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ABSTRACT

In this paper, we continue to investigate the use of machine learning
for the automatic detection of glottal closure instants (GClIs) from
raw speech. We compare several deep one-dimensional convolu-
tional neural network architectures on the same data and show that
the InceptionV3 model yields the best results on the test set. On
publicly available databases, the proposed 1D InceptionV3 outper-
forms XGBoost, a non-deep machine learning model, as well as other
traditional GCI detection algorithms.

Index Terms— glottal closure instant (GCI), detection, deep
learning, convolutional neural network

1. INTRODUCTION

Machine learning is gaining more and more attraction in many areas
of signal processing, replacing the established and refined signal
processing techniques (such as autocorrelation, convolution, Fourier
and wavelet transforms and many others), or speech/audio processing
techniques (such as Gaussian mixture models or hidden Markov
models) [1]. It is also the case of glottal closure instant detection,
a traditional signal processing/detection task. Detection of glottal
closure instants (GCls) could be viewed as a task of determining
peaks in the voiced parts of the speech signal that correspond to the
moment of glottal closure, a significant excitation of the vocal tract
during speaking.

In our previous research [2, 3], we showed that classical (“non-
deep”’) machine learning, and especially the one based on extreme
gradient boosting (XGBoost), was able to perform very well and
consistently outperformed traditionally used algorithms on several
test datasets [3]. From the point of view of machine learning, GCI
detection could be described as a two-class classification problem:
whether or not a peak in a speech waveform represents a GCI [4].
Unlike the traditionally used algorithms, which usually exploit expert
knowledge and hand-crafted rules and thresholds to identify GCI can-
didates from local maxima of various speech representations (see, e.g.
[5]), the advantage of a machine-learning-based method is that once a
training dataset is available and relevant features identified from raw
speech, classifier parameters are set up automatically without manual
tuning. On the other hand, the identification of relevant features may
be time-consuming and tricky, especially when carried out by hand.

Deep learning, and especially convolutional neural networks
(CNNgs), can help solve the problem of identifying features. In gen-
eral, deep learning can help in finding more complex dependencies
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Table 1. Train/validation/test dataset description.

Dataset Train Val. Test Total
# utterances 3,136 32 32 3,200
length (minutes) 331.28 3.52 3.48 338.28
# peaks 2,127,650 | 22,644 | 22,397 || 2,172,691
# GClIs 1,767,752 | 18,901 | 18,687 || 1,805,340
# non-GCls 359,898 3,743 3,710 367,351

between raw speech and the corresponding GCIs. CNNs can directly
be applied to the raw speech signal without requiring any pre- or
post-processing, such as feature identification, extraction, selection,
dimension reduction, etc. [6, 7]. CNNs were already shown to per-
form very well in GCI detection [8, 9, 10, 11].

In this paper, we investigate several deep one-dimensional (1D)
CNN architectures in the context of GCI detection and compare them
with non-deep machine learning XGBoost and with traditional GCI
detection algorithms on the same data.

2. DATA DESCRIPTION

Experiments were performed on clean 16 kHz sampled speech record-
ings primarily intended for speech synthesis. We used 3200 utterances
from 16 voice talents (8 male and 8 female voices with 200 utter-
ances per voice) of different languages (8 Czech, 2 Slovak, 3 US
English, Russian, German, and French). Two voices were from CMU
ARCTIC database [12, 13] (Canadian English JMK and Indian En-
glish KSP), the rest were our proprietary voices. For our purposes,
speech waveforms were mastered to have equal loudness and negative
polarity [14]. Ground truth GCIs were detected from contempora-
neous EGG recordings by the Multi-Phase Algorithm (MPA) [15]
and shifted towards the neighboring minimum negative sample in the
speech signal. The ratio of division into train/validation/test sets was
set to 98/1/1 (see Table 1 for more details). Each voice was part of
the train, validation and test dataset.

Since the classification of peaks as GCl/non-GClI is performed
in a peak-by-peak manner, negative peaks were detected by zero-
crossing low-pass filtered (by a zero-phase Equiripple-designed filter
with 0.5 dB ripple in the pass band, 60 dB attenuation in the stop
band, and with the cutoff frequency of 800 Hz) speech signal exactly
in the same way as described in [16] (see also Fig. 1). It was also
found that downsampling to 8 kHz prior filtering provided slightly
better results than the use of 16 kHz. Thus, all compared CNNs use
8 kHz internally.
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Fig. 1. A simplified scheme of a CNN-based GCI detection from raw
speech signal (blue solid line). Negative peaks (either true GClIs e or
non-GCls o) are detected from the corresponding low-pass filtered
signal (red dashed line).

3. EXPERIMENTS

Unlike classical (non-deep) machine learning algorithms, CNNs have
the unique ability to fuse feature extraction and classification into a
single learning body, and thus eliminate the need for fixed and hand-
crafted features. Typically, each CNN consists of a series of con-
volutional layers (convolving their input with learnable kernels and
computing feature maps) interleaved with pooling layers (downsam-
pling the learned feature maps), followed by one or more dense layers
which perform the actual classification. Conventional (2D) CNNs
were originally introduced to perform object recognition/detection
tasks for 2D signals (images or video frames), and since then they
became the state-of-the-art technique for many computer vision tasks
[17,18].

In this section, we compare several 1D CNN architectures on the
same data. For this purpose, we implemented 1D versions of well-
known 2D architectures primarily proposed for image processing
(LeNet-5 [19], various VGG networks [20], Inception [21], ResNet
[22], Xception [23], NASNet [24], ShuffleNet [25]) in the Keras
framework [26]. We also included two 1D architectures proposed
directly for audio processing: “Yang2018” (a VGG10-like network
[8]) and SwishNet [27]. To our knowledge, this is the first such
extensive comparison of 1D CNN models.

Due to the unbalanced number of GCIs and non-GClIs in our data
(see Table 1), the comparison was made with respect to F'1, recall
(R), and precision (P) scores.

Table 2. Initial comparison of GCI detection performance using 1D
CNNss on the validation set (in percents) including the approximate
number of learnable parameters. VGG4/6 are simple VGG networks
with only 4/6 layers including only one dense layer with 32 neurons.

CNN F1 R P | #params
InceptionV3 [28] 98.77 | 98.86 | 98.67 12.3M
NASNet-Mobile [24] 98.77 | 98.81 | 98.72 4.0M
VGGI13 [20] 98.76 | 98.73 | 98.79 34.6M
ResNet101 [22] 98.73 | 98.73 | 98.74 28.3M
Xception [23] 98.73 | 98.48 | 98.97 20.7M
NASNet-Large [24] 98.72 | 98.77 | 98.68 83.6M
Inception-ResNetV2 [29] | 98.71 | 98.66 | 98.76 44.7TM
ResNet152 [22] 98.67 | 98.73 | 98.62 38.5M
ResNet50 [22] 98.66 | 98.56 | 98.77 16.0M
VGGI11 [20] 98.66 | 98.32 | 99.00 34.5M
VGG16 [20] 98.65 | 98.37 | 98.94 36.4M
VGG19 [20] 98.61 | 98.58 | 98.64 38.2M
SwishNet-Wide [27] 98.50 | 98.39 | 98.61 17k
ShuffleNet [25] 98.49 | 98.32 | 98.67 0.5M
SwishNet-Slim [27] 98.49 | 98.42 | 98.56 4k
LeNet-5 [19] 98.44 | 98.28 | 98.60 0.5M
VGG4 [20] 98.07 | 97.62 | 98.52 0.1M
VGG6 [20] 98.02 | 97.58 | 98.46 0.1M
Yang2018 [8] 97.55 | 96.68 | 98.43 2.9M

Table 3. Optimal hyper-parameter values of the selected models and
the best £'1 score achieved on the validation set.

CNN FS Y LR BS || F1 (%)
Inception-ResNetV2 | 80 rect. 0.001 64 98.97
NASNet-Mobile 80 rect. 0.001 256 98.91
InceptionV3 80 | hamm. | 0.001 128 98.90
VGG13 48 rect. 0.001 128 98.88
ResNet101 80 rect. 0.0001 64 98.87
Xception 48 rect. 0.0001 16 98.86

3.1. Initial Comparison

The purpose of the initial comparison of different architectures/models
was to identify the capabilities of the models in the context of GCI
detection, and to discard some less powerful models from further
evaluation.

The architecture of each model (the number of layers, the number
of filters and their sizes, the usage of pool layers, batch normalization,
etc.) was used the same as proposed by the authors of each model. In
all our experiments, the networks were trained to minimize a binary
cross-entropy loss using mini-batch gradient descent with the Adam
optimizer. ReLU activations were applied in all inner layers, whereas
a sigmoid activation was used in the last (dense) layer. For the initial
comparison, the mini-batch size was 128 and the learning rate was
0.001. To speed up the training, it was stopped when the validation
loss did not improve for 10 epochs and the maximum number of
epochs was set to 100. The length of the input speech segment
extracted around each negative peak was fixed to 30 ms (i.e., the
frame size was 240 samples).

Based on the results shown in Table 2, the following networks
were chosen for further fine-tuning: InceptionV3, NASNet-Mobile,
VGG13, ResNet101, Xception, and Inception-ResNetV2.
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Table 4. Comparison of the finalized GCI detection models (trained for the given number of epochs (# ep.) on train and validation sets,
including the number of learnable parameters # par.) on the test set (left) and the corresponding statistical significance according to McNemar’s
test [30] (right). The symbols > and > mean that the row model is significantly better at the significance level « = 0.01 and o = 0.05,
respectively, than the column model. The symbol = means that the respective models perform the same.

CNN F1 R P | #ep. | #par INC | XCE | INR | RSN | VGG | NNM
InceptionV3 (INC) 98.94 | 98.94 | 98.94 8 | 12.3M INC = > > > > >
Xception (XCE) 98.85 | 98.81 | 98.89 7 | 20.7M XCE < = = = = >
Inception-ResNetV2 (INR) | 98.84 | 99.15 | 98.92 9 | 44 ™M INR < = = = = >
ResNet101 (RSN) 98.84 | 98.93 | 98.74 10 | 28.3M RSN < = = = = >
VGG13 (VG) 98.81 | 98.94 | 98.69 17 | 34.6M VGG < = = = = =
NASNet-Mobile (NNM) 98.78 | 98.91 | 98.65 7 4.0M NNM < < < = =

3.2. Model Tuning

In this stage, we focused on the selected models and tuned their hyper-
parameters on the validation set. The following hyper-parameters
were taken into account in our comparison: the size of the frame
around each negative peak (FS: 30-128 ms, i.e. 240-1024 samples)
and windowing (W: rectangular or Hamming), learning rate (LR:
0.0001-0.1), and mini-batch size (BS: 16-512). The optimal hyper-
parameter values are shown in Table 3.

3.3. Model Testing

Finally, the tuned models were finalized, i.e., trained on both train
and validation datasets for the number of epochs found during the
model tuning phase in Section 3.2 (see Table 4), and evaluated on
the test set. Due to the stochastic nature of neural network training
algorithms (especially when using GPU), we repeated the training
five times. A more robust final comparison was then achieved by
evaluating the models’ performance over all runs.

It could be seen in Table 4 that the 1D InceptionV3 model outper-
forms all other models at the statistical significance level o = 0.05.
Other models performed about the same except for 1D NASNet-
Mobile which achieved the worst results.

4. COMPARISON WITH OTHER METHODS

To compare the proposed Inception model with different GCI detec-
tion algorithms, standard GCI detection measures that concern the
reliability and accuracy of the GCI detection algorithms were used
[31]. The former includes the percentage of glottal closures for which
exactly one GCl is detected (identification rate, IDR), the percentage
of glottal closures for which no GCI is detected (miss rate, MR), and
the percentage of glottal closures for which more than one GCI is
detected (false alarm rate, FAR). The latter includes the percentage
of detection with the identification error ¢ < 0.25 ms (accuracy to
+0.25 ms, A25) and the standard deviation of the identification error
(C (identification accuracy, IDA). In addition, we use a more dynamic
evaluation measure [32]

Ner — N¢soaty, — Nv — Nra
Nar

that combines the reliability and accuracy in a single score and reflects
the local pitch period Ty pattern (determined from the ground truth
GClIs). Ngr stands for the number of ground truth GCIs, Ny is the
number of missing GClIs (corresponding to MR), Nr 4 is the number
of false GCIs (corresponding to FAR), and N¢s0.17, is the number
of GClIs with the identification error ¢ greater than 10% of the local
pitch period Tp. For the alignment between the detected and ground
truth GCls, dynamic programming was employed [32].

E10 =

ey

4.1. Compared methods

We compared the proposed 1D convolutional network InceptionV3
with a traditional machine learning-based algorithm XGBoost [3] and
with six existing state-of-the-art GCI detection methods shown in
Table 5. We used the implementations available online; no modifi-
cations of the algorithms were made. Since all algorithms (except
REAPER) estimate GCls also during unvoiced segments, their authors
recommend filtering the detected GCIs by the output of a separate
voiced/unvoiced detector. We applied an Fp contour estimated by the
REAPER algorithm for this purpose. There is no need to apply such
post-processing on GClIs detected by InceptionV3-1D and XGBoost
since the voiced/unvoiced pattern is used internally in these methods.
To obtain consistent results for all methods, the detected GCIs were
shifted towards the neighboring minimum negative sample in the
speech signal.

4.2. Test datasets

Two voices, a US male (BDL) and a US female (SLT) from the CMU
ARCTIC database [12, 13], were used as a test material. Each voice
consists of 1132 phonetically balanced utterances of total duration
=54 minutes per voice. Additionally, KED TIMIT database [13],
comprising 453 phonetically balanced utterances (=20 min.) of a US
male speaker, was also used for testing. All these datasets comprise
clean speech. Ground truth GCIs were detected from contempora-
neous EGG recordings in the same way as described in Section 2
(again shifted towards the neighboring minimum negative sample in
the speech signal)'. Original speech signals were downsampled to
16 kHz and checked to have the same polarity as described in Sec-
tion 2. It is important to mention that none of the voices from these
datasets was part of the training dataset used to train InceptionV3-1D
and XGBoost models.

4.3. Results

The results in Table 5 show that the Inception network performs very
well for all tested datasets®. It generally outperforms the baseline
non-deep learning XGBoost algorithm and also other non-machine
learning algorithms. It excels in terms of reliability, especially with
respect to the identification (IDR) and false alarm (FAR) rates. In
average, the deep 1D CNN architecture based on the Inception V3
network improved GCI detection substantially (of more than 0.6%

IThe ground truth GCIs and other data relevant to the described experi-
ments are available online [38].

ZA possible explanation of lower performance metrics (cf. e.g. [5, 31]) is
the use of different ground truth GCls, a different strategy of GCI filtering
in unvoiced segments, and perhaps also a different implementation of GCI
computation evaluation (also available in [38]).
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Table 5. Comparison of GCI detection of the proposed InceptionV3-1D CNN with other algorithms.

| Dataset | Method

[ IDR (%) | MR (%)

[ FAR (%) || IDA (ms) | A25 (%) || E10 (%) |

InceptionV3-1D 94.34 3.99 1.67 0.53 98.89 93.37
XGBoost [3] 93.85 2.37 3.78 0.41 98.34 92.36
SEDREAMS [33] 91.80 3.03 5.16 0.45 97.37 90.02

BDL MMF [34] 90.42 4.63 4.95 0.56 97.15 87.87
DYPSA [31] 89.43 4.38 6.19 0.54 97.13 86.89
REAPER [35] 93.24 4.39 2.37 0.56 98.01 91.47

GEFBA [36] 87.93 10.05 2.02 1.02 99.11 87.18

PSFM [37] 87.05 9.65 3.30 0.71 96.95 84.50
InceptionV3-1D 96.84 1.36 1.80 0.17 99.73 96.59
XGBoost [3] 96.05 0.57 3.38 0.17 99.71 95.78
SEDREAMS [33] 94.66 1.13 4.21 0.17 99.67 94.36

SLT MMF [34] 92.44 5.29 2.26 0.40 99.17 91.78
DYPSA [31] 93.25 291 3.84 0.32 99.39 92.75
REAPER [35] 95.57 1.66 2.77 0.19 99.67 95.27

GEFBA [36] 94.85 2.62 2.53 0.17 99.76 94.63

PSFM [37] 86.95 10.46 2.60 0.45 99.26 86.42
InceptionV3-1D 96.22 2.71 1.08 0.24 99.60 95.87
XGBoost [3] 95.70 1.29 3.02 0.25 99.64 95.37
SEDREAMS [33] 92.30 6.03 1.66 0.29 99.12 91.76

KED MMF [34] 90.16 7.16 2.68 0.35 98.99 89.52
DYPSA [31] 90.27 7.07 2.65 0.30 99.25 89.72
REAPER [35] 91.05 8.18 0.78 0.28 99.47 90.67

GEFBA [36] 88.51 10.36 1.13 0.21 99.74 88.30

PSFM [37] 89.47 9.59 0.94 0.39 99.22 88.85
InceptionV3-1D 95.87 2.46 1.68 0.35 99.41 95.35
XGBoost [3] 95.22 1.30 3.48 0.29 99.21 94.49
SEDREAMS [33] 93.37 2.34 4.29 0.31 98.79 92.51

TOTAL MMF [34] 91.47 5.25 3.29 0.46 98.41 90.12
DYPSA [31] 90.27 7.07 2.65 0.30 99.25 89.72
REAPER [35] 94.25 3.34 241 0.37 99.05 93.40

GEFBA [36] 91.66 6.14 2.20 0.62 99.53 91.26

PSFM [37] 87.25 10.07 2.68 0.55 98.41 85.98

than the XGBoost baseline and even of 2.5% than the well-known
SEDREAMS).

As for the accuracy, it also performed reasonably well as it often
achieved the second-best results (behind the GEFBA algorithm which,
however, tends to miss GCIs quite often) in terms of identification
accuracy (IDA) and of the smallest number of timing errors higher
than 0.25 ms (A25). The proposed InceptionV3-1D also achieved the
best results with respect to the combined dynamic evaluation measure
(E10).

5. CONCLUSIONS

In this paper, we followed up on our previous work concerning the use
of machine learning to detect GClIs from raw speech. We compared
several deep one-dimensional CNN architectures on the same data
and selected InceptionV3-1D that achieved the best results on the test
set (F'1 = 98.94%). The InceptionV3-1D model outperforms other
traditional state-of-the-art algorithms on several publicly available
test datasets.

InceptionV3-1D also outperforms XGBoost, a non-deep machine
learning model. It is a good finding because, thanks to its convolu-
tional structure, InceptionV3-1D can directly be applied to the raw
speech signal without requiring any pre- or post-processing (such as
feature identification, extraction, selection, dimension reduction, etc.)
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which makes the use of classical machine-learning algorithms more
difficult.
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