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1 Introduction 

1.1 Overview 

Understanding animals is an ancient theme of many novels, sci-fi as well as children books. Automatic 

recognition of animal sound represents a very interesting area with great potential. In the animal world there 

is a great number of species for which vocalization plays an important role. In addition, their vocal tract 

anatomy is similar to the human vocal tract. Animals make sounds for many purposes: communication, 

defending territory, danger warning, courtship, fear, satisfaction, expressing emotions, etc. People do not 

understand animals. Moreover, it is a logical assumption that we will never be able to accurately interpret the 

meanings of animal sounds. Creating "interpretative" dictionary appears to be an unrealistic task. However, it 

should be possible to get other crucial information from sound: Identification of the individual. This task is 

similar to the problem of speaker recognition. Identification of people has been used for a long time and the 

background knowledge is well mapped.  

This work deals with the use of automatic recognition of bird individuals Chiffchaff (Phylloscopus collybita 

(Lat.), Budníček menší (Czech) and Willow Warbler (Phylloscopus trochilus (Lat.), Budníček větší (Czech). 

Chiffchaff and Warbler are abundant in the Czech Republic and the whole of Europe, which makes 

recording, monitoring and mapping of origin relatively easy. The work is based on the well-known method of 

speaker text-independent verification on humans using the GMM. Any "linguistic" content (transmitted 

information) is ignored and instead we focus on the characteristics and properties of voice of each individual.  

 

 

1.2 Motivation and goals 

The major challenge in ornithology is the impossibility to differentiate individuals from each other. The only 

solution is bird ringing. This procedure brings some negatives: 

 It is necessary to capture the bird. 

 The bird gets ringed for life. 

 

Firstly, the capture is a very stressful event. If the ornithologist does not wear gloves, the bird is exposed to 

human contact. The bird can be caught in a net for several hours, till the zoologist arrives. It happens 

especially when night birds are caught. Secondly, a bird receives a ring on the body, which changes its 

appearance, increases its weight and sometimes hinders its movement. Furthermore, the ring may not only 

bother the bird itself, but there is a question whether its colour and appearance does not distract the partners 

or other individuals from its community. 

 

The author of this work cooperates with some ornithologists of the Faculty of science of University of South 

Bohemia, who have observed that Chiffchaffs which were caught, do not return to the same place very often. 

Estimation of return of the ringed birds is about 15% of the original number. Moreover, it is impossible to 

repeatedly catch the birds once caught. Ornithologists agree that captured birds alter their behaviour. It 

follows that fundamental question ornithologists have to answer is: To what extent this is due to ringing? A 

new approach is the only way to get an answer. It is necessary to find a solution that will allow researchers to 

move further. Based on these facts, the use of automatic recognition of individuals opens up entirely new 

possibilities to solve the problem of contactless identification without the risky ringing. 
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Main goals of this thesis are 

 To use bird verification records made continuously in terrain under real circumstances, i.e. noisy, 

many birds sing in time, variable distance between ornithologist and birds changing during 

recording. 

 To use the real data which were recorded by ornithologist in real circumstances without any editing 

of the records (cut, glue, purify). 

 To find a solution to automatic recognition of Chiffchaff individuals for months even years, i.e. 

speaker/bird verification task. 

 To develop techniques and define parameters for the best result achievement. 

 To determine the probability to which the recognition system is capable to identify Chiffchaff 

individuals. 

 To specify the influences and obstacles that would affect the recognition ability. 

 To enable simultaneous detection of more than one individual extending the type of performed tasks 

to both speaker verification and speaker identification. 

 

 

1.3 State-of-the-art 

The use of method GMM for bird individual recognition was first described by Cheng et al. [CHE10]. Cheng 

used MFCCs parameters and GMM classification. Objects of research were birds of Chinese warbler, Humes 

warbler, Gansu leaf warbler and Chinese bulbul species. For data they used single songs of specified length, 

which was cut from song records. Recording was performed outdoors in noisy background. The achieved 

accuracy of recognition was between 89.1% and 92.5%.  

Next, Kuntoro et al. experimented with both song-type classification and individual identity clustering 

[KUN10]. For song-type classification HMM was used, with achieved accuracy of the song-type between 

50% and 98.8%. For bird individual identity the clustering error rate achieved was from 2.9% to 50%, which 

was evaluated by the author as unusable. Data from 2000 was used as training data, while data of 2001 was 

used for evaluation. 

Fox describes call independent identification in birds [FOX08], where the records were cut into parts and 

then some parts were used for training and some for identification. The length of the parts varies, but is about 

10 [s]. MFCC was used for parameters, while the classifier used was ANN MLP implemented in the NN 

toolbox in Matlab. The network had one hidden layer with 16 neurons. Identification accuracy for willie 

wagtails was 72.9% and 97.1% for non-trained and trained ANN respectively, 54.3% and 98.6% for canaries 

and 75.7% and 96.5% for singing honeyeaters. The techniques used for signal enhancement and for removal 

of noise from recordings of passerine are discussed. It was demonstrated that the accuracy greatly depends on 

noise because after the noise reduction procedure the accuracy rate increased. 

Clemins deals with classification of animal vocalization using MFCC and PLP parameters and HMM 

classifier implemented in HTK [CLE05]. In the first part call-type identification is solved, the second speaker 

identification. It was recommended to use Greenwood warping function (GWF) instead of Mel bank filter. 

The GVF is better suited as the filter to animal species auditory. Influence of parameters to accuracy is 

discussed in detail and experimentally proved. Achieved results for call type recognition were between 51% 
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and 90%. The results highly depend on type of used parameters and classifier. Tested species were croaks, 

elephants, and beluga whales. For every species a particular GWF was computed. 

Selin focused on bird sound classification using wavelets [SEL05]. For automated classification of acoustic 

signals ANN was used. MLP and self-organizing map (SOM) were used as classifiers. Eight bird species 

were tested. Accuracy of sound classification was 96% and 93.8% for MLP and SOM respectively. 

Some authors recognize the sounds of animals in order to identify (interpret) the meaning. Molnar et al 

collected more than 6,000 barks in an attempt to recognize the meaning of dog barking [MOL08]. He could 

distinguish five kinds of barking, identifying their meaning as stranger, fight, alone, ball, play. Classification 

efficiency was 43% to 52%. 

In my knowledge there is no article which uses raw data in addition over the years. Most of the articles 

describe one-time experiments. Repeating the experiments seems to be very difficult if not impossible. 

 

1.4 Outline 

The first part deals with hearing and vocalization of both humans and birds. It describes main differences 

between bird and man and introduces models of their vocal tracts. Next, chapter 3 describes signal analysis 

and cepstral parameters extraction. Chapter 4 outlines basic definition of the speaker recognition problem, 

whereas chapter 5 is focused on main phases of speaker verification task. It also introduces GMM-UBM 

system and EM algorithm. Chapters 6 and 7 deal with core of this thesis, where the first one describes 

speaker verification system „PVM“, which will be used for birds recognition experiments. The second 

describes used data, evaluation methodology and achievement of preliminary experiments which have not 

been performed yet. Last chapters summarize plans of future work. 
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2 Human and bird, voice and song 

From the anatomical point of view the vocal tract of passerine is similar to humans. The fundamental 

difference is that birds have a syrinx which is equivalent to the human voice box or larynx. Like the larynx, 

the syrinx contains special membranes which vibrate and generate sound waves when air from the lungs is 

forced through them [36_bird songs]. It allows the birds to generate two independent audio signals 

simultaneously. In practice, however, there are only a few „two-tone singers“.  

A significant feature of a birdsong is its duration. It is common to hear a bird singing continuously tens of 

seconds without interruption. It is considered that this is achieved thanks to the anatomy of the bird vocal 

tract mentioned above, where one of the tubes drives the singing while the second performs micro-breathing. 

 

 

2.1 Human voice model 

The model of the vocal system is shown in Figure 2.1. The air flows from the lungs. During breathing the 

glottis is opened, while during speech production the glottis is opened and closed. The air flows through 

causing oscillation and producing vocalization. The vocal basic tone F0 is based on this vibrations. When 

creating the voiced vowels the glottis is nearly closed. When voiced consonants are produced the glottis is not 

closed so tight causing the sound of not periodical (tonal, pure) character. When creating unvoiced sounds the 

vocal cords are almost opened and the sound is created by modification of the air stream in cavities. 

 

 

 

Figure 2.1: Human vocal tract 

 

 

As an equivalent for circuit diagram of the vocal tract the connection of two generators is used, which are 

alternately connected to the circuit according to processed sound, see Figure 2.2. Pulse generator is dedicated 

for voiced sounds and white noise source for unvoiced. 
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Figure 2.2: Vocal tract, equivalent circuit diagram 

 

After simplifying, the whole process can be replaced by the source signal u(t) passing through the system 

with impulse response h (t), as shown in Figure 2.3 

 

 

Figure 2.3: Vocal tract, simplification 

The human speech is therefore modelled by convolution of the excitation signal u(t) and the vocal tract with 

impulse response h(t). This is used for speech synthesis purposes as well as for finding the speaker voice 

characteristics. In this thesis we use the same approach for getting the birds vocal characteristics. In the 

timeline convolution is described as 

 ( ) ( ) ( ),u t h t s t   (2.1) 

For discrete signal 

 
( ) ( ) ( ).u n h n s n 

 (2.2) 

In frequency domain we get 

 
( ) ( ) ( )S f X f H f 

, (2.3) 

and if we use Z-transform  

 ( ) ( ) ( ).U z H z S z   (2.4) 

To obtain vocal characteristics it is necessary to perform deconvolution, Figure 2.4. Detail description how to 

compute the cepstral coefficients using the deconvolution is described in chapter 3.1. 

 

 

Figure 2.4: Deconvolution 
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2.2 Birds and human hearing 

Human and bird ears are variously sensitive to different frequencies. The Figure 2.5 shows the dependence of 

both human and birds hearing on the frequency. 

 

 

Figure 2.5: Average audibility curves human and bird [CAT08]. 

 

In humans, this dependence is described by Fletcher-Munson curves. Birds are less sensitive to lower 

frequencies to the contrary of better hearing at higher frequencies. It probably relates to the higher frequency 

bands of birdsong, their communication running between 0.5 kHz and 6 kHz in average. 

 

2.3 Birds vocal 

For human frequency associated with vocal tract dimensions is fundamental. Thus, it is lower for men, and 

highest for children. In animals much greater variability of vocal box can be found. Figure 2.6 shows the 

dependence on animal body mass and emphasized frequencies of vocalization. With a suitable choice of a 

scale a line with a slope of -1 can be added to the graph, describing this dependency. Small animals use high 

frequencies while larger animals lower frequency.  
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Figure 2.6: Animal body mass and frequencies of vocalization.[CAT08] 

 

The dependence for both humans and animals is related to the basic relationship between wavelength and 

frequency 

  (2.5) 

 

where c is the speed of sound. Dry air is approximated by the relation 

 

  (2.6) 

 

 

A syrinx is the principal organ of birdsong creation. Figure 2.7 shows divided structure with two sound 

generators. 
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Figure 2.7: Section through the syrinx of a brown thrasher.  

(T) thermistors, (MTM) medial tympaniform membranes (Suthers 1990). 

 

Unlike humans, animals are usually equipped with less noise harmonics. Some animals may produce purely 

sinusoidal (singers) and pure noise character (small rodents). Just as the human vocal tract, the principal of 

sound generating in birds will be approximated by convolution both generating signal x(n) and impulse 

response h(n) of the vocal tract: 

  (2.7) 

where s(n) is song (speech signal), x(n) is an excitation (signal source) and h(n) is impulse response of vocal 

tract (vocal tract filter). 

In general, the sound generated (vocal tract) in many species of animals is similar to humans: Monkey, some 

singers, cetaceans. Some birds may also sing in two-tone (lark, nightingale, thrush). Some types of sound 

production are completely different and operate without the use of vocal tract. For example, the oscillation of 

the wings (mosquito), using a special membrane (cicada), rubbing the wings together (cricket), in rodents 

banging his head against the wall hole (Lesser Bamboo Rat). 

It is impossible or at least very difficult for animals to build something like a dictionary or lexicon of the 

speech corpus. However humans often "understand" the meaning of animal vocalization. For some species a 

lexicon can be made, though with difficulty and with obvious reservations about the interpretation of such 

imperfection. Main incompleteness and ambiguity originate when a sound has more than one meaning, for 

example. [MOL08]. 

For animals whose vocal tract resembles human it can be theoretically assumed that a better equipped brain 

would produce sound similar to humans. On the contrary, some singers who can imitate human speech 

(parakeet, cockatiel, starling) clearly have less powerful brain than other species. It is certain that the ability 

to imitate human speech is related to the more developed brain parts used for vocal tract control. Birds do not 

understand the meaning and content of the spoken words. Spoken (sung) words are only an "interesting 

sound" developed because of good musical memory (imprint of human words). The exact mechanism of 

speech is unknown and it is questionable whether it will ever be understood. 
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2.3.1 Bird song 

 

The basic bird song stands between calls and songs. The calls are short squawks emitted by birds as an 

emergency or warning sound. The song is natural vocalization of the passerines. It consists of phrases and 

syllables (see Figure 2.8). 

 

Figure 2.8: One song of Chiffchaff 

 

The elements are then divided into further elements, see Figure 2.9 

 

 

Figure 2.9: Two syllables divided into elements. 
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3 Signal analysis 

3.1 Cepstrum 

The real cepstrum is defined as the inverse Fourier transform (IFT) of the logarithm of the amplitude signals 

spectrum 

 

    
1

0

2
ln ln exp

N

n

k

kn
c IDFT S k S k j

N





 
   

 


 (3.1) 

 

where c(n) are the individual cepstral coefficients, X [k] signal spectrum. Sound (speech signal) s(t) is formed 

by convolution of source signal x(n) and impulse response of vocal tract h(n) so for discrete signals is 

 

 . (3.2) 

 

For automatic recognition it is necessary to obtain parameters x(n) and h(n) separately. Then they can be used 

to build speakers models. Discrete spectrum of the signal is given as 

 

 
 ( ) ( )S k DFT s n

 (3.3) 

 

 

1

0

2
( ) ( )exp

N

n

k
S k s n j n

N





 
  

 


. (3.4) 

 

If DFT is applied on the discrete signal s(n) the convolution formula is transformed to the: 

 

    (3.5) 

 

In frequency domain the equation changes to 

 

   (3.6) 

 

Applying the natural logarithm changes the multiplication to the sum 

 

    (3.7) 
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To obtain the cepstral coefficients the IDFT was applied to the previous formula 

 

 
        ln ( ) ln ( ) ln ( )IDFT S k IDFT X k IDFT H k 

. (3.8) 

 

Because we assume that the speech signal is given by the convolution of two input signals, then for the real 

cepstra coefficients is valid 

 

   (3.9) 

 

And each cepstral coefficients can then be expressed as 

 

 
   ( ) Re ln ( )sc n IDFT S k

 (3.10) 

 

 
   ( ) Re ln ( )xc n IDFT X k

 (3.11) 

 

 
   ( ) Re ln ( )hc n IDFT H k

. (3.12) 

 

The equations show that the correlation of coefficients transforms into the sum. In practice, separation from 

each other is achieved by, so called, liftering. The lower coefficients represent the spectral envelope, i.e. the 

vocal tract, the higher are the excitation coefficients. Typically, for Speaker recognition tasks about 20 

cepstral coefficients would be used. Notice that the Speaker recognition system process of Mel-Cepstral uses 

Discrete cosine transform DCT instead of the Inverse Fourier transformation. 

 

3.2 Linear prediction cepstral coefficients 

Linear prediction coding (LPC) predicts speaker parameters directly from a speech signal. The main stages of 

LPC calculation are shown in the Figure 3.1. 

 

 

Figure 3.1: LPC coefficients calculation stages [BIM] 
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The principle of LPC is a computing the s(n) sample of a voice as a linear combination of a previous samples 

with excitation u(k) enhanced excitation G, so 

 1

( ) ( 1) ( )
Q

i

i

s k a s k Gu k


   
 (3.13) 

where G is the gain coefficient and Q is the order of the model. Transfer function H (z) can then be written as 

 

( )
( )

( ) ( )

S z G
H z

U z A z
 

 (3.14) 

where H (z) is defined as 

 

1

1

( )

1
G

i

i

G
H z

a z






.  

Figure 3.2 shows block diagram of cepstral coefficient extraction. The signal has to be weighted by a short 

enough window to be considered approximately stationary. Than can be used to determine the parameters ai 

and G using the method of least squares. 

 

 

Figure 3.2: LPC, cepstral coefficients 

 

3.3 Mel frequency cepstral coefficients 

For the purpose of our work are used Mel Frequency Cepstral Coefficients (MFCC). First a sliding window is 

used to divide the speech into short segments. Each window is than pre-emphased to straighten frequency 

balances changed by a vocal tract. Next the Mel-frequency filter is applied to better adapt signal to human 

hearing. Due to logarithmic calculation the multiplication of spectrum changes to the sum. Finally by 

application of Discrete cosine transform (DCT) cepstral coefficients are obtained. The cepstrum is so-called 

the Mel-frequency cepstrum because Mel-frequency filter is used within the process. 

 

 

Figure 3.3: Mel-frequency cepstral coefficients computing, data diagram 

For the purpose of our work we use cepstral coefficients. It is still unclear what sort of frequency filter will 

be used. The Mel-filter bank is adapted to human hearing so different filter adapted to birds should be more 

useful. In the current experiments the Mel-filtering filters were switched off. 

(3.15) 
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3.4 Hamming window 

Length of the window is chosen so that the period should be considered as a quasi-stationary. Step of sliding 

frame is chosen so that the overlap supresses the side effect of the window. The most commonly used is 

Hamming or Hanning window. 

The Hamming window reduces leakage in the spectrum due to its side-effect. It is defined as 

 

   (3.16) 

 

the N indicates the number of samples in length windows. 

 

   

Figure 3.4: Hamming window a) Time domain, b) Frequency 

  

For the speech signal Hamming window of length 20 [ms] with step 10 [ms] is usually used. For the purpose 

of our work the length 30 [ms] with 15 [ms] step has been empirically determined. 

 

3.5 Pre-emphasis 

During the progression of sound through an articulation mechanism higher frequencies are suppressed. Pre-

emphasis is compensated by application of a first-order filter, which amplifies the higher frequency 

components. For modulating the filter shape 

 
     1 ,px t x t a x t   

 (3.17) 

in discrete domain  then 

 
     1 .ps n s n a s n   

 (3.18) 

Pre-emphasis coefficients are usually chosen in the interval [0.95 ÷ 0.99]. It is not yet finally determined 

what values should be used in our work. Notice some authors switch the pre-emphases off. 
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3.6 Mel filter bank 

It was found empirically that the human ear perceives sound intensity signal unevenly depending on the 

frequency. Therefore, in applications of automatic speech recognition it is desirable to adjust the signal so 

that its distribution is near to the hearing. Mel filter banks are used for this correction. It converts the 

frequency f [Hz] into so-called frequency fMEL [mel] which is based on human hearing. The conversion 

between f and fMEL is defined as the relationship 

 

    (3.19) 

 

Following figure shows the behaviour of the function 

 

 

Figure 3.5: Characteristic Mel-frequency [mel] and frequency [f] domains 

 

For the reversed conversion following relationship is valid 

    (3.20) 

 

Mel filter banks are realized by a set of M bands. For instance, if bandwidth is 4 kHz 20 banks are usually 

used. These filters have a linear scale in a triangular shape with overlapping bands by half as seen in Figure 

3.6. 

 

Figure 3.6: Mel filter bank 
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Using triangular overlapping filters helps to modify a magnitude of the spectrum with respect to human 

hearing. 
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4 Speaker recognition 

4.1 Task definition 

In our work we use theoretical foundations created for the purpose of speaker recognition. This can generally 

be divided into two separate tasks: Speaker Identification (SI) and Speaker verification (SV), each further 

divided into two sub-problems, for detail see Figure 4.1. 

 

 
 

Figure 4.1: Speaker recognition task classification 

 

4.2 Speaker identification 

The task is to assign a specific speaker a speech record from a database of speakers. The aim is to determine 

which speaker or speech has been identified as most similar. A typical example using of SI is authentication 

of a person entering a building. Moreover it is important to define whether the number of people to be 

identified is closed or open.  

For the closed-set case the models of all persons will be created. The goal is then to identify a person by 

using speaker models selected from a limited set 

 
 1( ) ,..., LX   

. (4.1) 

In the open-case set an unknown person may appears in addition to known persons. Then the set of models 

has to contain a model of unknown persons 

 
 1( ) ,..., L UNKNOWNX    

 (4.2) 

where the set of unknown speakers can theoretically be infinite  

 
 1,...,UNKNOWN    

. (4.3) 

 

4.3 Speaker verification 

The task is to confirm or deny whether the speech record belongs to a particular speaker. The system has to 

infer an identity which the speaker claims. An example of SV tasks is to authenticate a user when logging 

into a system. There are some applications where the speech is only biometric parameter that can be used, in 
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a phone conversation for instance. Verification depends on what the speaker says. This task is further divided 

into two cases: 

 text-independent 

speaker says any word or phrase 

 

 text-dependent (text-constrained) 

speaker pronounces a pre-specified word or phrase, such as a digit or a code word. 

 

Since we do not understand the bird language and we cannot even make the bird sing exactly what we order 

(except cases of extreme trained singers), the chosen approach for the automatic recognition system of a bird 

is Speaker verification text-independent task. 

 



18 

 ______________________________________________________________________________________  

  

 

5 Speaker verification system 

The process of speaker verification runs in three steps (see Figure 5.1) [NAIM]. First, a feature extraction is 

performed, see chapter 3.3. In the second step a training module is applied (Chapter 5.1), creating a speaker 

model. For the purpose of our work GMM-UBM model will be used. The last stage of the process is testing 

(Chapter 5.2) and making a decision based on likehood scoring.  

 

 
Figure 5.1: Speaker verification system 

 

 

According to [BIM04] the speaker verification system process can generally be described in two phases only: 

 Training phase. 

 Test phase. 

 

5.1 Training phase 

Main stages of a training phase are shown in Figure 5.2. In the first step the speech parameters are extracted 

from the recording. Speech parameterization module follows, creating feature vectors. Last, a statistical 

model of the speaker is created. Using the same procedure, models of other speakers as well as the UBM 

model are created. 

 

 

 
 

Figure 5.2: Training phase, basic stages 
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5.2 Test phase 

Main stages of the test phase are shown in Figure 5.3 . The main block of this phase is the normalization 

decision stage. It has three inputs. The first is the parameterization of Speech module, which produces feature 

vectors from the input speech signal. Its function is the same as in the training phase, but the identity of the 

speaker is not known. The other two inputs are statistical models of both UBM and speaker, whose identity 

should be verified. These models are based on the parameters calculated during the training phase. 

Scoring normalization decision stage then follows, computing the decision scores, normalizing them, and 

making a decision: Accept or reject that claimed identity belongs to the tested speaker. 

 

 

Figure 5.3: Test phase, basic stages 

 

5.3 Speaker verification system GMM-UBM  

Using GMM-UBM system for Speaker verification task is described in [REY00], [REY95], [NAJ09]. The 

Gaussian mixture models (GMMs) become dominant for Speaker verification applications based on 

probability models. The used system is referred to as the Gaussian Mixture Model-Universal Background 

Model speaker verification system (GMM-UBM) [REY95]. 

 

The speaker verification task definition is to determine if speech Y was spoken by speaker S. If we suppose 

that Y contains speech of only one speaker then we name the task as single-speaker verification. If not, the 

task becomes to multi-speaker detection. With regard to the objectives of our work we define task of bird 

individual automatic recognition: To determine if song Y was sung by a bird individual S. Used data in our 

work contains song of only one bird at one time, so it fulfils the condition of single bird verification. 

 

If we define two possible conclusions of a single-speaker verification 

 H0…Y was spoken/sung by a S 

 H1…Y was not spoken/sung by a S 

 

then the goal of a task is to determine both probabilities 

 

    (5.1) 
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  .  (5.2) 

 

These are called a probability of a hypotheses HO and H1 respectively. Finalization of a process is then 

defined by authors as decision: 

 

Probability 

ratio 

Threshold Decision 

 

 
H0…accept 

Y was spoken/sung by a S 

 
H0…reject 

Y was not spoken /sung by a S 

Table 5.1: Decision based on threshold 

 

The basic goal of a system is to determine techniques to compute values for the two probabilities [REY00]. 

Basic stages of a speaker verification system are shown in Figure 5.4.  

 

 

 
Figure 5.4: Probability ratio-based speaker detection system [REY00] 

 

 

Input stage contains a speech (song) of length t. Front-end processing stage extracts feature vectors which 

contain speaker-dependant information 

 

 
 1 2, ,..., .TX x x x

 (5.3) 

 T is the number of feature vectors. It depends on the length of a speech/song and the length of a frame which 

divides the speech into segments. Computing the probabilities H0 and H1 follows, based on the feature 

vectors.  

Probability H0 is mathematically represented by a model λ of the speaker. In a different way these 

probabilities represent the hypotheses 

 

Hypothesis Model Denote 

H0  
Hypothesized speaker S is in the 

feature space of x 

H1  Alternative to H0 

Table 5.2: Two models of speakers 
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The basic assumption is that the Gaussian distribution best represents the distribution of the feature vectors 

for H0. The model would be than be denoted by a mean vector and a covariance matrix of the Gaussian 

distribution [REY00]. Probability ratio statistics of both models can be expressed as 

 

   (5.4) 

 

 

With the logarithm of this statistically given log-probability ratio during the last stage is 

 

 

  (5.5) 

 

 

The model   of H0 hypothesis will be well established using training speech from S. On the contrary, 

model  must include all of the possible alternative hypotheses covered by H1. To estimate model  

two approaches come into consideration: 

 Use models of all others speakers in order to cover all alternative hypotheses. The approach is 

known as background speakers (BS).  

 

 Merging speeches from several speakers to train a single model. The approach is known as universal 

background model (UBM). 

 

Research of UBM shows the advantage of the only one  model that has to be trained for all tasks with 

particular background. In contrast, BS needs to use speaker-specific background model i.e. one individual for 

every speaker. 

 

5.4 Probability model methods 

The probability approach is based on creating models λ of all speakers and UBM. These models replace the 

original parameters by specific functions. Then these models are used to compare with model of an unknown 

speaker instead of comparing the parameters i.e. feature vectors. By comparison between models, search for 

the one which corresponds to the highest probability of the model of an unknown speaker, is conducted. 

Creating the best usable models λ is crucial for the probability function .  

For the text-dependent tasks where prior knowledge of what the speaker says is used as the basic probability 

function of the hidden Markov model (HMMs). 

For text-independent speaker recognition tasks i.e. no prior knowledge of what a speaker says (no matter 

what he or she says, no matter what a bird sings) uses Gaussian mixture models as the most successful 

probability function. 

5.4.1 Hidden Markov models 

Hidden Markov models (HMMs) can incorporate additional temporal principles as pre-build lexicon, 

orthography, language rules, etc. Basic assumption is that the system can be situated just in one state for 

every particular time segment. The status then changes step by step in time into other well-defined states. 

Transitions between states are described by probabilities aij. Assuming that we exactly know both the number 

of states and transitions between them, we can define Markov model as  
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   (5.6) 

where  is a probability matrix of transitions for speaker s, and  is a vector of speaker s 

output probabilities [PSU06].  

For text-dependent systems left-right models are used as the transitions are dependent on the linguistic 

content. The number of states is usually between 3 and 6. In the text-independent systems Markov ergodic 

models are used instead, where the number of states usually is 3 or 5. 

One uses forward-backward algorithm or Viterby algorithm to calculate probability of passage through all 

states. 

 

5.4.2 Gaussian mixture models 

Let’s suppose a D-dimensional feature vector, x. Then the probability function  is defined as a linear 

combination of weights wi and unimodal Gaussian densities pi(x) 

 

 1
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The M is the number of mixture densities, pi(x), defined as 
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and each density is parametrized by mean μi … D x 1 vector and Σi covariance matrix … D x D matrix, or 

rather diagonal covariance matrix is used. Model parameters of a particular speaker S are denoted as 

 

 
 , , , 1,.., .S i i iw i M   

  

 

where M denotes the number of parameters. For successful use of GMM determination of an appropriate 

number of Gaussian mixtures as well as to estimate their positioning is of key importance.  

 

When the speach is divided into time segements t={1,..,T}, the feature vector is defined as  

 

 
 1 2, ,..., .TX x x x

 (5.11) 

(5.9) 

(5.7) 

(5.7) 

(5.10) 



23 

 ______________________________________________________________________________________  

  

 

Then M values are extracted for each segment 

 

 

 

 

 

1 11 12 1

2 21 22 2

1 2

, ,...,

, ,...,

...

, ,..,

M

M

T T T TM

x x x x

x x x x

x x x x






  

The process of feature vectors extraction is drawn in Figure 5.5. From the speech, particular segments are 

selected by windowing. M coefficients are calculated for each segment. If the speech is divided into T 

segments, each feature vector consists of T vectors x, where each has the dimension of M.  

 

 

Figure 5.5: M-dimensional Gaussian mixture model, schematic 

 

5.5 Expectation-maximization EM 

GMM parameters are better estimated using the expectation-maximization (EM) algorithm. It iteratively 

recalculates GMM parameters so that for every (k+1) step of iterations, following statement is valid: 

 

 
( 1) ( )( ) ( )k kp X p X   

.  

 

The overall probability model is the product of individual probabilities for individual frames for the time 

segments t=0,..,T 

(5.12) 

(5.13) 
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EM algorithm maximizes the function for the optimized model , which is given by 

 

 1 1

ˆ argmax ( ) argmax log ( )
T T

i i

i i

P x P x
 

  
 
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Five steps are defined as the sufficient number of iterations [REY00]. Notice that calculation of UBM 

parameters is similar to the parameters for Speaker only with additional use of Bayesian. For GMM training 

it is not necessary to use full number of Gaussian mixtures at the beginning, but the number can be increased 

stepwise.  The process of adapting the EM model to a certain speaker is called adaptation.  

 

 

5.6 Parameter extraction 

The input signal is divided into individual segments by sliding window. Feature vector is calculated for every 

particular segment. For the purpose of our work the Hamming window is used. Although the Figure 5.5 

simplifies that there is no overlapping between windows, in practice, overlapping is used because of better 

suppressed influence of the side bands. As appropriate parameters for the detection of Chiffchaff we use 30 

[ms] length windows, with a step of 15 [ms]. Feature vectors for particular segments form 

 
 1 2, ,..., TX x x x

,  

where . 

Every feature vector consists of M parameters  

 

 
 1 11 12 1, ,..., Mx x x x

  

 

where M denotes the total number of parameters. In addition to MFCC parameters several others are usually 

caltulated, such as energy parameters, etc. For the purpose of our work we use M ≥ 20 that consist of MFCC, 

Delta and energy parameters. Over time t, P is the total number of parameters resulting from 

 

  .  (5.18) 

 

Most important methods used for speech parameterisation are Mel Frequency Cepstral Coefficients (MFCC) 

and Linear Prediction Coding (LPC) [NAI09]. Both have good computable efficiency and give short-term 

parameters calculated from a quasi-static signal extracted from a sliding window.

(5.14) 

(5.15) 

(5.16) 

(5.17) 
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6 Speaker verification system PVM 

6.1 Overview 

For purposes of this work we use tool called PVM. The system was developed by Aleš Padrta and Jan Vaňek 

from the Department of Cybernetics, Faculty of Applied Sciences in Pilsen. Currently, the system is being 

further developed and maintained by Lukas Machlica. The software was written in C++ and is used for 

solving the speaker verification tasks. 

6.2 Process flow 

Verification task is divided into four stages: 

1. PRM. Parameterization of all input files. 

2. UBM. Creation of an UBM model. 

3. GMM. Adaptation of UBM/GMM models. 

4. VERIFY. Test phase of a speaker verification task. 

Flow diagram of PVM processes is shown in Figure 6.1.  

 

 

Figure 6.1: Function of PVM, flow diagram 

 

In the first stage of parameterization corresponding parameters are extracted for every input *.wav file. 

These parameters are saved into *.prm files. In the next stage ModelUBM, a model of UBM is computed, and 

saved as bg.gmm file. Then follows an UBM/GMM model adaptation, based on incoming data. At the last 

stage, named verification, defined pairs of songs are tested against each other. The probability of match for 

every couple is computed and the results are recorded into result.txt. 
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6.3 Input and output data 

Table 6.1 summarizes input and output data of all process stages. The recorded *.wav files, listed in 

configuration files, are entered into the parameterization PRM stage. Further stages use data created here, 

and finally the last stage, verify, writes results into the results.txt file.  

Process Input 

directory 

Input 

files 

Output 

directory 

Output 

files 

PRM WAV\ *.wav 

UBM_DIR\ 

GMM_DIR\ 

TEST_DIR\ 

*.prm 

UBM PRM\UBM_DIR\ *.prm UBM\ bg.gmm 

GMM PRM\GMM_DIR\ *.prm models\ *.gmm 

VERIFY PRM\TEST_DIR\ *.prm VERIFY\ result.txt 

Table 6.1: Speaker verification system PVM, inputs and outputs 

 

6.4 PVM results 

The PVM computes the probability of song/speech pair similarity. The probabilities are written into the file 

results.txt. Table 6.2 shows PVM output data. In the first column result.txt probabilities are copied from the 

result.txt file. In the second column tested couple couples of tested songs are placed, where the letter 

represents a bird individual while the number labels particular bird record. Last column describes the 

decision made by the supposed threshold Θ=0, see chapter 7.1. If the value of threshold is lower than 0, the 

result is rejected and vice versa.  

content of 

file 

result.txt 

 tested 

couple 

result description 

-2.177158 A01-B01 reject 

0.49978 A01-A21 accept 

2.836717 A02-A07 accept 

1.461095 A02-A22 accept 

-2.14189 A01-B06 reject 

-0.012654 A01-A22 reject 

Error: False reject 

-3.909118 A02-B08 reject 

0.328327 A02-D03 accept 

Error: False accept 

-4.295674 A01-C07 reject 

4.007644 A01-A04 accept 

Table 6.2: Example of content of output file results.txt.  
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In Table 6.2 for the column „tested couple, the letter represents bird individual, the number nr. of a particular 

bird’s record, for instance: 

A01… bird individual A, record number #01 

A02… bird individual A, record number #02 

C22… bird individual C, record number #22 

 

6.5 Using the PVM 

The PVM doesn’t require an installation. It is ready for both 32-bit and 64-bit OS. The system is running on 

Windows Vista and Windows 7. Before starting the application it is necessary to set up configuration 

parameters and to determine the input files. For details see Table 6.3.  The PVM runs in CMD (Window 

Command Line). Programme continuously prompts status as well as progress of current operation.  

 

File Content 

Param_KW.ini Set up the parameters of parameter vectors extraction. 

For instance length of window, overlapping, number of MFCC 

parameters, switch on/off the pre-emphasis, etc. 

filelist_test 

 

List of *.wav files to be tested.  

The files will be compared with trained speaker/bird (Target) during 

Verify/Test stage. 

filelist_train 

 

List of *.wav files to be system trained for. The Target speaker/bird. 

The files will be compared with trained speaker/bird (Target) during 

Verify/Test stage. 

filelist_ubm List of *.wav files from which UBM’s model will be created.  

Model_KWGMM.ini Set up the parameters for an UBM model creating process. 

For instance Number of Gaussians, etc. 

Model_ADAPT.ini Set up the parameters for a target speaker/bird model creating process. 

For instance type of adapting (MAP, MLLR,…) , etc. 

Verify.ini Set up the parameters of Verification (Test) process. 

For instance Threshold, format of results written in results.txt, etc. 

Trials.ndx List of pairs of files which will be compared together. 

For every couple is computed final probability of similarity in to 

results.txt file. 

Results.txt List of computed probabilities for every tested pairs. 

Table 6.3: PVM, configuration of the speaker/bird verification 
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7 Experiments 

Only the first set (year 2011) of records has been used so far. DET curve (Chapter 7.1) was selected as the 

measurement of successful methodology of the system accuracy. Achieved results are encouraging. If 

suitable parameters are found, ERR could be depressed below 12%. The aim of the experiments is to achieve 

automatic recognition of birds by using the PVM system. All data sets will be used in the future. The main 

goal is to identify avian individuals using records of chiffchaff not just over months but over years.  

First the evaluation methodology is described, followed by methodology of data recording and organization 

into three sets description. Last subchapter deals with some examples of achieved results. 

 

7.1 Evaluation methodology 

Four different situations may occur during the Speaker verification task, see Figure 7.1. 

 

 

Figure 7.1: Speaker verification task: False and correct decision 

 

For successful description of the system a special type of errors was introduced. The first is False acceptation 

RFA(Θ) which expresses an average number of false acceptations. The second is called False rejection 

RFR(Θ). It counts for an average number of false rejections [PSU06]. 

Incorrect acceptance error RFA(Θ) is defined as 
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where nFA is the number of cases when the system incorrectly accepts impostor and nIM is the total number of 

cases where an impostor has been tested.  

Incorrect rejection error RFR(Θ) is defined as 
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where nFR is the number of cases when the system incorrectly rejected the Target (right speaker/bird) and 

nTRGT is the total number of cases when the target was incorrectly rejected.  

(7.2) 

(7.1) 
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Setting the threshold Θ affects the total number of RFA and RFR. Increasing the threshold reduces the false 

acceptance error rate FA, but it simultaneously increases the false rejection FR error. This happens because 

the system requires a higher probability of similarity. In contrast, if the threshold is lower, the FR error 

decreases, but the FA increases as the system needs lower probability of similarity to get accepted. This 

leverage effect is summarized in Table 7.1. Both errors are called operating point [PSU06]. 

 

Highest Θ 
RFA(Θ) decrease 

RFR(Θ) increase 

Lowest Θ 
RFA(Θ) increase 

RFR(Θ) decrease 

Table 7.1: Level of threshold Θ value and error rates 

 

Equal Error Rate (EER) is used for single number evaluation of the system, which indicates the threshold 

value ΘEER at which are both equal. It is defined as 

 

 
   EER FR EER FA EERR R R   

.  

 

In real experiments, however, a threshold Θ must be set first, where after the decisions and RFA and RFR errors 

can be calculated. Finding the threshold ΘEER can therefore be very difficult.  

For quoting the system success rate by one number the curve DET (Detection Error Trade-off Curve) is used. 

Error rates are here plotted as a function of the threshold [BIM04]. The advantage of the DET curve is a good 

readability especially for low differences between the errors. Another advantage is good distinction when 

more curves are plotted at once. This is useful when different system parameters are set and optimal values 

are sought. 

7.2 Recording 

The bird recording starts at about 5AM. The ornithologist takes a place at a suitable distance from the bird. 

He or she turns the microphone at an avian and starts up the recording. The recording then runs without 

interruption for several minutes. Typical recording time is between 3 and 15 continuous minutes. It is usual 

that during recording which takes a longer time a bird flies away to another location. The ornithologist then 

has to walk (as slowly and quietly as possible) with a microphone following the bird to stay closer.  

Used records were made at a clearing on the border of a county town České Budějovice. Time of recording 

was usually between 5AM and 8AM. 

Because of all that facts the main features of the recording are: 

 Noise. The records contain many noises. The sound of traffic, wail of engines, occasionally a sound 

of a military jet. 

 Sound of forest background. Although recorded near a town the background of record sounds like 

forest. The records contain sounds of other birds, insects, woodpecker’s pecking etc. 

(7.3) 
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 Not only one bird may sing at the same time. Because the recording takes place in a clearing where 

many nests of chiffchaff are located, the records may sometimes contain two or more birds singing 

at one time. However, when more birds sing at precisely the same time the vocal of the target bird 

is usually much louder than of unwanted birds. 

 Variable level of a bird song record. When the bird changes location the level of the recorded song 

varies. 

 Unusual noises. Sometimes an unusual noise is recorded. For instance a wood crackling when 

ornithologist moves to remain near a bird. Sometimes it is an ornithologist speech when recording 

geographic data by voice. 

7.3 Data sets 

The experiment uses data set of bird individuals Chiffchaff (Phylloscopus collybita (Lat.), Budníček menší 

(Czech) and Willow Warbler (Phylloscopus trochilus (Lat.), Budníček větší (Czech). The records were made 

by ornithologists of the Faculty of science of University of South Bohemia, led by Pavel Linhart. 

The data/records are divided into a three data sets which were named as follows: 

1. Chiffchaff_2011 

Contains records from spring 2011. The data has very good quality despite background noise. 

2. Chiffchaff_08-10 

Contains records from between years 2008 and 2010. The data has not very good quality because of 

heavy background noise. 

3. Chiffchaff_2012 

Data not recorded yet. Expected data quality similar to set Chiffchaff_2011 

 Detail parameters of recorded songs collected in data sets 1 and 2 are listed in Table 7.2. and Table 7.3. 

Sampling frequency 
originals were  recorded at 44,1 [kHz]  

for PVM system are used records oversampled at 22.050 [kHz] 

Distance during recording 5 to 20 [m] 

Background noise 

30 to 70 [dB] 

high level of noise occur occasionally only (acceleration of 

trolleybus, jet, ) 

Number of records per a male 
4 to 22. 

In average 9 records per individual 

Length of record 
30 [s] to  15 [min] 

in average 6 [min] 

Number of songs per one record 5 to 30 

Number of records in total 132x 

Data size 2,7 GB (22,5 kHz) 

Overall quality of the records 

in data set (clarity and 

distinctiveness of the songs) 

Very good 

Table 7.2: Data set a „Chiffchaff_2011“ 
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Detail parameters of recorded songs collected in data set „Chiffchaff_2001“ are listed in Table 7.2.  

Sampling frequency 
originals were  recorded at 44,1 [kHz]  

for PVM system are used records oversampled at 22.050 [kHz] 

Distance during recording 5 to 20 [m] 

Background noise 

30 to 70 [dB] 

high level of noise occur occasionally only (acceleration of 

trolleybus, jet, ) 

Number of records per a male 
4 to 22. 

In average 9 records per individual 

Length of record 
1 [s] to  15 [min] 

in average 6 [min] 

Number of songs per one record 5 to 30 

Number of records in total 132x 

Data size 2,7 GB (22,5 kHz) 

Overall quality of the records 

in data set (clarity and 

distinctiveness of the songs) 

Good 

(worse than in Set 1) 

Table 7.3: Data set 2 „Chiffchaff_08-10“ 

 

Both tables describe basic data of the records transferred by ornithologist to PVM. No editing was performed. 

All data was recorded in terrain continuously under real circumstances, it is noisy, more than one bird may 

sings in time, distance between ornithologist and birds is changing during recording. 

We can use the data in a three ways: 

1. Continuous record. Whole recording is used in PVM with no cuts, noise cancelation , etc., see 

Figure 7.2 

2. Single songs. Single songs are cut out from the recordings, see Figure 7.3. 

3. Combination of both, single songs and continuous records. 
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Figure 7.2: Continuous record, Chiffchaff 

 

 

Figure 7.3: Single song, Chiffchaff 

 

7.4 Initial results 

For the first experimental phase there is a first set of data Chiffchaf_2011 only. Moreover we used the 

continuous recording, with no edit (cut, split, clear etc.). Speaker/bird verification was performed. At the 

beginning only one bird was selected as Target one. Half of the targeted bird records were used for training 

the system. The rest serves for the verification/testing phase. One third of the total number of records was 

used for UBM model set-up. Remaining records were used to test the system. Duration of a task bird/speaker 

verification varied according to the number of records and their length. On average, the duration of one task 

was from five minutes to an hour. Preparation of the experiments took minutes to tens of minutes.  

Final evaluations of an experiment are made on Excell spread-sheet and Matlab. In Excel there are ready-to-

fill structures where data are inserted. Subsequently, the spread-sheet automatically determine the right 

decision (accept, reject) by file names. Correct results are compared with Result.txt, both FR errors and FA 

are calculated in Excel. The DET curve is plotted in Matlab.  

For the future the plan is to automate the preparation of experiments, especially the creation of pairs, which is 

very time consuming. Also, the evaluation of experiments should be more automatic. Advantage could be 

taken from the appropriate linking of Excel and MATLAB for example.  
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7.4.1 Experiment example 1 

Set up of the basic parameters : 

Parameter Value 

Length of Hamming window [ms] 20 

Shift of window [ms] 20 

Number of filters 5 

Table 7.4: Example 1, values of basic parameters 

 

Number of compared pairs was 876. Achieved result EER=24,24 % 

 

Figure 7.4: DET curve, example 2 

Comment:  

Length of a window is set up efficiently. However the number of filters is very low.  

 

7.4.2 Experiment example 2 

Set up of the basic parameters : 

Parameter Value 

Length of Hamming window [ms] 30 

Shift of window [ms] 30 

Number of filters 20 

Table 7.5: Example 1, values of basic parameters 

 

Number of compared pairs was 876. Achieved result EER=13,64 % 
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Figure 7.5: DET curve, example 1 

Comment:  

Length of a window is too long. Number of filters is set up better then in previous example. Achieved ERR 

of the PVM system is good for practical use. 

 

7.4.3 Experiment example 3 

Set up of the basic parameters : 

Parameter Value 

Length of Hamming window [ms] 20 

Shift of window [ms] 20 

Number of filters 20 

Table 7.6: Example 1, values of basic parameters 

 

Number of compared pairs was 876. Achieved result EER=10,61 % 

 

Figure 7.6: DET curve, example 3 
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Comment:  

Both length of the window and the number of filters is set up correctly. The value EER of 10% is very good 

for practical use. 
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8 Conclusions 

This thesis report outlines theory and framework for future work, dealing with research of using GMM/UBM 

for individual verification and identification of birds. The system PVM of Department of Cybernetics, 

Faculty of Applied Sciences in Pilsen is used as a tool. Three main goals can be underlined: 

First, the practical experiments use real data which are recorded in the open air under common 

circumstances. The data is used raw as recorded. No editing process is used, for instance noise cancelation, 

cutting, gluing, equalization. Verification uses both continuous records and single songs.  

Second, the experiments focus on recognizing bird individuals through months or even years. 

Third, only a limited database of records exists for our disposal. In contrary to speaker verification a number 

of birds record is always limited. While creating a database of human voices is theoretically unlimited, the 

researcher needs only „time and money“, building up a database of songs of a particular bird is strictly 

limited. Recording depends on season, weather, bird mood and condition, accessibility of a nest, and on 

many more influences, at least on random. 

Based on our knowledge this work is the first for bird verification and identification using real raw data. Tool 

PVM is used incorporated into the GMM/UBM system. Future work will develop methods outlined in this 

thesis report. The goal is to prove the possibility of bird recognition and to find a suitable method to 

supersede ringing by non-contact identification. Desired value of EER is 15% and lower. 

 

Automatic bird identification offers a wide spectrum of application, for instance: 

 Territory survey 

Researcher installs automatic record machines (start up when level exceed a limit) near nests. The 

recorders don’t need an operator. He or she downloads records after a while then uses them for 

automatic recognition. At present, similar systems are used for night birds recording. However, 

humans are not able to recognize an individual from the records. The data serves only for 

confirmation if there is an owl for instance living in the place. 

 Migration birds mapping  

Ornithologists from different countries could share the data. From these records a database of 

individual birds could be established after a precise bird GMM model register. Than every user of 

this register may verify if recorded bird is included in the register. 

 Inaccessible breeding grounds observation  

After installation of an automatic recorder, data can be collected automatically. After a while 

ornithologist takes the records down. 
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