
Automatic Punctuation Annotation in Czech Broadcast News Speech
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Abstract

This paper reports our initial experiments with auto-
matic punctuation annotation from speech. We have fo-
cused on Czech broadcast news speech. The task can
be defined as a classification of each inter-word bound-
ary into one of target classes. We considered comma,
sentence boundary and “no punctuation” as the target
classes.

We employed two statistical models – prosodic model
and language model. The prosodic model expresses re-
lationships between prosodic quantities (such as pitch,
speaking rate or loudness) and punctuation marks. We
tested two implementations of this model – decision tree
and multi-layer perceptron. Hidden-eventN -gram mod-
els were employed for language modeling. Instead of
using an ordinary word-based model, we replaced infre-
quent word forms by their morphological tags and trained
a mixed model.

Scores from both models can be combined. The
model combining language model with the decision tree
yielded superior results. Testing on true words we
achieved classification accuracy 95.2% andF -measure
78.2%.

1. Introduction

The automatic extraction of information from audio
recordings is an important task today. As the automatic
speech recognition (ASR) made a big step ahead in recent
years, large volumes of audio data can now be transcribed
automatically. However, these automatic transcripts are
difficult to process, both for man and computer, because
of missing sentence boundaries, punctuation marks and
casing. The goal of our work is to improve the readabil-
ity of those automatic transcripts and/or to arrange them
into a form more fitting for the consequent automatic pro-
cessing.

The correct determination of sentence boundaries is
a crucial problem from the point of view of natural lan-
guage processing (NLP), because most of NLP applica-
tions (such as information retrieval, text summarization,
parsing or machine translation) require input divided into
sentences.

Sentence boundaries are typically marked by full-

stops and question marks in manual speech transcripts.
We joined these two types of punctuation into a one class
called sentence end (<sen>) due to the lack of questions
in the used speech corpus. Besides the sentence bound-
aries, we have also focused on the automatic insertion of
commas. Thus, our overall task can be described by the
term “automatic punctuation annotation”. This task can
be defined as a classification of each inter-word boundary
into one of target classes (i.e. comma, sentence boundary
and “no punctuation”).

The particular problems of automatic punctuation an-
notation differ according to the mode of analysed speech.
In this paper we concentrate on the Czech broadcast news
speech which is mainly read. When processing sponta-
neous speech some additional problems arise (e.g. speech
disfluencies).

There are two sources of information that can be used
to solve the task – recognized words (what a speaker
said) and prosody (how the speaker said it). Thus, we
can employ two statistical models –language model
andprosodic model. The language model aims to pro-
vide probabilities that a punctuation mark occurs within
a given word context, whereas the prosodic model ex-
presses relationships between prosodic quantities (such
as pitch, speaking rate or loudness) and punctuation
marks.

In recent years, several approaches to automatic
punctuation from speech exploiting lexical and prosodic
features have been proposed. We have mainly benefited
from insights provided by the work of Shriberg, Stol-
cke et al. They proposed an approach based on the “di-
rect modeling of prosody” by decision trees and hidden-
eventN -gram language models [1, 2, 3]. Also Kim and
Woodland adopted their approach for developing a com-
bined punctuation generation and speech recognition sys-
tem [4]. Christensen, Gotoh and Renals presented a sta-
tistical finite-state model that combined prosodic, linguis-
tic and punctuation class features [5]. Huang and Zweig
developed a maximum entropy based method for annotat-
ing spontaneous conversational speech with punctuation.
They used features based on recognized words and pause
lengths [6].

However, these papers deal with English speech. We
have focused on our Czech language. It has, same as
other Slavic languages, a highly inflectional and deriva-



tional nature, which causes additional problems with lan-
guage modeling (e.g. much larger vocabulary, more dif-
ficult part-of-speech tagging etc.). Czech has also a rel-
atively free word order which degrades the performance
of N -gram language models.

The use of punctuation in Czech is similar to English,
but rules for writing commas are more strict in Czech.
Commas separate:

• all co-ordinate constituents unless they are con-
nected by copulative conjunctionsa, i, nebo,̌ci, ani
(lit. and, and, or, or, nor)

• subordinate clauses from main clauses

• all independent constituents that are inserted into
a sentence (parentheses, complements, vocatives,
explanatories etc.)

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces the speech corpus. Section 3
presents used evaluation metrics. Sections 4 and 5 de-
scribe the prosodic and the language model respectively,
Section 6 describes their combination. In Section 7, we
report experimental results and finally in Section 8, we
present our conclusions and future work.

2. Speech data

All experiments were performed on the Czech Broad-
cast News Speech Corpus which is currently available
from Linguistic Data Consortium (LDC) [7]. The cor-
pus consists of news broadcasted on 3 TV channels and 4
radio stations during the period February 1, 2000 through
April 22, 2000. It contains over 50 hours of audio data
which yield about 26 hours of pure transcribed speech.
The broadcast news does not contain weather forecasts,
sports and traffic announcements. The signal is sampled
at 22kHz.

284 distinct speakers (188 males and 96 females)
appear in the recordings. The transcripts contain 260k
tokens (including punctuation), 16.5k sentences and 6k
turns. More details about the corpus annotation are given
in [8].

For our experiments, we randomly split the data into
three pools (training, development and test set) that do
not share any speaker. The training set contains 207k to-
kens spoken by 175 speakers, the development set 29k
tokens by 60 speakers, and the test set 24k tokens by 49
speakers.

3. Evaluation metrics

A choice of an appropriate metric for the performance
evaluation of an automatic punctuation system is difficult.
There is no obviously appropriate evaluation metric. We
used the overall classification accuracy (Acc) and the pre-
cision (P ), recall (R) andF -measure percentages.Acc is

defined as

Acc =
C

NW

(1)

where C denotes the number of correctly punctuated
words andNW denotes the total number of words. The
problem is that a strong majority of words is not followed
by a punctuation (in our test set it is 86.7%). Hence, one
can get relatively highAcc simply by inserting no punc-
tuation anywhere, so that the numbers can be quite mis-
leading. In order to avoid this misinterpretation, we also
report precision and recall measures well-known from in-
formation retrieval systems. The precision and recall are
defined as

P =
C

C + FA
(2)

R =
C

C + M
(3)

whereFA denotes number of false alarms andM denotes
number of misses. To express the system performance by
a single number, it is possible to use a harmonic mean of
P andR

F =
2PR

P + R
(4)

calledF -measure. Note that theF -measure can also be
misleading since it deweights errors of insertion and dele-
tion in comparison to errors of substitution by a factor of
two.

Besides the above stated metrics, we also report re-
sults measured by their modifications. The metrics de-
noted by a single-quote (i.e.Acc′, P ′, R′, F ′) are counted
in such a way that a half score is given when a punctua-
tion is located right but recognized as a wrong punctua-
tion symbol.

4. Prosodic model

4.1. Prosodic features

The modeling of prosody is not an easy task for a
number of reasons. First, prosody is influenced by an in-
dividual style and mood of the speaker. Further, prosodic
(suprasegmental) features are partially affected by the
segmental content of the utterance. Next, there is a trad-
ing relation between prosodic means. A weaker use of
one prosodic mean can be compensated by a stronger
use of another. Thus, some normalization and smoothing
techniques must be applied to produce meaningful and
speaker-independent features.

For deriving prosodic features we adopted direct
modeling strategy of Shriberg and Stolcke [3], so that no
hand-labeling of prosody (such as ToBI) was necessary.
Instead, the features were extracted directly from the au-
tomatically aligned speech signal.

For features extraction, we used our speech and
prosody database which is described in [9]. The database
is designed in such a way that we can quickly and easily
compute values of any desired set of prosodic features.
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Figure 1: Raw and stylizedF0 contour

The features were utilized at a word level. For each inter-
word boundary, we computed features from two words
before and one word after the boundary. The positions of
the boundaries were determined by a forced alignment.

The used prosodic features were related to pitch (F0),
phoneme durations, pause lengths and energy. The strat-
egy was to create a large set of potentially useful features
and then to reduce it according to a classification perfor-
mance of individual features. We also added one none-
prosodic feature which indicates occurrence of the end
of a turn after the current word. This feature is very im-
portant since we cannot reliably measure pause durations
after the last words in turns.

4.1.1. F0 features

ForF0 tracking in voiced regions of speech, we used
the RAPT algorithm [10]. The measuredF0 values must
be preprocessed before extractingF0 features. At first,
we had to remove halved and doubledF0 values, because
the presence of octave errors is a typical problem of pitch
trackers. For this purpose, we used the lognormal tied
mixture model (LTM) described in [11]. Remaining ac-
curate values were then filtered by a median filter.

It is also necessary to deal with the phenomenon
of microintonation. The tracked, median filtered, and
halved/doubled values removed pitch contour still con-
tains a lot of local fluctuations. These fluctuations are
involuntary on the speaker’s part and mostly related to
the physiology of speech. A common way to remove the
microintonation is to stylize the pitch contour by a piece-
wise linear (PWL) function. The line fits better interpret
pitch movements intended by the speaker [12]. An exam-
ple of theF0 contour stylization is shown in Figure 1.

Subsequently, we extracted the features from the pre-
processedF0 contour. Here we have to note that we as-
sume that during testing, speaker tracking information is
available as well as long-time means and variances of
speakers’F0. These statistics are used for the features
normalization, since unnormalized values are giving no
sense of relative positions in the speaker’s pitch range.

When assuming that these statistics are not available, dif-
ferent features must be used [13]. We used followingF0-
derived features:

• maximum, minimum and mean

• first and last value

• first and last PWL slope

• ratio and difference between the last value in the
current word and the first value in the following
word

• ratio and difference between the last PWL slope
in the current word and the first PWL slope in the
following word

• slope of linear regression from all values in the cur-
rent word

4.1.2. Phoneme duration features

This group of features describes the phenomenon of
preboundary lengthening – speakers usually tend to slow
down their speech toward the ends of utterance units. We
have focused only on the duration of vowels, because it
is known that vowels influence the overall speaking rate
more significantly than consonants.

The vowel durations were obtained by the forced
alignment of speech data. We also gained long-time
duration statistics (mean and variance) for each partic-
ular vowel from those alignments. The statistics were
speaker-independent and were used for the normaliza-
tion.

For classification, we used following duration fea-
tures (all features were normalized):

• average duration of vowels

• duration of the first and last vowel

• duration of the longest and shortest vowel

4.1.3. Pause features

The strongest indicators of punctuation in speech are
pauses. Pause features can be extracted very easily and
robustly. We have simply used raw duration of the pause
after a word of interest. We also exploited a feature de-
scribing a type of the pause. The considered pause types
were silent (SIL), filled with hesitation (HES) or filled
with audible breath (LB).

4.1.4. Energy features

The next group of features relates to the loudness of
speech. Speakers usually tend to quieten their voice to-
ward the end of the utterance unit. We used the max-
imum, minimum and mean of frame level RMS energy
values.



pause.after < 255 ms:
| turn.end = false:
| | pause.after < 95 ms:
| | | vow.max_dur.snorm < 1.17: 0.71 0.01 0.28 <none>
| | | vow.max_dur.snorm >= 1.17: 0.45 0.03 0.52 <com>
| | pause.after >= 95 ms:
| | | f0.last.end < 1.14: 0.04 0.52 0.44 <sen>
| | | f0.last.end >= 1.14: 0.08 0.13 0.79 <com>
| turn.end = true: 0.00 1.00 0.00 <sen>
pause.after >= 255 ms:
| f0.last.end < 1.17: 0.01 0.93 0.06 <per>
| f0.last.end >= 1.17:
| | slope.last < -0.25:
| | | f0.rat.last_first < 0.94: 0.01 0.84 0.15 <sen>
| | | f0.rat.last_first >= 0.94: 0.06 0.51 0.43 <sen>
| | slope.last >= -0.25:
| | | pause.type in LB,HES : 0.04 0.18 0.78 <com>
| | | pause.type in SIL : 0.02 0.69 0.29 <sen>

Figure 2: Top 4 levels of the CART for punctuation de-
tection using prosodic cues (the preliminary probabilities
listed in the 4th level correspond to “no punctuation”,
<sen> and<com> respectively)

4.2. Prosodic classification by decision tree

We tested two methods of prosodic classification –
multi-layer perceptron (MLP) and CART-style (Classifi-
cation and Regression Trees) decision tree. Next subsec-
tion describes the first possibility, in this subsection we
discuss the latter. The use of CART provides some advan-
tages. First, it allows to work with features that can have
undefined values. Second, we can easily combine con-
tinuous and categorical features. And third, the resulting
trees are human-readable and can be easily interpreted.
Interested readers may consult [14] for more details on
the training and use of the CART trees.

When training the CART for tasks with highly un-
even class sizes (such as automatic punctuation annota-
tion), it is often useful to downsample the data on equal
class sizes. It allows the classifier to model inherent prop-
erties of smaller classes in more detail.

The maximum depth of the trained CART was 13.
The top four levels of the tree are listed in Figure 2.

4.3. Prosodic classification by multi-layer
perceptron

We have tried a feed-forward multi-layer perceptron
(MLP) as another prosodic classifier. Our four-layer
MLP had a topology 117-15-30-15-3. The neurons in
the first hidden layer had a linear activation function
g(a) = a. In the next two hidden layers, we used a func-
tion g(a) = tanh(a), and the neurons in the output layer
had a soft-max activation function

yj(aj) =
exp(aj)

∑K
k=1 exp(ak)

(5)

wherej is the index of an output layer neuron andK is
the number of output neurons (in our caseK = 3). As an
error function we used a cross-entropy function

E = −
∑

n

K
∑

k=1

t
(n)
k · log

(

y
(n)
k

t
(n)
k

)

(6)

wheret
(n)
k is the requested network output andy

(n)
k is the

real network output value for the(n)-th training pattern
and thek-th output neuron.

The principal components analysis (PCA) method
was used for the setting up of the first hidden layer. The
goal of the PCA is to find a matrix which projects input
vector onto a lower dimensional vector space which is
spanned by the firstn principal components. During ex-
periments, we foundn = 15 to be a convenient value. Af-
ter running the PCA, the resulting projection matrix was
set into the first linear layer. This layer was then locked-
up and remaining layers were trained using the scaled
conjugate gradients (SCG) method. Afterwards, the first
layer was unlocked and the whole MLP was retrained. In
order to avoid overfitting of the training data, the early-
stopping method was applied. This method stops the
training process when reaching an optimum of the cri-
terion function on held-out data.

5. Language model

The language model aims to provide a probability
that a punctuation mark occurs within a given word con-
text. For that purpose, we employed hidden-eventN -
gram language models [15]. These models are typically
used in the following way: In the training text, the cor-
responding punctuation marks are replaced by<com>

(comma) and<sen> (sentence end) tags. Instances of
the ”no punctuation” class are not explicitly marked; they
are indicated simply by the absence of a tag. Then the
punctuation can be treated the same way as a word to-
ken. In order to allowN -grams to span across sentence
boundaries, the training text is not split into sentences
as it is usual for training language models for standard
ASR applications. Otherwise, standardN -gram training
and smoothing techniques can be applied. During test-
ing, the model is interpreted as a hidden Markov model
(HMM). The target classes are treated as states and words
are treated as observations. The requested probabilities
can be computed via the forward-backward algorithm.

For training, we used newspaper texts taken from the
Prague Dependency Treebank that is also available from
LDC [16]. Our training text consisted of 7.4M tokens
(280k distinct words). We also used manual transcripts
taken from the speech training set. Although these tran-
scripts represent only 3.5% of the whole training text,
their addition significantly improved the performance of
the model (Acc was increased by 1% absolute). This is
probably because of the fact that the typical structure of
sentences in the newspapers differs from the structure of
sentences in the broadcast news. Hence, the obtaining of
large amounts of news scripts from broadcast companies
seems to be beneficial.

Besides word-based models, we also tested mod-
els using parts-of-speech (POS) and morphological tags.
There exists a positional tag system for the Czech lan-
guage. Every tag is represented by a string of 15 sym-
bols. Each position in the string (excluding 2 reserve



Table 1: Acc, P , R andF [%] on the test set for different
language models

Acc P R F

words only 91.03 70.93 41.76 52.57
tags only 89.91 67.81 33.98 45.27
tagsk = 7 91.25 71.02 43.44 53.91
subtagsk = 7 91.35 71.19 44.51 54.77

positions) corresponds to one morphological category.
The categories are: POS, detailed POS, gender, num-
ber, case, possessor’s gender, possessor’s number, person,
tense, grade, negation, voice, and variant (register). Posi-
tions representing categories not applicable for the tagged
word are denoted by a single hyphen. For example, the
word form “rezignoval” (lit. resigned) is correctly tagged
asVpYS---XR-AA---. It means that it is a verb (V), past
participle - active (p), masculine – either animate or inan-
imate (Y), singular (S), any person (X), past tense (R), not
negated (A), and active voice (A). The number of possible
distinct tags is quite high, 1362 different tags appeared in
our training text that was run through an automatic tag-
ger [16, 17].

A simple tag-based model trained on the tagged text
did not perform as good as a word-based model, but we
can use morphological tags in a different way. We found
that it is useful to replace infrequent words (i.e. words oc-
curring less thank times in the training text) by their tags
and then to train the mixed language model on the text
modified in this way. Likewise, in testing, the OOVs are
replaced by their tags. We also found that instead of using
the entire positional tag it is more convenient to use only
a subtag containing following positions:detailed POS,
case(original 7 cases were reduced to nominative, gen-
itive, accusative, and “other”),person, tense, andgrade.
The optimal value fork was determined to be 7. The
size of the vocabulary was thus reduced from 295k for
the word-based model to 62k for the model mixing word-
forms with subtags. The Witten-Bell discounting scheme
was used for the model smoothing. The performances of
various language models are reported in Table 1.

This method works better than a linear interpolation
of a word-based and tag-based model. It can be viewed
as a form of back off. When using it, we step back from
details for rare word forms, whereas we keep the details
for frequent word forms. The method also eliminates the
problem of OOVs. Using the word-based model the OOV
rate on the test set was 1.6%.

6. Model combination

Prosodic and lexical cues for the punctuation detec-
tion are generally considered to be largely complemen-
tary. Hence, the scores from the prosodic model and
the language model can be successfully combined. Let
E denote the sequence of punctuation symbols,X the

prosodic features andW the corresponding sequence of
words. In our task, we are looking for a sequenceEMAP

having maximum a posteriori probability givenW and
X. This probabilityP (E|W,X) can be expressed as

P (E|W,X) =
P (X|W,E)P (E|W )

P (X|W )
(7)

Assuming that prosodic features depend only on the
punctuationE and not on word identities,P (X|W,E)
in (7) can be replaced byP (X|E). Note that this as-
sumption is not always fully true, although we stylized
and normalized the prosodic features to minimize their
dependency on microprosody. However, this simplifica-
tion is generally considered to be reasonable. Thus, equa-
tion (7) can be rewritten as

P (E|W,X) ≈
P (X|E)P (E|W )

P (X|W )

=
P (E|X)P (E|W )

P (E)
·

P (X)

P (X|W )

(8)

Because the fractionP (X)
P (X|W ) does not depend onE, we

can search forEMAP using the following proportionality

P (E|W,X) ∝
P (E|X)P (E|W )

P (E)
(9)

Moreover, if we trained the prosodic classifier on data
downsampled on equal class sizes, we can use

P (E|W,X) ∝ P (E|X)λP (E|W ) (10)

whereλ is an exponential scaling factor. Varyingλ we
can weight a relative contribution of either model. The
optimal value ofλ is determined on development data.

Assuming that the punctuationei depends only on
the last prosodic observationxi and that prosodic fea-
ture vectors are conditionally independent of each other
given the punctuationei and the wordsW , we can use for
searching forEMAP a modified language model’s HMM.
The prosodic scores can be incorporated into the HMM
as states emissions [1, 4].

7. Experimental results

The presented methods were tested on the above
mentioned test set comprising 21,258 word-tokens.
1,515 (7.1%) of these word-tokens were followed by a
sentence end, 1,309 (6,2%) tokens were followed by a
comma, the rest (86.7%) were not followed by a punctu-
ation mark. All tests were performed on true words (i.e.
automatically aligned manual transcripts), not on ASR
hypotheses.

The overall results are shown in Table 2. All tested
models perform better than a priori chance. The best clas-
sification results (Acc = 95.2%) were achieved by the
combination of the language model and CART. The use
of the MLP instead of the CART yielded slightly worse
results. Also the bestF -measure (78.2%) was achieved



Table 2: Overall accuracy, precision, recall and F-measure using different models [%]

Acc Acc’ P P’ R R’ F F’

LM 91.35 91.87 71.19 76.00 44.51 46.34 54.77 57.58
CART 92.63 93.02 77.96 81.46 53.35 54.97 63.35 65.64
MLP 92.19 92.63 72.81 78.79 54.24 57.37 62.17 66.39
LM+CART 95.24 95.64 81.07 83.76 75.61 77.34 78.24 80.75
LM+MLP 95.14 95.43 87.27 89.72 68.94 70.46 77.03 78.93

Table 3: Precisions and recalls for detection of sentence ends (<sen>) and commas (<com>) using different models [%]

P<sen> P’ <sen> R <sen> R’ <sen> P<com> P’ <com> R <com> R’ <com>

LM 64.61 70.12 37.12 38.24 77.52 81.48 52.94 55.82
CART 82.55 85.63 90.50 91.95 51.07 55.75 10.92 11.44
MLP 79.55 83.50 92.91 93.69 38.48 39.94 10.72 11.32
LM+CART 85.70 88.90 90.57 92.23 74.01 75.99 58.52 61.18
LM+MLP 89.25 91.99 88.29 89.28 83.29 85.20 46.83 48.46

by the model combining the language model with the
CART. The optimal exponential scaling factor for the
combination of the prosodic and the language model was
determined asλ = 0.85.

The separate results (P andR) for commas and sen-
tence ends detection are reported in Table 3. These re-
sults indicate that the language model is better in de-
tecting commas than in detecting sentence boundaries.
By contrast, the prosodic model is better in detecting sen-
tence boundaries. The reason is that the language model
can use conjunctions as strong predictors of commas,
whereas the prosodic model can use pauses as strong pre-
dictors of sentence ends – the commas are not so strongly
prosodically marked. The detection of sentence bound-
aries by theN -gram language model is complicated due
to the relatively free word order in Czech. Overall, the
sentence boundaries were identified more accurately than
commas which were detected with a significantly lower
recall.

8. Conclusion and future work

In this paper, we report our initial experiments with
automatic punctuation annotation from speech. We have
focused on Czech broadcast news speech. We employed
two statistical models – prosodic model and language
model.

We tested two implementations of the prosodic model
– CART and MLP. A slightly better results were achieved
by the CART. For language modeling, we used hidden-
event N -gram models. Instead of using an ordinary
word-based model, we replaced infrequent word forms
by their morphological tags and trained a mixed model.
We also found that instead of using entire positional tags
with 15 morphological categories, it is better to use only
their subtags consisting of 5 categories.

Scores from both models can be combined. A model

combining language model with the decision tree yielded
superior results. Testing on true words, we achieved clas-
sification accuracyAcc = 95.2% andF -measure78.2%.

There is a number of issues we would like to explore
in the future. First of all, we know that we tested the
methods on automatically aligned manual transcripts, not
on hypotheses generated by an ASR system, so that the
influence of ASR errors on the methods must be exam-
ined. We assume that the prosodic model will be less
affected than the language model. However, the errors in
word alignments will degrade it as well. The testing on
ASR hypotheses also causes a problem with the perfor-
mance evaluation; when the numbers of words in the ref-
erence and the ASR transcript differ, it is difficult to find
the corresponding inter-word boundaries automatically.

Second, we will pay attention to the improvement
of the used machine learning and feature selection tech-
niques.

Further, we also would like to focus on the sentence
boundary detection in spontaneous speech. Solving this
task is crucial for the NLP applications dealing with
spontaneous speech.
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