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Abstract. Single-Gaussian and Gaussian-Mixture Models are utilized in vari-
ous pattern recognition tasks. The model parameters are estimated usually via
Maximum Likelihood Estimation (MLE) with respect to available training data.
However, if only small amount of training data is available, the resulting model
will not generalize well. Loosely speaking, classification performance given an
unseen test set may be poor. In this paper, we propose a novel estimation tech-
nique of the model variances. Once the variances were estimated using MLE,
they are multiplied by a scaling factor, which reflects the amount of uncertainty
present in the limited sample set. The optimal value of the scaling factor is based
on the Kullback-Leibler criterion and on the assumption that the training and test
sets are sampled from the same source distribution. In addition, in the case of
GMM, the proper number of components can be determined.
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1 Introduction

In this article the estimation of parameters of a single Gaussian and Gaussian Mixture
Models (GMMs) is investigated. Gaussian models are often used in pattern recognition
in order to classify or represent the data. An input training set is given and the task is
to extract relevant information in a form of a statistical model. The training set is often
limited, thus it is difficult, sometimes even impossible, to capture the true/source data
distribution with high accuracy. Moreover, in extreme cases the estimation can produce
numerically unstable estimates of unknown model parameters. In order to estimate the
model parameters often Maximum Likelihood Estimation (MLE) is used. MLE focuses
just on the training set [1], not respecting the representativeness of the true/source dis-
tribution from which the given data were sampled. However, in the pattern recognition,
the performance of a system on unseen data is crucial.

Methods proposed in this article are based on a reasonable assumption that the
source distribution of the training and test set are the same. Therefore, the proposed
criterion focuses on the similarity of the true data distribution and estimated model
parameters. For this purpose we use the Kullback-Leibler Divergence (KLD) [2] and
we integrate over the entire parameter space. We investigate the case where at first the
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model parameters are estimated via MLE, and subsequently only the variance parame-
ters are modified. Indeed, the variance does reflect the uncertainty of the model.

At first, the situation with single Gaussian models is examined. Further, the con-
clusions are extended to the case of Gaussian mixture models. The proposed method is
able to determine a proper number of GMM components, which is often set empirically
(several data-driven approaches were already studied, see [3–5]).

We demonstrate on a sequence of experiments that the log-likelihood of the modi-
fied model given an unseen test set increases, mainly in situations when the number of
training data is low.

2 Estimation of Parameters of a Single-Gaussian Model

Assume a random data setX = {x1, x2, . . . , xn}, which is iid (independent and identi-
cally distributed), and sampled from univariate normal distributionN (0, 1). The sample
mean µ̂ and sample variance σ̂2 are given by the formulas:

µ̂ =
1

n

n∑
i=1

xi, σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2. (1)

From Central Limit Theorem, it can be derived that the estimate of the sample mean µ̂
has normal distributionN (0, 1

n ), and the estimate of the sample variance (n−1)σ̂2 has
a Chi-square distribution χ2(n− 1) with n− 1 degrees of freedom and variance equal
to 2n − 2 [6]. Note that both the distributions of sample mean and sample variance
depend only on the number of samples n. Estimates (1) give the best log-likelihood on
the training set, but since MLE does not involve any relation to the source distribution
of the data, these estimates do not achieve the highest value of the log-likelihood for
unseen data generated from the source distribution N (0, 1).

Since maximization of the log-likelihood of the model given data sampled from the
source distribution is strongly related to the minimization of a KLD [7], we propose a
new criterion based on KLD:

J(α, n) = Eµ̂,σ̂2

{
DKL(N (0, 1)‖N (µ̂, ασ̂2))

}
, (2)

µ̂ ∼ N (0, 1/n), (n− 1)σ̂2 ∼ χ2(n− 1)

J(α, n) =

∫∫
DKL(N (0, 1)‖N (µ̂, ασ̂2))pµ̂pσ̂2dµ̂dσ̂2, (3)

where Eµ̂,σ̂2{} denotes the expectation computed over parameters µ̂, σ̂2; α is the un-
known scaling factor of the sample variance, and pµ̂, pσ̂2 are the prior distributions
(normal and scaled χ2) of sample mean and sample variance, respectively. Thus, we
measure how much information is lost when the source distribution N (0, 1) is approx-
imated by the estimated modelN (µ̂, ασ̂2). The task is to find an optimal scaling factor
α, which depends on the number of samples n and provides the best match of the sample
model and the source distribution.

Given the assumptions above the KLD is equal to:

DKL(N (0, 1)‖N (µ̂, ασ̂2)) =
1

2

(
µ̂2

ασ̂2
+

1

ασ̂2
+ ln α+ ln σ̂2 − 1

)
(4)
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Before the derivation of the solution of (3), let us define:

Q(n) =

∫ ∞
0

1

σ̂2
pσ̂2dσ̂2 = G(n)

∫ ∞
0

1

σ̂2
(σ̂2)n/2−1exp

(
−1

2
σ̂2

)
dσ̂2, (5)

G(n) = (2n/2Γ (n/2))−1, (6)

where G(n) is the normalization term guaranteeing that the χ2 probability distribution
function integrates to one. In order to get an analytical solution for Q(n) let us use the
integration by substitution, where the substitution δ = 1/σ̂2 is used. Then, it is easy to
show that [6]:

Q(n) = G(n)

∫ ∞
0

δ

[
δ−n/2−1exp

(
− 1

2δ

)]
dδ

=

∫ ∞
0

δ pδ dδ =
1

n− 2
, n > 2, (7)

where pδ is the Inv-χ2(n) distribution with n degrees of freedom, therefore (7) is in fact
the mean of this distribution.

Now, substituting for KLD in (3) from (4) and utilizing (7) we get:

J(α, n) = const+
1

2

(
1

α

∫ ∞
−∞

µ̂2pµ̂dµ̂
∫ ∞
0

1

σ̂2
pσ̂2dσ̂2 +

1

α

∫ ∞
0

1

σ̂2
pσ̂2dσ̂2 + ln α

)
= const+

1

2

(
n− 1

nα
Q(n− 1) +

n− 1

α
Q(n− 1) + ln α

)
= const+

(n+ 1)(n− 1)

2nα
Q(n− 1) +

1

2
ln α, (8)

where const represents the part of the criterion independent of α. To find the minimum
of (8), the partial derivative is taken with respect to the unknown parameter α. Setting
the derivative to zero yields:

∂J

∂α
= 0 =⇒ 1

2α
− (n2 − 1)

2nα2
Q(n− 1) = 0, (9)

αn =
n2 − 1

n
Q(n− 1) =

n2 − 1

n(n− 3)
. (10)

It should be stated that Q(n − 1) given in (7) has no solution for n < 4. However,
sometimes also models for a low amount of samples may be requested (such situation
may occur quite often when estimating GMM parameters, see Section 3). Therefore,
we extrapolated the α values in order to get the solution for n > 1. The function used
for extrapolation was a rational one, what is in agreement with the solution given in
(10). Moreover, we request that the first derivative and the value at the point n = 3.5
(this point was taken to match the experimental values for n < 4 reported below) of the
extrapolation function and function given by equation (10) are equal. The form of the
extrapolation function is:

αn =
66.83

n− 1
− 20.31, (11)
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which goes to infinity at the point n = 1.
To support the analytically derived values we performed several experiments. At

first we draw a large amount of n-tuples for a specific value of n, and computed sample
mean and sample variance of samples in each tuple. Next, we took each sample mean
and sample variance computed in the previous step, multiplied the sample variance
by one specific value of α, evaluated the KLD (4) for each sample mean and scaled
sample variance, and computed the mean mKLD

α,n across all the obtained KLDs. This was
repeated for various values of α. Finally, the optimal value α∗ was the one which gave
minimal mKLD

α,n , thus α∗ = arg minα mKLD
α,n . The process was repeated several times,

hence the optimal value of α was a random variable. The graph of optimal variance
scaling factors α∗ obtained analytically and experimentally is depicted in Figure 1,
note that for increasing n the value of α∗ converges to 1.
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Fig. 1. Dependence of the optimal value of variance scaling factor α on the number of samples.
The solid line represents the optimal values given by the analytical solution (10), the dotted line
represents the extrapolation (11). The edges of the boxes represent the 25th and 75th percentile
of the optimal α∗ computed using the Monte Carlo simulations described in the text, and the line
inside the box is the median value.

2.1 Additional Notes

– When deriving the multiplication factor α, for simplicity the source distribution
was assumed standard normal N (0, 1). Without any loss of generality the solution
is valid also for the more general case of the source distribution N (µ, σ2), but the
derivations would involve additional shifting and scaling.

– The solutions (10) and (11) can be used also for non-integer values, e.g. in the
estimation process of GMM discussed below.
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– As illustrated in Figure 1 and from the fact that for n < 4 analytical solution for α
is not defined, models estimated from such a low amount of samples are unreliable.
Hence, a careful consideration should precede before they are used.

– By now, only a univariate case was assumed. In the multivariate case with a diago-
nal covariance matrix, individual dimensions are mutually independent. Therefore,
the scaling factor α can be applied on each diagonal element of the covariance
matrix separately (recall that α depends only on the number of training data).

– Dealing with multivariate normal distributions with full covariance matrices is con-
siderably more difficult. A method based on two multiplicative constants, one for
diagonal and one for non-diagonal elements of the covariance matrix, was proposed
in [8].

3 Robust Estimation of Parameters of a GMM

In the case of a Gaussian mixture model with diagonal covariance matrix, the conclu-
sions made in the previous section may be used. Thus, variance of individual Gaussians
is multiplied by the scaling factor αn in dependence on the number of samples ac-
counted for this Gaussian. However, rather than an exact number of samples accounted
for each Gaussian, a soft count ns

m is given for each Gaussian m = 1, . . . ,M :

ns
m =

n∑
t=1

γmt, γmt =
ωmN (xt;µm,Cm)∑M
i=1 ωiN (xt;µi,Ci)

(12)

where γmt is the a-posterior probability of feature vector xt occupying m-th Gaussian
in the GMM, n is the overall number of samples, ωm is the weight of them-th Gaussian.
Now, new ML estimates of mean vectors µ̂m and diagonal covariance matrices Ĉm of
a GMM are computed as:

µ̂m =
1

ns
m

n∑
t=1

γmtxt, (13)

Ĉm = diag

(
1

ns
m

n∑
t=1

γmt(xt − µ̂m)(xt − µ̂m)T

)
, (14)

where the function diag() zeros the non-diagonal elements.
As discussed in Section 2, the distribution of diagonal elements of sample covari-

ance matrix Ĉm is the scaled χ2(ne
m − 1) distribution with variance ne

m − 1, but note
that ne

m does not equal ns
m. The value of ne

m will depend on a-posteriors γmt, and in
order to derive the correct value we will proceed as follows.

Given two sample sets Xa of size na and Xb of size nb drawn from N (0, 1), the
variance of the sample mean of each set will be 1/na and 1/nb. Note that the variance
of the total sum of sample sets Xa, Xb is:

var

(∑
x∈Xa

x

)
= na, var

(∑
x∈Xb

x

)
= nb. (15)
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Now, let all the samples in the set Xa be weighted by a scalar a and the samples in Xb

by a scalar b. The variance of the total sum of sample sets Xa, Xb changes to:

var

(∑
x∈Xa

ax

)
= a2na, var

(∑
x∈Xb

bx

)
= b2nb. (16)

Let Xc be the set constructed from all of the weighted samples from both Xa and Xb.
The weighted sample mean and the variance of the total sum of samples inXc are given
by formulas:

µ̂c =

∑
x∈Xa

ax+
∑
x∈Xb

bx

ana + bnb
, (17)

var

(∑
x∈Xa

ax+
∑
x∈Xb

bx

)
= a2na + b2nb, (18)

respectively, and therefore for the variance of the weighted sample mean µ̂c we get:

var(µ̂c) =
a2na + b2nb
(ana + bnb)2

. (19)

In the case, where each sample in the set Xc is weighted by a different weight ci,
equation (19) changes to:

var(µ̂c) =
∑nc

i=1 c
2
i

(
∑nc

i=1 ci)
2 . (20)

Comparing the variance of weighted and unweighted sample mean, the equivalent num-
ber of unweighted samples ne can be derived:

1

ne =

∑nc

i=1 c
2
i

(
∑nc

i=1 ci)
2 , n

e =
(
∑nc

i=1 ci)
2∑nc

i=1 c
2
i

. (21)

Hence, in the case of mth Gaussian in the GMM the value of ne
m is given as:

ne
m =

(
∑n
t=1 γmt)

2∑n
t=1 γ

2
mt

. (22)

Note that the value of ne
m is a real number, but this is not a problem since both (10) and

(11) are defined also for non-integer values.

3.1 Robust Update of GMM Variances

According to equations derived above, the robust estimation of GMM consists of steps:

1. Compute new maximum likelihood estimate of means (13)
and covariances (14) of the GMM.

2. Evaluate the value of ne
m given in (22) for each m = 1, . . . ,M .
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Fig. 2. Dependence of the log-likelihood of a GMM given a large number of samples generated
from the source distrubtion on the number of samples used to train the GMM. The source distri-
bution of samples is represented by a GMM with 2 components, from which limited amount of
data is sampled. In common, 3 GMMs with 2 components were trained, but only from the limited
number of samples (x-axis) generated from the source distribution. Dotted line represents the
baseline (GMM trained via MLE, no variance adjustments); in the case of the solid line MLE es-
timates of the GMM’s variance were multiplied by the optimal scaling factor α; in the case of the
dashed line the scaling factor α was used and GMM components with ne

m < 4 were discarded
during the estimation process (only a single Gaussian model was used). The experiment was run
a large number of times, and for each number of training samples (x-axis) the mean value of
log-likelihood, obtained in each run of the experiment, was computed.

3. Compute the scaling factor αm,ne
m

for each Gaussian m = 1, . . . ,M
given the respective ne

m.
4. Multiply diagonal elements of each covariance matrix Ĉm by αm,ne

m
.

We performed simple experiments, which demonstrate the effect of the proposed proce-
dure. Results are given in Figure 2. Note that when the GMM components with ne

m < 4
are discarded during the estimation process, the log-likelihood of the test (unseen) sam-
ples is higher. Since the training of a GMM is an iterative procedure, the number of
equivalent samples ne

m is determined in each iteration for each GMM component m.
Thus, the number of GMM components is controlled through the entire estimation.
Hence, a GMM with a proper number of components is obtained at the end of the esti-
mation.

4 Conclusions

The paper investigated the estimation of parameters of Gaussian models in cases with
low amount of training data. It was shown that the model trained via MLE does not
generalize well to unseen data. We have demonstrated how to adjust the parameters if
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the source distribution of test and training data is identical. The method is based on the
Kullback-Leibler divergence, we adjust the variance of the model multiplying it by a
scaling factor α, which depends only on the number of samples.

Through the paper a crucial assumption was made that the samples are mutually
independent. However, this is often not the case in real applications (e.g. time series
of a measurement), where instead of number of given samples one should estimate the
number of independent samples. I.e. the information content present in a set of mutually
dependent samples is lower than the information content in a sample set of the same size
containing independent samples. Therefore, the estimated number of independent sam-
ples should be lower. Technique aimed to estimate the independent number of samples
was investigated in [8].

The proposed estimation updates were incorporated into the GMM estimation soft-
ware implemented at the Faculty of Applied Sciences, University of West Bohemia,
Czech Republic. The GMM estimator supports both diagonal and full covariance ma-
trices, and it is well suited for processing of large datasets. Moreover, it supports also
acceleration provided by GPU [9], [10] and multi-threaded SSE instructions. The li-
cense is free for academic use. More information are available at http://www.kky.
zcu.cz/en/sw/gmm-estimator.
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