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Abstract

In this paper, three speaker verification procedures are tested.
All the procedures are based on Gaussian mixture models
(GMM), however, they differ in the way, in which they use
particular feature vectors of an utterance for speaker verifica-
tion. A lot of experiments have been performed in a group of
329 speakers. The results showed that there is a procedure that
enables to achieve better results than the commonly used pro-
cedure based on the log likelihood of the whole utterance – the
procedure based on the majority voting rule for single feature
vectors.

1. Introduction
In the paper [1], we studied the influence of the amount of test
speech data upon the speaker identification performance. The
goal of that paper was to find the minimum amount of the test
data necessary for a decision about the identity of an unknown
speaker. Three identification procedures based on the hidden
Markov models of phonemes were described in that paper. It
was shown in the experiments, that quite a good performance
can be reached with a relatively small amount of data when the
procedure based on the majority voting rule for sequences of
about 7 phonemes is used.

The presented paper follows up the paper [1]. However,
our interest is focused on the speaker verification task based on
Gaussian mixture models (GMM) now. The principle of the
GMM is briefly introduced in Section 2. Next, in Section 3, the
three identification procedures presented in [1] are modified in
order they can be used for speaker verification based on GMM.
Experiments are described in Section 4 and their results are dis-
cussed in Section 5. Finally, a conclusion is given in Section 6.

2. Gaussian mixture models
Gaussian mixture models are a type of density model which
consists of a number of Gaussian component functions. These
component functions are combined to provide multimodal den-
sity [2].

The Gaussian mixture density of a feature vectorooo given
parametersλ is a weighted sum ofM component densities, and
is given by the equation

p(ooo|λ) =
M∑

i=1

cipi(ooo), (1)

where ooo is an N -dimensional random vector,pi(ooo), i =
1, . . . , M , are the component densities, andci, i = 1, . . . , M ,
are the mixture weights. Each component density is anN -

variate Gaussian function of the form

pi(ooo) =
1

(2π)N/2|ΣΣΣi|1/2
exp {(ooo −µµµi)

′ΣΣΣ−1
i (ooo −µµµi)} (2)

with the mean vectorµµµi and the covariance matrixΣΣΣi. The
mixture weights satisfy the constraint

M∑
i=1

ci = 1. (3)

The complete Gaussian mixture density model is parameterized
by the mean vectors, the covariance matrices and the mixture
weights from all component densities. These parameters are
collectively represented by the notation

λ = {ci,µµµi,ΣΣΣi}, i = 1, . . . , M. (4)

3. Speaker verification procedures
The goal of speaker verification systems is to determine whether
a given utterance is produced by the claimed speaker or not.
This is performed by comparing a score, which reflects the
agreement between the given utterance and the model of the
claimed speaker, with an a priori given threshold. In verification
systems based on GMM the simplest score is the likelihood of
the utterance given the model of the claimed speaker.

Assume that there is a group ofJ reference speakers and
that each speaker is represented by a Gaussian mixture model.
We denote the model of thej-th speaker asρj , j = 1, . . . , J .
Further suppose that a test utteranceO consists ofI feature
vectorsoooi, i = 1, . . . , I. The score reflecting the agreement
between the feature vectoroooi and the speakerj is then repre-
sented by the likelihoodp(oooi|ρj) and is computed according to
the formula (1).

However, such a score is very sensitive to variations in text,
speaking behavior, and recording conditions, especially in the
utterances of impostors. The sensitivity causes wide variations
in scores, and makes the task of the threshold determination a
very difficult one. In order to overcome this sensitivity, the use
of the normalized score based on a background model has been
proposed [2]. The score is then determined as the normalized
log likelihoodp(oooi|ρj , Λ),

p(oooi|ρj , Λ) = log(p(oooi|ρj)) − log(p(oooi|Λ)), (5)

wherep(oooi|Λ) is the likelihood of the background model com-
puted again using the formula (1). In this paper, we use two
background models – one for male speech (Λ1), and the other
for female speech (Λ2). For the normalization only the back-
ground model which is in better conformity with the speech data
is used, i.e.

p(oooi|Λ) = max(p(oooi|Λ1), p(oooi|Λ2)). (6)



Having the log likelihoodp(oooi|ρj , Λ) we can now use sev-
eral procedures for the verification of the whole test utterance.

3.1. Verification based on the log likelihood of the whole ut-
terance

The verification procedure widely used in speaker verification
systems [4] is based on the sum of the particular log likelihoods,
i.e the log likelihood of the whole utterancep(O|ρj , Λ) is com-
puted according to the equation

p(O|ρj , Λ) =
1

I

I∑
i=1

p(oooi|ρj , Λ). (7)

In order to make the sum independent of the length of the ut-
terance, it is divided by the number of feature vectorsI in the
utterance.

The decision whether the speakerj can be accepted as the
speaker of the utteranceO or not is then determined by a com-
parison of thep(O|ρj , Λ) with the thresholdT , i.e. according
to the formula

D =

{
1 if p(O|ρj , Λ) ≥ T

−1 if p(O|ρj , Λ) < T
, (8)

whereD = 1 means “accept the speakerj” andD = −1 means
“reject the speakerj”.

3.2. Verification based on the majority voting rule for single
feature vectors

Since the majority voting rule proved to be a good tool for per-
formance enhancement in our previous speaker identification
experiments [5], we tried to use it also in the verification task.
Therefore we designed a verification procedure that is based on
the majority voting rule.

In that case, first the log likelihood of each feature vector
p(oooi|ρj , Λ) is compared with the threshold to receive the par-
tial decisionsDi, i = 1, . . . , I. The partial decisionDi is com-
puted according to the formula

Di =

{
1 if p(oooi|ρj , Λ) ≥ T

−1 if p(oooi|ρj , Λ) < T
. (9)

Then the partial decisionsDi, i = 1, . . . , I are used to form a
final decisionD. The final decision is computed according to
the formula

D =
I∑

i=1

Di. (10)

The negative value of the decisionD represents the rejection
of the speakerj, and the positive value imply that the speaker
pronounced the test utterance. The zero value signalizes that no
decision can be made.

3.3. Verification based on the majority voting rule for se-
quences of feature vectors

The speaker verification procedures described in Sections 3.1
and 3.2 can be regarded as boundary cases of a general verifica-
tion procedure: in one case we use all feature vectors together in
order to obtain a verification decision, in the other case we use
each feature vector separately. So let us try now to design a gen-
eral procedure that will be able to use also parts larger than one
feature vector but shorter than the whole utterance for speaker
verification.

Denote the sequence ofK successive feature vectors of
the test utterance which starts with the feature vectoroool and
ends with the feature vectoroool+K−1 as Sl. It meansSl =
[oool, oool+1, . . . , oool+K−1], l = 1, . . . , I − K + 1, whereI is the
number of feature vectors in the test utterance. The log likeli-
hood that the sequenceSl was spoken by the speakerj is

p(Sl|ρj , Λ) =
1

K

K−1∑
k=0

p(oool+k|ρj , Λ). (11)

Analogically to the equation (9), the partial decisionD(Sl) for
the sequenceSl is computed according to the formula

D(Sl) =

{
1 if p(Sl|ρj , Λ) ≥ T

−1 if p(Sl|ρj , Λ) < T
. (12)

Now we form the final decision from the partial decisions
D(Sl) according to the formula

D =

I−K+1∑
l=1

D(Sl). (13)

Similarly as in (10), the negative value of the final decision D
corresponds to the rejection of the speakerj, the positive value
denotes the acceptance of the speaker, and the zero value means
no decision.

Note that we get the rule described in Section 3.2 forK = 1
and the rule described in Section 3.1 forK = I.

4. Description of experiments
4.1. Speech data

Utterances from 329 speakers (199 male and 130 female) were
used in our experiments. They were recorded in the same way
as in the UWBS01 corpus [6]. Each speaker read 150 sentences
that were divided into 2 groups: 40 sentences were identical for
all speakers, and the remaining 110 sentences were different for
each speaker. Only the utterances which are identical across
all speakers were used in the experiments. They were divided
into three parts: 20 sentences of each speaker were used for
training of the GMM of the speaker, 10 sentences were used for
the construction of the background model, and 1 sentence was
used for the tests.

4.2. Acoustic modelling

The voice activity detector described in [7] was used for elim-
ination of the non-speech parts of the utterances (both training
and test) before the parametrization. All utterances were resam-
pled to 8 kHz and parametrized using a 25 ms-long Hamming
window with a 15 ms overlap. The feature vectors consist of
energy and 12 mel-frequency cepstral coefficients, i.e. the di-
mension of each feature vector is 13.

The models of the speakers and the background model were
represented by Gaussian mixture models created using the HTK
toolkit. The model of each speaker consists of 32 Gaussian mix-
tures. Two background models were employed, one for female
and the other for male. Each of them consists of 128 Gaussian
mixtures. The number of the trained models and the number
of the Gaussian mixtures per model are given once more in Ta-
ble 1.



Table 1:Overview of the employed models.

Type of model Number of models Number of mixtures

Speaker 329 32
Background 2 128

4.3. Description of tests

In order to find the dependence of the speaker verification per-
formance upon the amount of test data, the number of feature
vectorsI in the test utterances was gradually changed from1 to
Imax. It means that at first only the first feature vector of each
test utterance was used for speaker verification, then first two
feature vectors were used, and so on. The shortest test utterance
consisted of 100 feature vectors, therefore we setImax = 100.
Using the 25ms-long window with the 15ms overlap during
the parametrization (see Section 4.2) the above stated means
that the amount of the test speech data changed from 25ms to
1,025ms.

Further, in order to find the dependence of the speaker ver-
ification performance upon the size of the sequence in (13), the
size of the sequenceK was gradually changed from1 to Kmax.
The maximal size of the sequenceKmax is equal to the ac-
tual valueI, because the size of the sequence cannot exceed the
number of available feature vectors.

The experiments were performed for each possible combi-
nation of the number of the feature vectors and the size of the
sequence, it means that there were 5,050 experiments in total.

Each test consisted of a set of verification trials. In each
trial, a test utterance was verified against each speaker model.
Since we had 329 test utterances and 329 models of speakers,
there were329 · 329 = 108,241 verification trials in one test.
329 of the trials were the trials of the true speaker, the remaining
107,912 trials were impostor trials.

The performance of the tests can be measured by the detec-
tion error trade-off (DET) curve, which shows the value of false
acceptance and the value of false rejection for various operating
points of the verification system. At the point of the DET curve
where the false rejection rate and the false acceptance rate are
equal so-called equal error rate (EER) is defined. The EER val-
ues are used for evaluation of our tests, because EER is more
suitable for the comparison of large amount of tests.

5. Experimental results
The values of EER for all experiments are depicted in Fig. 1.
Each point of the surface of the 3D graph corresponds to one
test. The number of the feature vectors and the size of the se-
quence are given on they andx axes, respectively, and the cor-
responding EER is shown on thez axis. The depicted area has
the triangular shape, because the size of the sequence cannot
exceed the number of the used feature vectors.

Several vertical sections parallel to they axis are depicted
in Fig. 2 as the dependence of EER upon the number of fea-
ture vectors for several sizes of the sequence of feature vectors.
For the sake of clarity, only the sizes 1, 25, 50, 75, and 100
are picked out. We can say after the inspection of the results
in Fig. 2 that more feature vectors causes higher speaker veri-
fication performance. We can see, that the procedures that use
larger sequences have worse performance than the procedures
that use the shorter sequences for the same number of the fea-
ture vectors. The pure majority voting rule (i.e. the size of the
sequence is 1) shows the best performance. This is a different

result than that was achieved in our previous research [1] for
speaker identification, where the best results were achieved us-
ing the procedure based on the sequences of speech segments.
We suppose that the contrast is caused by different units of the
speech signal used in the tests – our previous research dealt with
the phonemes (one phoneme consists of several feature vectors),
whereas the experiments presented in this paper use the feature
vectors. Another reason can be the different number of the mod-
els per speaker – the current experiments employ one model per
speaker, however the previous research exploited a set of the
models for each speaker.

Further, several vertical sections of Fig. 1 parallel to thex
axis are depicted as the dependence of EER upon the size of
the sequence for several numbers of feature vectors in Fig. 3.
For the sake of clarity, only the numbers 1, 25, 50, 75, and 100
are picked out. We can say after the inspection of the results in
Fig. 3 that the higher size of the sequence the lower performance
for any number of the feature vectors. This conclusion supports
the results acquired from Fig. 2, i.e. the pure majority voting
rule outperforms the other verification procedures tested in this
paper.

6. Conclusions
In this paper, three procedures for speaker verification based on
GMM has been described. The procedures differ in the way
in which they use particular feature vectors of the utterance for
verification of the speaker of the whole utterance: one proce-
dure uses the likelihood of the whole utterance, another one
is based on the majority voting rule for single feature vectors,
and the remaining one exploits the majority voting rule for se-
quences of feature vectors. The procedures were tested in the
group of 329 speakers for various amount of speech data. The
achieved results showed quite logically that the more test data
the higher speaker verification performance. However, the pro-
cedure based on the majority voting rule for single feature vec-
tors outperformed the other two. Such a result enables us to say
that the majority voting rule is better for speaker verification
than the procedure based on the log likelihood for the whole ut-
terance which is commonly used in many speaker verification
systems.
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Figure 1:EER’s for all possible combinations of the size of the sequence and the number of feature vectors. The higher EER the darker
color of the surface. Values of EER are given in percents.
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