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Abstract

The present paper deals with the evaluation of large–

scale listening tests and with the detection of unaccount-

able or unreliable answers for each listener. The it-

erative maximum likelihood estimation scheme is pro-

posed and its abilities are demonstrated and discussed

on data collected from a large-scale listening test which

was carried out with the aim to collect reference mate-

rial capturing human perception of similarity of supraseg-

mental speech units.

1. Introduction

In the field of text-to-speech synthesis, listening tests are

still essentially the only means of synthetic speech qual-

ity evaluation. The wide range of tests, evaluation intel-

ligibility or naturalness (or overall quality) are either for-

mally standardised or de-facto considered as standards

[1, 2, 3]. However, the present paper will focus on the

general aspects related to purpose-specific listening tests,

designed with the aim to collect data on which the esti-

mate of humans’ behaviour can be established [4, 5], as

there is no general nor standardised methodology pro-

posed for such kind of tests. Although the paper does not

deliver definite conception or “standard”, since wider

consensus is necessary, it raises some questions which,

we believe, should be taken into consideration. They

are mostly connected with the reliability of data col-

lected from a wider range of test participants (listeners),

and with the possibilities of detecting unaccountable an-

swers caused either non-intentionally by task ambiguity,

misunderstanding or by mistake, or worse, by partici-

pants’ sloppiness or even cheating. The problems are

illustrated on a real listening test aimed to qualify the

initial concept of how the dissimilarity of the different

spoken variants of prosodic words is perceived by hu-

mans, described in detail in [5].

2. Similarity Perception Listening Test

When attempting to find a measure (on the acoustics sig-

nal) of two prosodic patterns which would provide a suf-

ficiently solid estimate of how the similarity of the pat-

terns is perceived by humans, we need to have a reliable

model of such human perception. Due to the variabil-

ity in both human speech production and perception, it

is preferable to have a reliable estimate of unmeasurable

true reality, i.e. how similarly the patterns are perceived

by humans, and to relate measures on signal to that esti-

mate (as described in [5]), although the building of such

an estimate needs to be based on a robust dataset. The

opposite approach (i.e. defining a measure which de-

termines an ordering of prosodic patterns with respect

to their perceived similarity estimated by the measure,

and then to let listeners check how the ordering matches

their opinions regarding the similarity) is much less ef-

fective due to the need of re-checking the reliability of

the similarity estimate every time a new measure is de-

signed, even if each particular test could, theoretically,

be smaller in scale.

To obtain the estimate mentioned, we have designed

a large–scale listening test to collect the dataset of how

the dissimilarity/similarity of prosodic patterns, embod-

ied by two spoken variants of the same word1, is per-

ceived by humans. The test consisted of 780 stimuli

created by pairwise–combining all variants for each of

the 17 words. The signals of the words were obtained

from a female corpus recorded for our TTS system AR-

TIC [6], each word cut on boundaries given by auto-

matic segmentation, manually checked and faded in and

out to suppress the influence of surrounding words. The

listening tests themselves were organised on the client–

server basis, using specially developed web application,

and due to quite a large size of the test, the participation

1To be precise, prosodic words were used in the test. However,

from the point of view of this paper, the two terms may arbitrarily be

exchanged, and thus, for simplicity the term word will be used.



(and correct finishing) was financially rewarded. Stu-

dents from all faculties of our university were addressed

by show–cards and students’ information web, so virtu-

ally any student was able to take part in the test. Never-

theless, only 63 participants finished the tests (accounts

of others were closed in the test application when they

were not active for several days).

Before each participant started the test, he/she had

been familiarised in detail with the purposes of the tests

[5] as well as with his/her task – to judge the feeling of

the dissimilarity2 of two versions of a word, using one

of the following levels

• clearly dissimilar – clear after the very first listen-

ing,

• dissimilar – quite close but still recognisably not

the same,

• quite similar/indistinguishable – being very close

even if differing after careful listening, or not recog-

nisable at all.

For each word pair, the dissimilarity was requested to be

evaluated on all of the following categories (resulting in

4 values)

• timing – meaning how much the words differ in

rhythm, if there are differences (and how large) in

shortening or lengthening in different parts of the

words,

• intonation – the level of differences in the melody

of words, various intonation peaks or valleys within

words or melody tendencies spanning the words

(e.g. rising contra falling), or differences in stress

and/or accent (but not differences in overall pitch

level),

• voice colour + pitch level – the level of difference

in voice colour and/or overall pitch level as such,

regardless of other aspects (especially melody),

• overall feeling – the level of difference of words

as such, on all the qualitative levels on which the

acoustics is perceived and a difference can be felt.

It should capture a “factor X” (e.g. pronuncia-

tion) causing words to sound different while all

the previous factors do not differ very much.

8 examples of exemplary evaluations for all the aspects

were presented for listening, aiming to delimit a notion

of individual categories. The participants were, how-

ever, urged to rely on their own feeling, as following in-

structions too strictly is likely to devalue the “objective-

ness” expected to emerge from the range of subjective

2The reasons why not similarity, but dissimilarity was evaluated are

discussed in [5]. For the purposes of this paper it does not matter if the

statistical processing described further is applied to data representing

similarity, dissimilarity, phrase break occurrences or any other subject

to which a listening test is focused on.

judgement.The categories were chosen on the basis of

the listening test data analysis before the test was started,

as well as our intuitive reasoning, and they are aimed

at the study of the dissimilarity relations/prominences

of distinctive prosodic constituents. Moreover, the vari-

ants of a prosodic word in all test queries were presented

in the order AB to one half of the listeners, and in or-

der BA to the other half (the ordering was selected at

random), to study dissimilarity asymmetry [5], and to

minimise its effect when all data are used for further

processing. Nevertheless, such analyses are beyond the

scope of this paper.

One of the check mechanisms employed to help with

participants’ reliability detection was the repetition of 15

queries randomly placed through the test, aiming to ex-

pose participants not self-consistent (i.e. using clearly

dissimilar and quite similar evaluations for the same

word pair). In addition, we have identified our expec-

tations on 103 queries selected randomly, but instead

of choosing one of defined dissimilarity levels, a likeli-

hood of evaluation was assigned to each level, as there is

no guarantee that our opinions, although possibly more

qualified, represent the truth (why we did so will be

more clear from the discussion at the end of Section 3).

Although the evaluations not passing either of check mech-

anisms can be penalised or excluded directly, it leads,

however, to the reduction of responses set and thus of

statistical relevance of the dataset. And even if the par-

ticular participants were asked to review the whole test

(which should, due to the sheer scale of the test, be paid

again, making the test more expensive), we are still not

able to conclude anything about the reliability of the an-

swers in any other queries except those repeated and ref-

erence – there may remain many unaccountable answers

through the test unknown.

The need to make the evaluations as robust as possi-

ble (the attempt to find acoustic correlates to an estimate

of (dis)similarity based on unreliable evaluations is sim-

ply not supposed to be very successful), requires to de-

tect unaccountable answers all through the test and make

the particular participants review them. It becomes even

more important when the reliability of cross-participant

agreement computed by means of Fleiss’ kappa [7] is

only 0.21, which does reject the null hypothesis that

observed agreement is accidental on significance level

0.05, but does not make the agreement strong enough

to be used as a solid basis for finding definite acoustic

correlates3.

3Although one of interpretations may be that there is no paradigm

of speech similarity perception on which humans would agreed, we

expect that such a small score is caused by the large scale of the test

together with the fact that participation was rewarded no matter the

result. For the revision discussed in Section 4, we prepare motivation

scheme significantly advantaging participants on the basis the pass of



3. Algorithm for Statistical Evaluation

If we have no a priori notion of the nature of the evalu-

ated listening test, or we deliberately intend not to have

one, the intuitive principle of majority is usually used

to determine the most prominent answer for a test query

(or relative prominence of all answers can be taken into

account, if preferable). For further reading, let us sup-

pose that each query can have assigned one k ∈ K an-

swer by each listener, where k = 1, . . . , l is an index-

ing of l possible answers (evaluations) which a listener

is allowed to assign to each query. Imagine now the

case when for a given test query evaluated by m partic-

ipants, the relative prominence is rk ≈ 1/m, ∀k ∈ K
or more generally, the relative prominence of some an-

swers is rk ≈ rx, k ∈ K, x ∈ K, K ⊂ K and

rk > ry , y ∈ (K − K). Although we may still be

able to determine the answer with prominence slightly

higher than the others, or we can choose randomly if

several prominences are equally the best, how can we

be sure that the chosen answer is the right one? What

if there are a significant number of participants (not ma-

jority, though) who tended to choose an unaccountable

answer for the query (no matter if due to task ambiguity,

misunderstanding, or by mistake), causing the increase

in the prominence of that answer?

Therefore, to reduce the impact of extraordinarily bi-

ased answers, the adjusted maximum likelihood estima-

tion has been employed for the first time in [4] to process

listening test responses focused on the phrase boundary

detection problem. Since in the paper the algorithm is

described for dichotomy only (the phrase boundary may

be perceived or not), and dim(K) = 3 in our case, let

us describe the algorithm in the very general case.

Formally, let the sequence of listening tests queries

X represent the (discrete) states of a random process de-

fined as

X = {Xt : t ∈ T } (1)

where T = {1, . . . , n} is an ordinal numbering of n
queries in listening tests, and each Xt is a random vari-

able holding exactly one of the K possible answers for

each query. Let us note that Xt are not observable, and

in the case of listening tests they are also independent

∀t (queries are usually arbitrarily ordered, not related to

each other).

Be then the m test participants numbered by the set

J = {1, . . . , m}. We can now define m (discrete) ran-

dom processes O(1), . . . , O(m) representing the partic-

ipants’ responses (observations of the random process

check mechanisms employed and the agreement with the most proba-

ble estimates described in Section 3.

X) such that

O(j) =
{

O
(j)
t : t ∈ T

}

(2)

where O
(j)
t are random variables, holding also exactly

one of the K possible answers assigned by a jth partic-

ipant for tth query.

The aim can now be formulated as follows: knowing

the observations O(1), . . . , O(m) (responses for particu-

lar queries in the listening tests from each participant),

we want to estimate the hidden sequence of states of the

process X which best satisfies the given observations

(standard maximum likelihood estimation)

X⋆ = argmax
X

P (X |O) (3)

As we do not know (or intentionally pretend not to

know) anything about the relevance of evaluations from

individual users, ∀o ∈ K and ∀x ∈ K we can define the

probability

P (O = o|X = x) = po,x (4)
∑

∀o

po,x = 1 (5)

expressing the expected likelihood of any participant’s

ability to correctly identify the hidden state of process

o = x, and the likelihood of miss if o 6= x (all combi-

nations giving confusion matrix). Although the proba-

bilities are initialised equally for all participants (based

on the nature of the tests), the iterative training pro-

cess described further is going to discriminate them for

each participant independently (based on the ability to

agree/disagree with the evaluation of other participants).

We can also define the probability of individual states

of the process X

P (X = x) = px (6)
∑

∀x

px = 1 (7)

whereby it is desirable, as discussed in [4], not to make

any strong a priori assumptions about the process and

its distribution. By obeying the principle of Occam’s

razor, let us presuppose that X is a stationary process

with the uniform probability distribution px = py∀x ∈
K, and y ∈ K .

Given the definitions (3)–(7) and the assumption about

the mutual independence of Xt, naı̈ve Bayes model [8]

can be used to estimate P (Xt|O) for each t indepen-

dently

P (Xt = x|Ot) =

∏

j∈J P (O
(j)
t |Xt = x)P (Xt = x)

P (Ot)
(8)



where P (Ot) can be ignored (and usually is), since it is

not a function of x and thus it does not affect the relative

values of probabilities for any x. We, however, “nor-

malise” the values given by (8) so that ∀x, ∀t the pro-

portions among P (Xt = x|Ot) would stay preserved,

but
∑

x∈K P (Xt = x|Ot) = 1; the normalised values

are then used as resulting P (Xt = x|Ot).
To maximise P (X |O), we employed the iterative

procedure which can be considered to be EM algorithm

simplified to suit the needs of the described problem. In

each step, Equation (8) is computed using the current

estimates of Equation (4) and (6). Informally said, on

the basis of the likelihood for the individual participant’s

ability to identify or miss the hidden state of process X ,

the probabilities of individual states are estimated ∀t. As

in the very first step, equal likelihoods are used for all

participants, the most probable state is the one with the

highest inter-participant agreement (the highest number

of P (Ot = o|Xt = x) where x = o, are multiplied).

Then the likelihoods (4) and (6) are recalculated for each

participant and state independently ∀j ∈ J , ∀o ∈ K and

∀x ∈ K

P (O(j) = o|X = x) =

∑

t∈T P (Xt = x|Ot = o)
∑

t∈T P (Xt = x|Ot)

(9)

P (X = x) =

∑

t∈T P (Xt = x|Ot)

dim(T )
(10)

obtaining new likelihoods of participant identification

abilities as well as process state probabilities, now based

on given observations. In this step, the corresponding

probabilities of miss are increased (and probabilities of

correct identification are lowered) for all those partic-

ipants whose responses differ from the most probable

states estimated by Equation (8), and the other way round.

Let us note that the described process converges to a lo-

cal maximum, and hence the initial parameters are rec-

ommended to be chosen reasonably and perturbed in

more experiments.

Although such treatment allows us to detect consis-

tent misses (answering o ∈ K in majority of cases when

most of others answered p ∈ K, o 6= p) for each partic-

ipant, manifested in higher probability of miss in Equa-

tion (4), the results must still be interpreted with care

– all the probabilities are estimated according to cross-

participant agreement, not knowing anything about a “real”

state of process X , as we defined it.

In reality, we must always presume that a number of

participants will tend to place unaccountable answers,

and the question now is how to detect such answers. If

we have reference evaluations of queries subset T ⊂ T
at our disposal, we can force them in each iteration to

P (Xt|Ot), ∀t ∈ T instead of original values computed

by Equation (8). In this way, when computing Equa-

tion (4) the probabilities of correct identification will be

lowered for all users with evaluations differing from the

reference. Although it relaxes our intention not to make

any strong a priori assumptions about the process X , the

intention was already relaxed by the definition of the ex-

pectations in check point queries. Still, we must be care-

ful. The more knowledge about process X we force into

Equation (8), the more the process will be pushed to that

knowledge – it negates the sense of an “objectiveness”

emerging a from wide range of subjective opinions.

4. Evaluation of Dissimilarity Perception

To evaluate the results of listening tests, described in

Section 2, by means of the proposed algorithm, we ini-

tialised the confusion matrix of all participants to

P (O(j)|X) =







0.5 0.3 0.15

0.35 0.4 0.35

0.15 0.3 0.5






∀j ∈ J

(11)

being quite benevolent in exchanging quite similar/undistingu-

able with dissimilar and clearly dissimilar with dissimi-

lar (and the other way round). As we really know noth-

ing about dissimilarities distribution in the test set (all

word pairs have the same initial probability of being

clearly dissimilar, dissimilar or similar/indistinguishable),

the probabilities P (X) were initialised to

P (X = x) = 1/3 ∀x ∈ K (12)

The evaluations for each aspect were processed sepa-

rately, to avoid the interfusing of confusion matrixes P (O(j)|X)
– each listener can rather consistently make some kind

of characteristic errors which may, however, differ for

individual aspects.

As the first part, the summary of differences between

reference evaluations of the 103 queries and X⋆ obtained

by majority agreement and the proposed maximum like-

lihood estimation is presented. In Table 1, the number

of queries matching the reference answer x (the one with

the highest likelihood assigned by us) are shown when

determined by simple majority agreement, by X⋆ from

the proposed estimation scheme and by X⋆ the proposed

estimation with the reference likelihoods forced into Equa-

tion (8), as described at the end of Section 3.

It can be seen that even the estimation not taking ref-

erence data into account (i.e. nothing is known about an

expected evaluation at all) is usually able to provide a

better match to the expectation x⋆ = x, while the num-

ber of x⋆ = x in cases when a majority of participants

have chosen o 6= x is referred in Table 1 as ↑X. This



Table 1: The comparison of results obtained by majority

agreement, the proposed estimation method and the es-

timation method with reference evaluations forced into

Equation (8). Columns represent how many answers

match, how many differ by one dissimilarity evaluation

level and how many by two levels.

overall dissim. match 1 level 2 levels

majority 51 1↓ 3� 50 2

estimation 59 ↑9 41 3

estim+refer. 61 ↑5 ⇈13 40 2

tempo dissim. match 1 level 2 levels

majority 74 9↓ 10� 25 4

estimation 74 ↑9 28 1

estim+refer. 76 ↑3 ⇈12 25 2

melody dissim. match 1 level 2 levels

majority 51 14↓ 14� 50 2

estimation 71 ↑34 32 0

estim+refer. 72 ↑1 ⇈35 31 0

colour/pitch match 1 level 2 levels

majority 62 8↓ 11� 39 2

estimation 66 ↑12 36 1

estim+refer. 66 ↑3 ⇈15 35 2

is due to the fact that a sufficient number of listeners

with higher reliability P (O = o|X = x) of determining

a dissimilarity level o = x⋆, x = x⋆ (from the point

of view of the algorithm) have really chosen that level,

even when the majority of listeners with lower reliabil-

ity have chosen a different answer. On the other hand,

one must realise that the same principle may lead to the

choice of answer x⋆ 6= x, even when a majority of lis-

teners have really chosen o = x (in Table 1 referred to as

X↓) – it is a natural cause of the fact that the estimation

process relies only on given cross-listener agreements,

as discussed in Section 3. When the probabilities of ex-

pectations assigned to reference queries were enforced

into the estimation procedure, the number of x⋆ equal to

x was, es expected, even higher. The cause, again, is that

the likelihood of answering o = x was slightly increased

for participants answering in that way. The answers

of such participants were, therefore, able to outweigh

the majority answers, if they differed (referred as ↑X

when compared to estimation unaffected by reference

data, and as ⇈X when compared to majority). However,

there are still queries with x⋆ 6= x. The reason, once

again, is that there are participants with high reliability

of their answers (possibly also increased by answering

x in other queries), whereby their answers differ from

x. Despite the increase in match, there are still queries

with x⋆ different by two levels (e.g. x = quite similar

and x⋆ = clearly different). Since they again occurred

by the agreement of highly reliable participants (from

the point of view of the algorithm), the evaluations of

such participants must be further analysed in depth. Let

us also stress that nothing more can be concluded about

the other (non–reference) queries, except the assump-

tion that X⋆ determined for those queries is likely to be

closer to what we feel to be the expected evaluation.

Contrary to [4], where the aim was to obtain X⋆ best

satisfying the given evaluations, in our work the con-

crete dissimilarity evaluations of each individual partic-

ipant for each individual query is used to build a dissim-

ilarity matrix in [5]. However, as the scale of the test

is quite large, we can expect the occurrences of unac-

countable evaluations which may unpredictably bias the

estimates of perceived dissimilarities and thus to signif-

icantly distort the conclusions. Therefore, the issue now

is to somehow detect the queries with the unaccountable

evaluations individually for each participant, and make

these participants review their answers on such queries

(providing them with more examples about consistent

misevaluations obtained from the reference data) – the

revaluation of the whole test set by all participants is vir-

tually impossible, due to the sheer scale of the test. The

simplest approach may be to make all listeners reassess

only their queries differing from X⋆. This is neither

ideal (still results in huge number of queries to reassess)

nor required (X⋆ evaluations can directly be used for all

listeners). Instead, it seems to be feasible to take advan-

tage of the values in P (O|X), where the answers of lis-

teners with a high miss likelihood might be expected as

not very reliable – even the increase in match (or in mis-

match) to reference answers is reflected in those values.

Let us, therefore, to review all queries t for participant j
with likelihood of miss

P (O(j) = o|X = x⋆) >E(P (O = o|X = x⋆)) +

+ kσ(P (O = o|X = x⋆)),

o 6= x⋆

(13)

where constant k allows us to make the requirement on

miss more strict, or to alleviate it.

In Table 2, the results for k = 0 and k = 1 are pre-

sented. We have decided to choose k = 1 due to reason-

able average number of review requests, while the par-

ticipants with the highest likelihood of miss are still de-

termined. Unfortunately, the reviews were not finished

at the time of writing, so we cannot present the shift of

the differences of reviewed evaluations to reference data

in contrast to results in Table 1, the shift of Fleiss kappa



Table 2: The comparison of the required number of

queries to review for different k in Equation (13). The

columns represent the average, minimum and maximum

number of requests per participant; partic.no. is the

number of participants who must review at least one

query.

overall dissim. avg. min. max. partic.no.

k = 0 230.0 72 513 62

k = 1 120.1 20 403 37

tempo dissim. avg. min. max. partic.no.

k = 0 179.5 47 338 61

k = 1 90.4 57 321 33

melody dissim. avg. min. max. partic.no.

k = 0 288.7 120 487 63

k = 1 130.5 22 447 41

colour/pitch avg. min. max. partic.no.

k = 0 233.1 56 376 62

k = 1 102.6 75 363 33

value, nor the change of average P (O|X) and its stan-

dard deviation or variance.

5. Conclusion

As the main aim of the paper we have proposed an it-

erative algorithm estimating the most likely evaluations

of listening tests queries, with rigorous maximum likeli-

hood estimation process as the underlying principle. Al-

though there may exist even more powerful means of

ambiguous or even “untrustworthy” data analysis (de-

spite requiring some additional a priori information), we

have attempted to show that the algorithm may be a

well-founded option to the evaluation based on the ex-

pectation that majority agreement among listeners rep-

resents an “objective” truth emerging on the examined

data. On top of that, the algorithm also provides some

means of determining unaccountable evaluations for fur-

ther review. We also plan to use the agreement to the

most likely evaluation estimated as one of motivation

factors determining the amount of financial reward in

the follow-up revision process.
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