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Abstract—This paper describes the method for modifying the
baseline speech recognition system to be suitable for a use in
spoken dialog system with mixed initiative and natural user’s
input. We present three approaches for extending the recognition
vocabulary to ensure the spoken dialog system is able to recognize
all entities in the given domain. The colloquial text normalization
method is proposed. The experiments performed on spontaneous
speech corpus suggested that the proposed method is very
important for languages where the formal written language and
a common colloquial speech are very different. The overall word
error rate was reduced by 16.7%.

Index Terms—speech recognition, language modeling, spoken
dialog system

I. INTRODUCTION

The advances in speech recognition and understanding re-
search allows us to construct a spoken dialog system which is
not constrained with the rules describing the expected behavior
of the user. Nevertheless a large portion of spoken dialog
systems is built using a knowledge based resources such as
(probabilistic) context free grammars or predefined lists of
commands and menus. In [1] Young presented a statistical
framework for building a spoken dialog system without the
need of an expert knowledge. It uses statistical methods
to estimate a robust model of a given domain. This paper
describes the speech recognition system which is built up for
use in such a dialog system.

The described methods allows the adaptation of a widely
used speech recognition systems based on Hidden Markov
models (HMM) and n-gram language models [2] for the use in
a dialog system. The adaptation is necessary because training
the language model only from transcribed data is not sufficient
— there could be entities that are not observed in the training
data and therefore the dialog goals, which can be satisfied by
recognizing these entities, are unreachable. Therefore in the
first part of this paper we explore three methods for extending
the recognition vocabulary and language model to contain such
entities.

The second part deals with a novel approach for recognizing
colloquial speech which is very common in spontaneous dialog
and most closely mirrors dialog. The target language of our di-
alog system is Czech and colloquial Czech substantially differs
from standard Czech due the existence of a phenomenon called
diglossia [3] . Standard Czech is defined by orthographic,
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morphological, lexical and syntactic rules governed by the
Czech language normative bodies and is used in most of Czech
written materials as well as in official public speeches, such as
TV news, in schools etc. Colloquial Czech is used in unoffi-
cial communication, particularly in spontaneous speech. Main
problems of colloquial Czech are: pronunciation variants (as
found in English and many other languages); changes in mor-
phology; the length of vowels can be shortened or prolonged,
depending on the particular word (a distinctive phenomenon
in Czech); endings and prefixes are often changed; differences
in syntax (less common). The described statistical method
converts a sequence of colloquial orthographic words into a
sequence of normalized words together with the increasing
of the recognition performance. Please note that a form used
in colloquial Czech in some context (e.g., a particular case,
gender and number) may be equal to some standard form
in a different context. This makes automatic mapping from
standard forms to colloquial and vice versa in general difficult.

The described methods were experimentally evaluated on
Czech data. The impact on recognition performance is de-
scribed and discussed. Although the methods were developed
for Czech, they are not language specific and can be used for
any language where colloquial speech is different from formal
or where is the need for extending the recognition vocabulary.

II. SPEECH RECOGNITION
A. Acoustic modeling

As a basic speech unit of the recognition system a triphone
is used. Each individual triphone is represented by 3 state left-
to-right HMM with a continuous output probability density
function assigned to each state. Each density is expressed
as a mixture of multivariate Gaussians, where each Gaussian
has a diagonal covariance matrix. Since a variety of noise
sounds, e.g. loud breath, click on the microphone and noise
of a telephone channel can appear in an utterance, a set of
noise HMM was introduced and trained in order to capture
these non-speech events.

The speech data was parameterized as 12-dimensional
PLP cepstral features [4] including their delta and delta-
delta derivatives (resulting into 36-dimensional feature vec-
tors). These features were computed at a rate of 100 frames
per second. Cepstral mean subtraction was applied per



speaker. The resulting triphone-based model was trained using
HTK Toolkit [5]. The number of clustered states and number
of Gaussians mixtures per state was optimized to get high
accuracy and real-time response and had 1500 states and 16
mixtures per state. The state-of-the-art speaker discriminative
training algorithms were employed to further improve the
quality of the acoustic models [6], [7].

B. Decoding

We used a real-time large vocabulary continuous speech rec-
ognizer (LVCSR) to achieve a very high degree of interactivity.
The LVCSR system [8] is based on Hidden Markov Models,
lexical trees and Viterbi search using n-gram language models.

C. Language modelling

The most often used type of stochastic language models
are the n-gram language models which model the probability
of i-th word w; given the last (n — 1) words [9]. The last
(n — 1) words are called the history and we will denote it
by h; = {wi—n+t1, Wi—nt2,...,w;—1}. In this paper we will
also use the term back-off history which is defined as h; =
{wi—n+2, Wi—n+3y -+ - 7wi—1}~

The n-gram language model approximates the probability
P(W) with the product of probabilities with a limited history
of length (n — 1):

N N
P(W) ~ HP(wl|hl) = Hp(wi|wifn+17 ceswi—r) (D)
i=1 i=1
The maximum likelihood estimation of Ppsrg(w;lh;) is
given by the ratio:

C(hs)

where C(h;,w;) is the number of n-gram (h;, w;) occurring
in the training data and C'(h;) is the number of occurrences
of (n — 1)-gram h;. In practice the size of the training
data is limited and therefore the counts C'(h;,w;) are zero
for a large number of n-grams. Therefore the smoothing
techniques are involved. In our experiments we used a back-off
smoothing where the n-gram conditional probability is given
by a recursive equation:

Prrre(wilh;) = )

a(h;, w;) Prrpe(wilhy)
B(hi, w;) P(ws|h;)

C(hi,w;) #0

C(hi,w;) =0 ©)

P(w;lh;) = {

In other words the conditional probability of an unseen
n-gram (h;,w;) is approximated with a back-off conditional
probability of an (n — 1)-gram (h;,w;) and the functions
a(hi,w;) and B(h;,w;) ensures P(w;|h;) to be a valid prob-
ability distribution.

In this work we used the 3-gram back-off language model
and the functions a(h;,w;), B(h;, w;) were determined using
the Witten-Bell discounting scheme described in more detail
in Sec. V-A.

TABLE I
DETAILS OF THE HUMAN-HUMAN TRAIN TIMETABLE CORPUS

# of dialogs 5443

# of turns 76k

User

# of tokens 270k
Normalized vocabulary size 5830

Operator

# of tokens 259k

vocabulary size 3747

User

# of tokens 279k
Orthographic g;f:’zl;:iry size 7737

# of tokens 262k

vocabulary size 4696

III. EXPERIMENTAL DATA

We used a unique Czech human-human train timetable
(HHTT) corpus containing recordings of phone calls to a train
information service [10]. The phone calls consisted of inquiries
regarding train connections such as departure and arrival times,
ticket prices, details on restrictions on hand luggage etc. The
dialog took place between two humans - an operator and
a user. The speech was spontaneous and unformal. The corpus
is comprised of a recorded speech of both the operator and the
user in single channel recordings. In total the corpus consists
of 5443 dialogs (74k turns). Each turn starts with a speaker
change. The corpus statistics are summarized in Tab. I.

The dialogs were manually processed and the orthographic
transcription and normalized transcription were assigned. The
orthographic transcription also contains non-speech events
such as inhale, hesitation and noise. In addition a semantic
annotation process was performed and each turn assigned an
abstract semantic tree representing the meaning of the sen-
tence.

Only the user’s turns were used for the language modelling
and speech recognition. The corpus was divided into train
(72% dialogs, 209k normalized tokens, 28k turns), develop-
ment (8%, 3742 normalized tokens, 775 turns, 23 minutes
of speech) and test data (20%, 9629 normalized tokens,
2073 turns, 56 minutes of speech). Overlapping turns in the
development and test data were tagged and left out from
further speech recognition experiments. Speaker overlaps in
the training data are not taken into account since the training
data are used only for language modelling. The recognizer pa-
rameters (word insertion penalty and language model weight)
were optimized on the development data.

IV. BASELINE EXPERIMENT

Two baseline systems consist of an acoustic model described
in Sec. II-A and a 3-gram back-off language model with
Witten-Bell discounting trained from normalized respective
orthographic transcriptions and evaluated on the corresponding
test data.

We used standard correctness (Corr) and word error rate
(W E R) measures [5] defined as:



TABLE II
BASELINE ASR RESULTS

Transcription VI | PP | OOV [%] | Corr [%] | WER [%]
Normalized 5127 | 44.3 1.19 67.74 37.79
Orthographic 6768 | 57.2 1.62 69.94 34.63
H
Corr = N 100% 4)
S+D+1
WER = N 100% (®)]

where N is the total number of words in reference transcript,
H is the number of correctly recognized words, S, D, [
denotes the number of substitution, deletion and insertion
errors. In addition we evaluated perplexity (PP) and out-of-
vocabulary rate (OOV) [11] of the language model evaluated
on the development data:

PP =2 wlog P(W) (©6)
10
OOV = = - 100% (7)

where P(W) is a language probability assigned by a language
model and O is the number of tokens in the development data
which are not included in the recognition vocabulary V' [11].
We also present the size of the recognition vocabulary (|V|)
since this parameter also influences the recognition perfor-
mance.

Table II shows the results of a baseline system trained from
orthographic and normalized transcriptions. The performance
of the normalized language model evaluated on the normal-
ized data is worse than the performance of an orthographic
language model evaluated on orthographic transcriptions. We
suppose that the orthographic vocabulary better models the
colloquial speech which can be found in the test data.

In addition the rather small vocabulary of the baseline
system does not include all the words necessary to successfully
understand the sentence and correctly satisfy the goal of
the dialog. Therefore we have explored three methods for
adding new words into a recognition vocabulary (Sec. V). In
addition our analysis of the results of an orthographic-based
recognition system shows that there are many recognition
errors caused by the substitution of one orthographic word
with a similar word and both of them can be mapped to one
normalized word (eg. prosi and prosim and corresponding nor-
malized word prosim, lit. please). To remove these ambiguities
and improve an overall performance we designed a method for
colloquial text normalization (Sec. VI).

V. EXTENDED RECOGNITION VOCABULARY

The intended used of the described ASR system is a spoken
dialog system. The very common need in this application of
speech recognition is to extend a language model with new
words which represents entities generated from some list or
from a database. The domain of the described ASR system

is an information service providing the times of departure
and arrival for trains in the Czech Republic. Therefore there
is a need to recognize all the names of railway stations in the
country. In the Czech Republic there are about 2800 railway
stations with the name mainly in the form of the name of
the city (eg. Klatovy) or composed by the name of a city
and a district (eg. Plzeri-Koterov). Sometimes the name of the
station is composed of the name of the city and the name
of the station (eg. Praha-Masarykovo nddraZi). The name of
the station can be shortened and often occurs in a colloquial
form (eg. Masarykovo nddraZi, Masarykdc¢). In addition the
station name can be in four different grammatical cases:
nominative, genitive, accusative, locative. Note that Czech
has seven cases and in general the case is not determined by
the word form but also by its context (e.g. by the preposition).

Because the training data for the language model was

collected only in one regional call center, the distribution
of station names is different from the general distribution of
these names in a language. There are many out-of-vocabulary
words because many destinations are not mentioned in a finite
number of dialogs. To cover the whole domain of the dialog
we developed a set of rules which takes the station name
in nominative and generates shortened and colloquial forms
in all four cases. Although the names of railway stations are
unique within a whole country, the shortened and colloquial
forms generally are not. The generated lists of station names
in a given grammatical case were used to enrich the recog-
nition vocabulary and the language model. We have explored
three methods:

e Using a discounting method for assigning a non-zero
probability to the new words.

o Estimating an open vocabulary language model (LM
which models the probability of unseen word) and dis-
tributing the probability mass of the unseen word between
the new words.

o Training a class-based language model and estimating the
class member probabilities.

While the first method only modifies the recognition vocabu-
lary and a unigram conditional probability, the last two meth-
ods also take a history of an n-gram into account and modifies
both the trigram and the bigram conditional probabilities.

A. Discounted language model

The basic and straightforward method for adding new
words into the vocabulary of the language model is the use
of smoothing method for assigning a non-zero probability to an
unseen event — in this case to a new word. We use the Witten-
Bell discounting scheme [12]. This smoothing method employs
the number ¢(h) which equals to the number of different words
following the history /. The smoothed probability of the word
w; given its history h; is then given by:

C(h;,w;) 4 4
P ) h _ m B C(hl7w7,) > 0
(wz| ’L) - c(hi) . P(wilhi) _ C(h ’LU) —0
C(hi)+c(hi) Zwesi P(w|h:) iy Wy
()



where the set S; = {w : C(h;,w) = 0} is the set of words
with the history h; not occurring in the training data and the
generalized distribution P(w;|h;) is a probability of word w;
given the shortened history h;.

The principle of this method is to smooth the unigram
probability of the word P(w;) so that the probability of
a new word is non-zero. Define the set of new words V'
and the original recognition vocabulary V. We suppose that
VNV’ = (. Therefore P(w;) = 0 for every w, € V'.
Using the general Witten-Bell equation (Eq. 8) for the unigram
probability P(w;) (the history h; = (}) we can derive the
smoothed unigram probability P’(w;):

C(w;) )
P'(w.) — J ITI+IV] wi €V 9)
v 1 vl eV
v v Wi €

where |T| is the number of tokens (running words) in the
training data.

B. Open vocabulary language model

This method for adding new words to the recognition
vocabulary uses an open vocabulary language model. This type
of model uses a special symbol for modelling the unknown
previously unseen words. In this paper we will use the unk
symbol representing an unknown word [11]. The main issue of
this method is the definition of unknown words to ensure their
occurrence in the training data. This can be achieved by using
a vocabulary which is not a superset of training data. One
of the possible approaches uses a vocabulary estimated from
an independent data set and then uses it during the language
modelling from the training data set and marks all words
outside this vocabulary as unknown words. Another approach
limits the vocabulary estimated from training data so that only
words occurring more than k-times (k > 1) are included
in the vocabulary. Words with unigram counts C'(w) < k are
marked as unknown words.

With respect to the size of development data we decided to
use the second approach with k£ = 1. The procedure for adding
new words then consists of marking all singleton words (words
occurring just once in the training data) as unknown words and
replacing them with the unk symbol. Then the singleton words
are added into a set of new words V' (again V NV’ = ().
The probability P(w;|h;) for w; # unk,w; € V stays
unchanged and the probability mass of the unk symbol is
uniformly distributed between the words in V' given the
P(w}|unk),w} € V'

1
P(wl|hi) =

(wl| ) ‘V/|

This definition of an extended vocabulary and language
model also models the probability of a new word given its
history h;.

- P(unk|h;),w; € V' (10)

C. Class-based language model

This method is based on an expert knowledge — the known
structure of a given entity in the language. In our experiments

TABLE III
DEFINITION OF CLASSES

Class Cn(er) | Colek) lck| | Prep. Gr. case
c_the 2106 2064 4348 - nominative
c_from 2988 2929 | 12132 | z, ze genitive
c_to 3816 3704 6066 do genitive
c_toward 761 749 4946 na accusative
c_in 1302 1232 12390 | v, ve locative

Cn (ck) and Co(ck) denotes the number of occurrences of class cy, in the
normalized transcription data respectively in the orthographic transcription
data. The number of members of class cy, is represented by |cy|. The column
Prep. contains the assigned preposition and Gr. case contains the grammar
case of the given members.

these knowledge is represented by the list of known station
names and their variants.

Since the training data consists of orthographic or normal-
ized transcriptions, we have to detect the class occurrences in
the data. This is ensured by an algorithm which takes the list
of members of the given class and replaces it with a class
identifier. To avoid class definition with overlapping members
we also included the preposition associated with a given
grammar case. The definition of classes is summarized in Tab.
III. The class members can consist of more than one word
therefore the replacement rules are applied with the priority
determined by the number of words the rule replaces. For
example the rule do Susice — c_to is applied before the rule
Susice — c_the because the former replaces two words and
the latter only one word.

After replacing the occurrences of class members with the
class identifiers the standard 3-gram back-off language model
is trained. Then during the recognition the class members
are used instead of the class identifier and the probability
of the i-th member m;j, of class ¢ is given by the distribution
P(mq;k|ck) [13]

(1)

where P(cg|h;) is a n-gram conditional probability of a class
occurring in a context h;. The probability distribution
P(mjx|cx) cannot be estimated from data because only small
portion of class members occurs in the training data (see
columns C'y(¢x) and Co(ck) in comparison with |cg| in Tab.
III). Since the class members are related to railway station
names and these names are related to the names of towns we
used the number of citizens of the nearest town to weight the
members of the same class — the stations in cities with higher
number of citizens gains higher probability than the stations
in smaller towns. The probability distribution P(m|ci) was
heuristically determined to minimize the perplexity of the lan-
guage model on the development data. In our experiments we
use:

P(m1k|hl) = P(m1k|ck)P(0k|h1)

z(4)
Zj Vz(j)
where z(i) denotes the number of citizens of the town which
is the nearest to the railway station represented by words mj.

P(mirler) = (12)



TABLE IV
EXTENDED VOCABULARY ASR RESULTS

Method [ V]
Normalized transcriptions

[ PP OOV [ Corr | WER

Discounted LM 11595 | 45.6 1.01 | 66.63 38.01
Open vocabulary LM 11595 | 46.9 1.01 | 67.11 37.89
Class-based LM 11595 | 54.0 1.01 | 65.49 39.81
Open vocabulary, V/ = () 2595 | 41.8 1.81 | 67.01 37.95
Orthographic transcriptions

Discounted LM 13211 | 56.5 1.43 | 68.88 35.02
Open vocabulary LM 13211 | 58.8 1.43 | 70.59 34.40
Class-based LM 13211 | 65.7 143 | 68.61 36.09
Open vocabulary, V' = 3197 | 50.7 241 | 68.33 35.49

D. Results

The results of the three described methods are shown
in Tab. IV. The ASR systems with modified language model
were evaluated on both the normalized and orthographic
transcriptions. In general the results of normalized language
model are worse then the results of orthographic language
model although the sizes of recognition vocabulary, the
out-of-vocabulary rates and perplexities are larger. This con-
clusion follows the results of the baseline experiment described
in Sec. IV. The language model with the open vocabulary
has a slightly better performance than the language model
based only on discounting, and the open vocabulary language
model’s performance is comparable or rather better than the
baseline despite the much larger vocabulary. The enriched
vocabulary is approximately more than twice as large as the
baseline vocabulary.

Note that the language model based on classes has the worse
performance of the presented methods. Its performance is also
significantly lower than the baseline. This is caused by the
effect described in Sec. V — the corpus used in evaluation (both
the training and test data) was collected in one regional call
center. Since the first two methods only add new words into
the recognition vocabulary, the probability of known words
remaining unchanged is high allowing the corresponding lan-
guage model to better predict words during recognition.

The class-based language model changes also the probabil-
ities of known words (class members) according the Eq. 12.
It is also shown in the column PP of Tab. IV. The perplexity
of class-based language model is significantly higher than the
perplexity of the other two methods. The effect of class-based
language model could be evaluated on a data with a “global”
distribution of station names. This data will be collected during
the operation of the spoken dialog system. The adaptation to
a new class member distribution is possible only in the class-
based language model.

VI. COLLOQUIAL TEXT NORMALIZATION

The result from the baseline experiment described in Sec.
IV is that the performance of an ASR system with a language
model trained from normalized transcriptions is worse than
the performance of language model trained from orthographic

transcriptions. The difference is about 3% absolute. The nor-
malized output of an ASR system is important for natural
language understanding because the vocabulary is smaller
and the speech understanding is more robust. Therefore we
explored a novel method for post-processing the orthographic
ASR result and generate a normalized output which simplifies
the understanding module and also increases the performance
of an ASR system.

Let’s have an output of an ASR system trained from
orthographic transcriptions. Define the sequence of words as
Wo = {wo,1, w02, ... Won}, wo,; € Vo. The goal of col-
loquial text normalization is to generate the sequence of nor-
malized words Wy = {wn1,wN2,... WNm}, WN: € Vi
where n > m. The normalized sequence of words is shorter
because the colloquial form contains a large number of word
fragments, repetitions and non-speech events which cannot be
mapped to any of the normalized words. The normalization
is context dependent. For example the Czech colloquial word
sem can have two different normalized forms and two different
meanings — the first one is jsem (lit. [ am) and the second one
is sem (lit. here). Therefore we used a noisy channel model
described by the following equation:

P(Wo|Wx) - P(Wy)
P(Wo)

where P(Wy) is a normalized language model, P(Wy)
is a orthographic language model which normalizes the
product P(Wo|Wy) - P(Wy). The conditional probabil-
ity P(Wo|Wy) describes the probability of observing or-
thographic words Wy given some normalized words Wy.
For a given Wo we can compute the normalized sequence
of words W3, using a MAP criterion:

P(Wn|Wo) =

13)

Wy = argrrv%/aXP(Wo\WN) - P(Wh) (14)
N

The normalized language model P(Wy) is the standard tri-
gram back-off language model used in a baseline experiment.
To model the conditional distribution P(Wo|Wy) we first
introduce the sequence Wy = {w)y ,...,wy,} which has
the same number of elements as Wy and the elements are
from the set Vi, = Vv U {€}. In addition W}, satisfies:

Wy = {w} :w} € Wy,i=1,2,...n;w, # €} (15)

The orthographic words which do not have counterparts
in a normalized word sequence are mapped to the € symbol.
We used the following assumptions: the language probabilities
of W), and Wy are equal: P(W},) = P(Wy) and the
probability of observing wo; is conditioned only by wy ;.
Then we can use the following model:

Wh = argrrv%/axP(Wo\Wl’V) - P(Wy) (16)
N

n

P(WolWy) ~ [ [ P(wo.s

=1

W) 7)



TABLE V
ASR RESULTS WITH COLLOQUIAL TEXT NORMALIZATION

Method [ Corr | WER
Baseline results

Normalized LM 67.74 37.79
Orthographic LM 69.94 34.63
Colloquial text normalization

Orthographic LM, normalized 74.15 31.59
Discounted LM, normalized 73.95 31.47
Open vocabulary LM, normalized | 74.06 31.84
Class-based LM, normalized 72.58 32.98

The conditional probability P(wo|w’y) is estimated from
training data. First of all the dynamic programming based on
Levenshtein distance [14] is used to align the orthographic
and normalized transcriptions and the list of confusions R =
{(wo,i,wy ;) i =1,...|T|} is generated. If an orthographic
word wo ; cannot be matched with a normalized word w?\u
then we assign wfw = €. The conditional probability is then
given by MLE:

_ Clwo,wy)
Zwo C(w07 w;\/)

where C(wo,w'y;) is the number of occurrences of the tuple
(wo,w') in the confusion list R.

P(wo)|wy) (18)

A. Results

The method for colloquial text normalization described
above was applied on ASR results in orthographic form both
during the evaluation on the development data and during the
final test data evaluation. In total 89% orthographic words can
be directly mapped to a normalized word (mostly the forms are
the same). Each of the remaining 11% of orthographic words
were assigned on average 2.88 normalized words. We applied
the colloquial text normalization on both the baseline results
(Tab. II) and the results with extended recognition vocabulary
(Tab IV).

The table shows that the colloquial text normalization signif-
icantly improves the recognition performance. The correctness
increased by 6.4% and the word error rate decreased by 6.3%.
The relative decrease in word error rate is 16.7%.

VII. CONCLUSION

We have presented two ways of modifying the baseline
speech recognition system built up to use in a spoken di-
alog system with mixed initiative and natural user’s input
[15]. The first one describes three approaches for extending
the recognition vocabulary to ensure the spoken dialog system
is able to recognize all entities in the given domain. The sec-
ond one presents the colloquial text normalization method.
The normalization is very important for speech recognition
in languages where the formal written language and a com-
mon colloquial speech are very different. The output of the
colloquial text normalization is suitable for further processing
in a spoken language understanding module. The use of nor-
malized text improves the robustness of the understanding

process and simplifies the semantic interpretation because
the normalized vocabulary is smaller than the orthographic
vocabulary. The combination of the presented methods en-
riches the recognition vocabulary to be more than twice large
and at the same time it reduces the overall word error rate
by 16.7% measured on normalized transcriptions.
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