the algorithm finished with the expected
architecture A2 (see Fig. 5.9). In Fig. 5.10 there is the evolution of agents
states in one selected observation. Following the basic rules defined in Sec.
5.1.2, the key neuron was added after 35 epochs, when the first neuron was
declared incapable of solving the task. Since then, all the agents have been
one by one driven to the optimal state. The generation process finished
after 108 epochs with a minimal loss value (see Eq. 5.5) and the maximal
classification accuracy produced by a network of the desired architecture.
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Figure 5.10: Evolution of the states over time (XOR).
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Chapter 6

Discussion

Building a neural network from zero is a challenging task, but the motivation
for working on it is huge and the proposed method is solid. The mainstream
way of using ANNs is basically a trial and error procedure as the red block
in Fig. 6.1 consists of tuning hyper-parameters, data augmentation, deploy-
ment of pre-trained models and an engagement of faster computers.

Figure 6.1: Mainstream way of using ANNs nowadays.

From time to time, a new optimization method (see Sec. 2.4) appears and
helps fight the limitations of the standard learning algorithm (Sec. 2.3),
usually by a kind of interference to network structures, for instance the
skipping connections method (Sec. 2.2.1.4), the dropout method (Sec. 2.4.3)
or even revolutionary architectures (Sec. 2.2). However, no matter how
much these methods raise the performance, the nature of the procedure in
Fig. 6.1 is mostly kept and no targeted changes can be applied to the trained
models. This makes us feel that despite some extraordinary results, we still
might not be exploiting the full potential of neural principles. Interestingly,
this assumption is supported by conclusions of pruning methods (Sec. 2.6.1)
as well. Although they are not capable of improving the performance, they
show that a significant amount (up to 90%) of synapses in (still widely used)
fully-connected networks is completely redundant.

Proposed method summed up. Apart from using the brute force in
terms of unnecessarily complicated architectures, larger datasets and in-
creasingly powerful computers, this work suggests to start the other way
around and to focus on building architectures tailored for given data. The
proposed method (Chap 5) elaborates on the multi-agent systems theory
(Chap. 3). Individual parts of the network are treated as agents directed
by reinforcement learning to cooperate on the given task. Despite the ele-
mentary nature of individual agents following deterministic rules, multiple
agents working together as a whole are believed to be capable of emerging
the desired (sophisticated) behaviour of the generated classifier.

State of the project. The backbone of the algorithm has been already im-
plemented (Sec. 5.1) and initial experiments have been performed (Sec. 5.2).
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The first version of the implementation is planned to be extended in the fol-
lowing research. The crucial part of the whole work is the behaviour of
the agents controlled by traceable rules. The derivation of these rules has
been launched in a 2D space, supported by a user interface (Sec. 5.1.3), and
applied on two basic experiments. Both of them finished successfully with
expected results and proved the end-2-end preparedness of the implementa-
tion for further extention.

Possible pitfalls. The key step of the project will be to prove the scalability
of the method on more complicated (multidimensional) tasks. Next, the
experiments will have to focus on preventing the overfitting problem carefully
examined with dev and test data sets. Finally, the design of the basic rules
(see Sec. 5.1) will be crucial to meet the goals of the work, while keeping
the generated network as observable as possible.

Research directions. There are many unexplored directions and design
options that are worth experimenting with:

• Definition of a state/reward; The baseline design of the RL task is
a subject to think about. By now, the states are defined agent-wise
(see Fig. 5.5) instead of using the usual state of the environment.
Moreover, there are several options how to use the loss function to
define the state and eventually to combine it with the reward function.

• Definition of agents; With the ongoing research, we might conclude
that considering individual neurons and synapses (as defaultly set in
Sec. 5.1) to be the agents is incalculable. Then we could possibly
experiment with blocks of neurons, for instance forming structures
that we today know as layers or more complicated cells (e.g. LSTM -
Sec. 2.2.2.1, which is actually a block of neurons as well).

• Agents policies; The decision making policy can be common and shared
by the agents (like in the related method in Sec. 2.6.2) or it can be
unique for each agent individually. To make a decision, each agent can
use its own as well as others information in terms of states, actions,
rewards and loss values from the beginning of the training. Moreover,
each agent can reason about its contribution to the classification of
individual samples (e.g. samples of a specific class) and hence helps
prepare the network for future targeted adjustments for new samples.

• Asynchronous processing; In the loop in (Fig. 5.3), the agents are
processed one by one and their order is set randomly. Finding a way
of sorting, respectively of a synchronization, of the agents is another
important research direction.

• Network building (growing) moves; Fig. 5.4 shows an option how to
add a new neuron into a network. However, the new neuron could
be placed besides the calling neuron (not in front of it) and similarly,
further building strategies could be implemented.

• Data flow direction; This work is focused on non-sequential classifica-
tion data and therefore the generated architecture is kept feedforward.
However, including loops in the network would significantly extend the
scope of possible experiments.
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6.1 Comparison to related methods
There are two groups of methods addressing the architecture search task -
the top-down (pruning) algorithms and the bottom-up (building) algorithms
(Sec. 2.6). The pruned network of top-down methods is generally limited
by the initial choice of the network architecture and although these methods
help in terms of parameters reduction, they are not expected to improve the
performance in terms of classification accuracy. The proposed method of
this work would belong to the bottom-up - building category and hence it is
fair to compare it to methods from Sec. 2.6.2.

Comparison to Badger. The closest approach on the market is called
Badger (Rosa et al., 2019). As well as in this work, they design networks of
multiple agents trained with reinforcement learning and their project is also
at the stage of prooving the scalability. Apart from this work:

• Related to the authors’ long-term goal of building the general AI,
the Badger architecture is aimed to be adaptive to new environments
(problems). In this work, although generated networks are expected
to be flexible enough to learn new samples, each will be tailored for
one specific classification problem only.

• In the Badger architecture, the agents (called experts) share a universal
policy for decision making that is based on a trained neural network.
This work tends to avoid unobservable decision making systems and
focuses on deterministic rules at the lowest level.

Comparison to architecture search algorithms. As well as in this
work, these methods generate a network architecture that deals with a spe-
cific task. However, unlike this work, they are based on searching optimal
combination of hyper-parameters and as the space of those combinations is
enormous, they need another (hardly observable) ML method to deal with
it. In case of NAS (Zoph and Le, 2016), an RNN is trained by reinforcement
learning to produce a string specifying the generated classifier in terms of
hyper-parameters. The NEAT approach (Stanley and Miikkulainen, 2002)
uses evolutionary algorithms to search the space of hyper-parameters.

6.2 Outlook
The next steps have been summarized in Chap. 4. The XOR experiment
(Sec. 5.2.2) proved the ability of the algorithm to add one needed neuron
to solve a linearly inseparable task. The very next step will be to show the
ability to add more (but not too many) neurons to solve a more complicated,
but still a 2D (and so imaginable and drawable) task. Then, the key step
will be to make the method scalable to multidimensional tasks, where firstly
it will be widely elaborated on the MNIST dataset.

In case of reaching the objectives of this work, a long-term outlook could
consist of an extention to context-dependent data by implementing, besides
new eventual ideas, the known CNN/RNN principles.
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Chapter 7

Conclusion

This work elaborates on a new method for working with the neural principles
in machine learning that could be an alternative to the mainstream in deep
learning. In contrast of training unnecessarily complicated structures that
are commonly assembled and tuned by an expertised network architect, the
objective of the new method is to generate network architectures tailored for
given datasets. The algorithm is designed to work for non-sequential labeled
classification data and its purpose is to produce a network that meets the
requirements in terms of classification accuracy and tolerated loss.

The timeline of significant breakthroughs in the field of ANNs over the years
was studied first, as the main principle of the new method is to exploit
the successful ideas, to fit them into the new concept and to extend their
capabilities. The backbone is represented by the well-known backpropagation
algorithm, however, it only supports the decision making in the network
instead of taking the full control over the learning.

The network generation process is based on the theory of multi-agent sys-
tems with reinforcement learning and especially on the convenient analogy
between a neural network and a multi-agent system. Individual parts (by
default neurons and synapses), as well as the agents, are super-elementary
and have a local view only, with no idea about the global complex problem
they work on together as a whole (the network). The key idea of the new
method is to elaborate on the emergence phenomenon of multi-agent systems
and to use it for network generation, while its parts will be of a primitive
nature based on simple deterministic rules. These rules are expected to lead
the algorithm to produce a tailored and (to the extend possible) observ-
able network allowed to be, apart from today’s trained models, purposefully
modified in the future.

The main loop of the algorithm has already been implemented and default
rules have been proposed. The baseline version has been sucessfully applied
to two classification problems in 2D with expected results. The rules are
aimed to be further elaborated on more sophisticated 2D problems with
the help of the developed graphical interface. Next, the approach will be
applied to a multidimensional classification problem in order to prove its
scalability and generality. Regarding various design options for the proposed
combination of the two ML fields, neural networks and multi-agent systems,
this work opens several unexplored research directions.
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Appendix A1

Notation Conventions

Notation conventions used in this study are overtaken from (Bulín, 2017).

First of all, we define a dataset consisting of samples X and labels Y ′.

X
n×p

=
[
X1 X2 · · · Xp

]
=


x11 x12 · · · x1p
x21 x22 · · · x2p
...

... . . . ...
xn1 xn2 · · · xnp


Y ′
1×p

=
[
Y ′1 Y ′2 · · · Y ′p

]
where X1 is the first sample, p is the number of samples and n is the problem
dimension. Y ′ is the vector of labels. A label can be represented as a number
or a string. For example, we can set Y ′1 = ”a” be a label of sample X1,
which is a sample of phoneme "a". To make it work together with our
neural network implementation, each label has a transcript, which is unique
for every class. The transcript is so called one-hot vector, a zero vector of
length m (number of classes), which has the only one "1" at the position
corresponding to its class. For example, if we classify 5 phonemes and the
class "a" was assigned to position 2, its transcript Y1 would be:

Y1
5×1

=


y11
y21
y31
y41
y51

 =


0
1
0
0
0


A general matrix of these transcripts Y is then:

Y
m×p

=
[
Y1 Y2 · · · Yp

]
=


y11 y12 · · · y1p
y21 y22 · · · y2p
...

... . . . ...
ym1 ym2 · · · ymp


We consider Y to be a predicted output of our neural network. Analogically,
we get a general matrix of a desired output of a network and those two can
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be item-wise compared.

U
m×p

=
[
U1 U2 · · · Up

]
=


u11 u12 · · · u1p
u21 u22 · · · u2p
...

... . . . ...
um1 um2 · · · ump


Moreover, we decipher the matrices of weights and biases. We have a vector
W of weight matrices W (i), which is always of length (q+ 1), where q is the
number of hidden layers.

W
1×(q+1)

=
[
W (1) W (2) · · · W (q+1)

]
Shapes of matrices W (i) then reveals the network structure. For example
we itemize W (1), which carries the information about problem dimension n.
Let’s assume we have j neurons in the first hidden layer.

W (1)
j×n

=


w

(1)
11 w

(1)
12 · · · w

(1)
1n

w
(1)
21 w

(1)
22 · · · w

(1)
2n

...
... . . . ...

w
(1)
j1 w

(1)
j2 · · · w

(1)
jn


Clearly, the first (row) index indicates the neuron we are going to and the
second (column) index indicates the neuron we are coming from. A corre-
sponding bias vector would look as follows.

B(1)
j×1

=


b

(1)
1
b

(1)
2
...
b

(1)
j


Finally, the error matrix in the output layer of m neurons for p samples is
given as follows:

∆(q+1)
m×p

=


δ

(q+1)
11 δ

(q+1)
12 · · · δ

(q+1)
1p

δ
(q+1)
21 δ

(q+1)
22 · · · δ

(q+1)
2p

...
... . . . ...

δ
(q+1)
m1 δ

(q+1)
m2 · · · δ

(q+1)
mp


Then for ξ = 1, the errors corresponding to the first sample X1 are:

∆(q+1)
(1) =


δ

(q+1)
11
δ

(q+1)
21
...

δ
(q+1)
m1


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