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Abstract. In this paper, the improvements of the speaker verification
system, which is used at Department of Cybernetics at University of
West Bohemia, are introduced. The paper summarizes our actual pieces
of knowledge in the acoustic modeling domain, in the domain of the
model creation and in the domain of score normalization based on the
universal background models. The constituent components of the state-
of-art verification system were modified or replaced by virtue of the ac-
tual pieces of knowledge. A set of experiments was performed to evaluate
and compare the performance of the improved verification system and
the baseline verification system based on HTK-toolkit. The results prove
that the improved verification system outperforms the baseline system
in both of the reviewed criterions — the equal error rate and the time
consumption.

1 Introduction

The speaker recognition task is being solved for several years at the Department
of Cybernetics. Many experiments with the constituent components of the veri-
fication system were performed since that time. At first, the module designed for
acoustic modeling [5] was tested. Then, the module, which ensures the training
of the model [6] was investigated. Finally, the main verification module, which
evaluates the correspondence of the test data and the target speaker model [7],
was tested. The constituent components were based on techniques, which were
originally designed for the speech recognition [4][8] and they were modified for
the speaker verification purposes.

The components, which are borrowed from the speech recognition systems,
cannot be further modified, because all meaningful possible modification has
been already done. Thus, we have to propose the alternative modules, which are
designed primary for speaker recognition. This allows a better adaptation of the
modules to the speaker recognition task and further improve the performance of
the speaker recognition system.

* The work was supported by the Ministry of Education of the Czech Republic, project
no. MSM 235200004, and by the Grant Agency of the Czech Republic, project
no. 102/05/0278.



This paper introduces the components, which are primary designed for the
speaker recognition task. The baseline verification system based on HTK and the
improved verification system based on new components are introduced in Section
2. The experiments are described in Section 3 and their results are discussed in
Section 4. Finally, a conclusion is given in Section 5.

2 Description of Verification Systems

2.1 Feature Vectors, Acoustic Modelling

The acoustic modeling module has to extract suitable speaker characteristics,
which allow us to distinguish the individual speakers. These characteristics are
further used for the model training and the following verification. Both tested
speaker verification systems are based on the short-time spectral characteristics.
A non-speech events detector is used in both systems, but they differ in the
detector working domain.

Baseline System The baseline features are computed by the HTK-Toolbox.
The features are standard Mel-Frequency Cepstral Coeficients (MFCC) aug-
mented by delta and acceleration coefficients. A preemphasis coefficient is 0.97.
The length (resp. an overlap) of a Hamming window is 25 (resp. 15) millisecond.
A Mel-frequency filter bank contains 25 triangular filters. Then, 13 cepstral co-
efficients, including zero-th (log-energy) coefficient, are computed. 13 delta and
13 acceleration coefficients are added. The final dimension of the feature vector
is 39. A voice activity detector [4] removes non-speech segments from input wave
files, i.e. it works in the time domain.

Improved System The schema of the signal processing module is showed in
Figure 1. It is a modified version of MFCC extended by a voice activity detector.
An input speech signal is preemphasised with the coefficient 0.97. The Hamming
window has 25 millisecond length and 15 millisecond overlap. A power spectrum
is computed by FFT. 25 triangular band filters are set up linearly in the mel-scale
between 200 and 4000 Hz. The logarithms of band-filters outputs are decorrelated
by the discrete cosinus transformation (DCT). The computed cepstrum has 20
coefficients without the zero-th (log-energy) coefficient which is discarded. A
time sequence of the each coefficient is smoothed by a 11 frames long Blackman
window. Then the delta coefficients are added. The final dimension of the feature
vector is 40. A downsampling with factor 3 is applied to the final features for the
reduction amount of data. At the end, frames, which were marked as non-speech
event, are removed. The non-speech event detector estimates the noise level and
the speech level independently in each band. If the estimated speech level is
lower than the estimated noise level then the actual feature vector is marked as
non-speech event and is discarded.
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Fig. 1. Schema of acoustic modeling for improved system.

2.2 Speaker Models

The speaker model, created by the model-training module, has to represent the
training data exactly. Next, a good ability of data generalization is desired,
because the training set is limited. The short-time spectral characteristics are
usually modeled by Gaussian mixture model (GMM) [1]. The baseline system
and the improved system are based on GMM, but they differ in the model
training techniques.

Gaussian Mixture Model A Gaussian mixture density of a feature vector
o given the parameters A is a weighted sum of M component densities, and is
given by the equation

M
plolA) =Y cipi(o), (1)
i=1

where o0 is an N-dimensional random vector, p;(0), ¢ = 1,..., M, are the compo-
nent densities, and ¢;, ¢ = 1,..., M, are the mixture weights. Each component



density is an N-variate Gaussian function of the form

(0) = mywrarg o @ (o — ) 5 o — ) @)

with the mean vector u; and the covariance matrix X;. The mixture weights
satisfy the constraint
M
Z C; = 1. (3)
i=1

The complete Gaussian mixture density model is parameterized by the mean
vectors, the covariance matrices, and the mixture weights from all component
densities. These parameters are collectively represented by the notation

)\:{ci,ui,Z'i}, iZl,...,M. (4)

Baseline System The baseline system used the HT'K-toolbox for GMM train-
ing. This HTK-toolbox was originally designed for the training of Hidden Markov
models (HMM). It can be used for GMM training, because an one-state self-
loop continuous density HMM (Figure 2) is equivalent to a GMM. As mentioned
above, the HTK-toolbox was designed for the speech recognition and its training
procedure (Expectation-Maximization algorithm) is optimized for this purpose.
The model created by this optimized EM algorithm differs from the model cre-
ated by the standard EM algorithm.

Ao

Fig. 2. One-state self-loop CDHMM: Schema of HMM and appropriate output proba-
bility density modeled by GMM.

Improved System We desire a robust model training procedure, which is able
to create the model from a relative small amount of the training data, and a
high precision of the model as well. First condition is fulfilled by the Distance-
based (DB) algorithm [2], but its precision is not quite accurate due to the
interpretation of the clusters as the mixtures of GMM. Thus, the model created
by the DB algorithm was used as the initial condition for the standard EM
algorithm. The combination of the DB algorithm and the EM algorithm results
in a stable, fast, and precious training procedure even for a small amount of the
train data [6].



2.3 Verification Algorithm

The verification algorithm is the same for the baseline verification system and
the improved verification system. The goal of the speaker verification systems
is to determine whether a given utterance is produced by the claimed speaker
or not. This is performed by comparing a score, which reflects the agreement
between the given utterance and the model of the claimed speaker, with an a
priori given threshold. In verification systems based on GMM the simplest score
is the likelihood of the utterance given the model of the claimed speaker.

Assume that there is a group of J reference speakers and that each speaker
is represented by a Gaussian mixture model. We denote the model of the j-th
speaker as p;, j = 1,...,J. Further suppose that a test utterance O consists of
I feature vectors 0;, 7 = 1,...,I. The score reflecting the agreement between the
feature vector o; and the speaker j is then represented by the likelihood p(o;|p;)
and is computed according to the formula (1).

However, such a score is very sensitive to variations in text, speaking be-
havior, and recording conditions, especially in the utterances of impostors. The
sensitivity causes wide variations in scores, and makes the task of the threshold
determination a very difficult one. In order to overcome this sensitivity, the use
of the normalized score based on a background model has been proposed [1].
The score is then determined as the normalized log likelihood p(0;|p;, A),

p(0ilp;, A) = log(p(0ilp;)) — log(p(oi|A)), ()
where p(0;]A) is the likelihood of the background model computed again using
the formula (1).

3 Experimental Setup

3.1 Speech Data

Both verification system were tested on three different databases. An overview
of the databases and their properties is given in Table 1. A detail description
follows.

Table 1. Overview of the databases used for tests.

| [UWB_S01[YOHOI[KING]

Number of speakers 100 138 51
Number of models 100 552 51

Number of test data 100 5,520 | 51
Number of trials 10,000 16,560 | 2,601

A part of the UWB_S01 corpus [3] was used in our experiments. It consists of
speech of 100 speakers (64 male and 36 female). In our experiments, 40 sentences



per speaker were used from close-talking microphone. Further, the utterances
were downsampled to 8 kHz and divided into two parts: 20 utterances of each
speaker were used for the training of the GMMs of the reference speakers, and
one other utterance of each speaker was used for the tests. Further, 2 other
utterances of each speaker were reserved for the training of the background model
for the first half of speakers (the speakers with the indexes 1-50). Each model
was verified with each test utterance, i.e. the total number of the performed
trials was 100 - 100 = 10, 000.

The recordings from the corpus YOHO [9] were used for the next test of the
verification systems. It consists of a speech of 138 speakers. The training data
were recorded in 4 sessions and each was modeled independently, i.e. 138-4 = 552
models were created. The test data were recorded in 10 sessions, each of them was
tested independently. 5 other sentences from each train session for the speakers
1-69 were reserved for the background model training. Each model was verified
with all target speaker sessions and 20 impostor sessions, which were randomly
chosen. It means, 552 - 10 4+ 552 - 20 = 16, 560 trials were performed.

Third testing database was the KING[10] database. Only a part of the record-
ings, acquired via the narrow-band microphone, was used in our experiments.
The utterances were divided into two parts: 5 utterances of each speaker were
used for the training of the GMMs of the reference speakers and one other utter-
ance of each speaker was used for the tests. Further, one other utterance of each
speaker was reserved for the training of the background model for the first half of
speakers (the speakers with the indexes 1-25). Each model was verified with each
test utterance, i.e. the total number of the performed trials was 51 - 51 = 2, 601.

3.2 Description of Experiments

The tests of the performance and the time consumption were measured for the
baseline verification system and for the improved verification system. Both cri-
teria were tested on the three above specified databases. The performance of
the systems was measured by the equal error rate (EER). The measured time
represents the duration of all steps, which are necessary to evaluate all of the
specified trials: the acoustic modeling of the train data, the test data, and the
background model data; the training of the speaker models and the background
model; the verification procedure.

The number of the mixtures was set to 32 for all speaker models and to
256 for the background models. These settings were common for all performed
experiments. The training procedures are described in Section 2.2. The number
of re-estimations was set to 9 in case of the baseline verification system and to
16 in case of the improved verification system [6].

4 Experimental Results

In Table 2, the performance of both systems are presented for the above men-
tioned databases. The first column identifies the name of the database, second



column contains EER values of the baseline verification system and the last col-
umn contains the results of the improved verification system. It can be seen from
Table 2 that the improved verification system outperforms the baseline system
in all tested databases.

Table 2. Overview of the EER for various databases for both systems

| Corpus |HTK—based baseline System|Improved System|

UWB_.S01 1.00% 0.97%
YOHO 1.83% 1.72%
KING 16.20% 13.46%

The time consumed in the experiments is presented in Table 3. The structure
of the table is the same as in case of Table 2, but the duration of the tests is
showed instead of the EER values. The time data are in hh:mm format. We can
say after the inspection of the results in Table 3 that the improved verification
system needs significantly less time to perform the speaker verification than the
baseline verification system based on the HTK-toolbox. The time savings are
mainly in the model training module [6].

Table 3. Overview of the consumed time for various databases for both systems

| Corpus |HTK—based baseline Systemllmproved Systeml

UWB_S01 9:19 0:17
YOHO 23:17 1:08
KING 6:17 0:16

5 Conclusion

In this paper, an improved verification system was introduced. This system con-
sists of the modules primary designed for the speaker recognition, i.e. it does not
use modified components, which were originally designed for speech recognition.
At first, the acoustic modeling module, which incorporates the non-speech events
detector, was presented. Then, a model training module, which is capable of a
fast model creation even from a relative small amount of the training data, was
described. The proposed improved verification system was compared with our
baseline verification system based on the HTK-toolbox. Three databases were
used to evaluate the performance of both systems. The results show that the
improved system need less time to perform the verification than the baseline
system. Furthermore, the performance of the improved system is better than
the performance of the baseline system. It can be said, that the proposed system
based on the new modules outperforms of the baseline system.
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