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Abstract

The automatic speaker recognition made a signi�cant progress in the last two decades. Huge
speech corpora containing thousands of speakers recorded on several channels are at hand, and meth-
ods utilizing as much information as possible were developed. Nowadays state-of-the-art methods
are based on Gaussian mixture models used to estimate relevant statistics from feature vectors ex-
tracted from the speech of a speaker, which are further concatenated into a high dimensional vector
� supervector.

Methods concerning the extraction of high dimensional supervectors along with techniques capable
to build a speaker model in such a high dimensional space are described in depth and links between
these methods are found. The main emphasize is laid on the analysis of these methods and an e�cient
implementation in order to process huge amounts of development data to train the speaker recognition
system. Also the in�uence of development corpora on the recognition performance is experimentally
tested.

Keywords: Gaussian mixture models, support vector machine, supervector, factor analysis, dimen-
sionality reduction, speaker recognition



Abstrakt

B¥hem posledních dvou desetiletí bylo v úloze automatického rozpoznávání °e£níka dosaºeno
výrazných pokrok·. Byly nahrány obrovské °e£ové databáze obsahující tisíce °e£ník· mluvících na
r·zných akustických kanálech. Zárove¬ byly vyvinuty metody, které se snaºí z t¥chto dat extrahovat
co nejvíce informací. Nejmodern¥j²í metody jsou zaloºeny na modelech Gaussovských sm¥sí. S jejich
pomocí jsou z p°íznakových vektor·, extrahovaných z °e£ových dat °e£ník·, po£ítány statistiky. Tyto
statistiky jsou následn¥ z°et¥zeny/pospojovány do vysokorozm¥rných vektor· � supervektor·.

Práce se zabývá podrobným popisem metod extrakce vysokodimenzionálních supervektor· spole£n¥
s technikami jejich modelování. Hlavní d·raz je kladen na analýzu t¥chto metod, jejich propojení,
a protoºe je p°i trénování systému rozpoznávání °e£níka pot°eba zpracovat velké mnoºství vstupních
dat, i na jejich efektivní implementaci. Experimentáln¥ je také vy²et°en vliv dat pro trénování na
kvalitu rozpoznávání.

Klí£ová slova: model Gaussovských sm¥sí, support vector machine, supervektor, faktorová analýza,
redukce dimenze, rozpoznávání mluv£ích
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Chapter 1

Introduction

In the 20th century a massive boom of technological progress has begun. With the arrival of
computers more and more tasks, involving complicated mathematical approaches, become solvable.
Mathematical algorithms have been spread and successfully applied to many scienti�c branches,
among others, to Speaker Recognition (SR). The domain of SR was until then fully in the hands
of phoneticians and the main interest of SR laid in the area of forensics. However, it has been shown
that SR may be applied to many other newly formed tasks. E.g. in the task of speech recognition the
speaker's identity can be utilized to adjust a speaker independent model to better �t the voice of the
talking person. Another usage of SR can be found in problems where huge databases of spoken speech
are searched through and only utterances originating from one speci�c speaker/source are requested
(e.g. in telecommunications or in security domains).

The task of speaker recognition is usually divided into problems of identi�cation and veri�cation.
In the veri�cation case a decision has to be made, whether the speaker really is who he claims to
be. Thus, it is a one-to-one comparison. In the case of identi�cation a set of reference speakers with
known identities is given. The task can be further divided into closed set identi�cation and open set

identi�cation. If the closed set identi�cation is considered, we assume that the unknown speaker is a
speaker from the set of reference speakers. In the open set identi�cation such an assumption is broken1.
The problem of SR can be distinguished also upon the dependence on the text content inherent in
the speech. The text-dependent SR focuses on special phonetic events (e.g. vowels, syllables, phrases
or words) present in the spoken speech, whereas the text-independent speaker recognition puts no
limitation on what has been said.

Generally, the speech sound is a product of air expiration from lungs and of a Vocal Tract (VT)
con�guration. An important assumption concerning biometrics (e.g. the usage of SR in forensics) is
that the VT and its con�guration when a speech sound is produced changes between speakers, and
in fact it is assumed that these characteristics are unique. Hence, the task of SR may be stated as an
e�ort to capture speci�c shapes of VT through investigation of the acoustic sound wave produced by
the speaker.

The problem of automatic SR can be divided into several phases:

1. Feature extraction � the varying time sequence of samples (amplitudes of recorded speech waves)

1Note that in all the cases a one-to-one comparison is performed and a veri�cation score is computed given recordings
of two speakers (the unknown and the reference speaker). The veri�cation score is further processed according to the
stated task: closed set identi�cation � the unknown speaker is the reference speaker with the highest veri�cation score;
open set identi�cation � after the most similar speaker from the reference set of speakers is found, the veri�cation score
is compared to a veri�cation threshold, if the score is higher than the threshold the identity is veri�ed, denied otherwise.
Therefore the terms speaker recognition and speaker veri�cation will be often interchanged, and in the context of this
thesis no di�erence is made between them.
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is processed to gain information regarding the speaker's identity, and feature vectors are ex-
tracted. Feature vectors lie in a feature space � more precisely in speaker speci�c feature
subspaces.

2. Modelling stage � a model is build in order to capture relevant dependencies/properties in the
feature set of each speaker.

3. Recognition phase � given a speaker (target) model and a set of feature vectors of an unknown
(test) speaker a recognition score is computed and further handled according to the stated task
(veri�cation/identi�cation).

However, nowadays the border between individual phases is not clear; i.e. in the feature extraction
process also models can be trained in order to extract higher level features (will be described soon),
instead of working with feature vectors models can be extracted also for test speakers and in the
recognition phase models are compared. Moreover, all of these phases often incorporate variety of
normalization techniques, which will be described in Section 5.

The feature extraction process can be regarded as the �rst and the most important step for further
manipulation with the data, which can be:

1. Classi�cation � a set of classes is given and each feature has to be assigned to one of them.
Thus, it would be wise to choose features in such a way that the between-class variation would
be as high as possible and the within-class variation would be as low as possible.

2. Representation � we want to extract features that capture the true nature of the data; we may
not care whether extracted information is shared in greater extent between all classes/speakers,
and therefore does not contain any discriminative information (is not suitable for classi�cation).

Both tasks signi�cantly overlap and they both assume and should also re�ect the understanding
of behaviour, structure, correctness of the data, etc. Complications like channel distortions, data
corruption, noise presence and others also have to be considered. It is a very common practice to
impose some presumptions (e.g. on independence or distribution of samples) to facilitate the solving
of the problem. Thus, the true nature of the data can be distorted and some inaccuracies may come
forth. Obviously, the feature extraction process has to be carried out with caution and should be
preceded by succession of experiments, which would reveal the mentioned characteristics of the data.
Lot of feature extraction techniques concerning the spoken speech have been developed through time.
The aim of this thesis is the modelling of features in the feature space, therefore the reader is referred
to works [1, 2, 3] concerning the process of feature extraction from an acoustic sound wave.

Once feature vectors have been extracted, a model is estimated for each speaker. For more than
a decade Gaussian Mixture Models (GMMs) dominated the task of SR. They belong to the class
of generative models since samples can be drawn given an estimate of model parameters. Another
example of a generative model is Hidden Markov Model (HMM), which in addition captures the
dependence of successive feature vectors. These methods will be discussed in Chapter 2. Nowadays,
GMMs play still an important role in the state-of-the-art speaker recognition systems, however they
are used mainly to delimit and split up the feature space according to level of interest, and to extract
data statistics related to distinct parts of the feature space. This is done via estimation of an Universal
Background Model (UBM) comprising many GMM components and trained on a huge amount of
development data. All the acoustic conditions in which the system will be used should be covered.
Loosely speaking, UBM should model the acoustic environment of a speci�c SR task. Subsequently,
given an UBM, statistics of extracted feature vectors of a speaker, related to distinct parts of the
feature space (i.e. to individual Gaussians in the UBM), are estimated. Next, a supervector (SV)

2
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is formed by concatenation of these statistics in accordance with GMM components in the UBM,
yielding the SV of substantially high dimension.

For example, given a set of feature vectors of a speaker and a trained UBM, Maximum A-Posteriory
(MAP) adaptation discussed in Chapter 3 is used to estimate a GMM of this speaker. In order to get
a SV, means of the MAP adapted GMM are concatenated. The MAP adaptation allows that parts
of the UBM that represent only the acoustic environment remain unchanged for all the speakers.
Moreover, in the adaptation process we are able to track changes of each UBM Gaussian (mixture
component), more precisely we are able to determine, in which direction and how far has been each
of the mixture components moved to �t the speaker's data. Extraction of several types of SVs is
explained in Chapter 4.

Note that the extraction of SVs can be seen as a higher level feature extraction, where already an
estimation phase of a generative model (UBM) was incorporated.

Simultaneously two techniques to handle the high dimensional SVs were proposed. The �rst is
based on Support Vector Machines (SVMs) as a discriminative trainer described in Section 2.3.1,
which have very good generalization properties and are well suited for the task of modelling when
only a few (in the case of SVs often only one) examples/supervectors of a speaker/class are available.
Since both generative (UBM/GMM) and discriminative (SVM) modelling are utilized, the techniques
comprising GMM based SVs and SVMs are also known as hybrid modelling [4]. The concept of SVs
and SVM was further extended by the Nuisance Attribute Projection (NAP) addressed in Section 5.7,
which is used to suppress undesirable channel variabilities between sessions (recordings on distinct
channels) of one speaker. NAP is based on an orthogonal projection, where directions most vulnerable
to environment/channel changes are projected out.

The latter technique (more precisely, a set of techniques) is based on Factor Analysis (FA) and
generative modelling, and it is discussed in depth in Chapter 6. The idea is that since the dimension-
ality of SVs is in comparison with the number of development speakers very high, many dimensions
have to be correlated with each other. Hence, the e�ective information on the identity of speakers
has to lie in a much lower subspace. Moreover, since several sessions of one speaker are available, one
could determine not only the speaker identity subspace, but also the channel/session subspace, which
should be also of a much lower dimension. These principles were incorporated into a method called
Joint Factor Analysis (JFA), where the word joint refers to the fact that not only the speaker, but also
the channel variabilities are treated in one JFA model. However, experiments in [5] have shown, that
the channel/session subspace does still contain some substantial information concerning the identity
of a speaker. Therefore, JFA was extended to the concept of i-vectors discussed in Section 6.4. The
main di�erence between JFA and i-vectors is that i-vectors do not distinguish between the speaker
and the channel space. They work with a total variability space containing simultaneously speaker
and channel variabilities, whereas JFA treats both spaces individually. Details on both techniques
can be found in Chapter 6.

Independently of JFA a method called Probabilistic Linear Discriminant Analysis (PLDA), de-
scribed in Section 6.2, has been developed in the computer vision to tackle the problem of face
recognition. PLDA is very similar to JFA, it decomposes the feature space to speaker and channel
dependent subspaces, but rather than GMM based SVs ordinary feature vectors are utilized. The
di�erence between GMM based SVs treated in JFA/i-vectors and ordinary vectors is that distinct
dimensions of GMM based SVs are weighted when estimating the subspace decomposition, details are
given in Section 6.3.1. Since PLDA is a generative model, it allows to compute the probability that
several i-vectors originate from the same source, and thus it is well suited as a veri�cation tool for a
speaker recognition system [6].

The system examined in this thesis will use SVs, SVMs, i-vectors and PLDA models along with
distinct normalization techniques.
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1.1 Aim of the Thesis and the Novelties

Generally, the thesis is devoted to the problem of modelling of feature sets for classi�cation in
situations where lots of data are available, but the work will be strongly oriented toward the task of
open set, text independent speaker identi�cation.

The crucial problem when implementing a state-of-the-art SR system composed of modules such
as JFA, SVM, i-vector extractor or PLDA is that huge amount of development data from a lot of
speakers are required, moreover several sessions have to be available for each speaker in order to train
a reliable model. Therefore three main problems are faced in this thesis: acceleration of algorithms,
in�uence of development data on the performance of the SR system, and connections between presented
methods. However, the goal of the work is also to describe, explain and understand the principles of

individual modelling techniques in a wider context.

In relation to the main goals mentioned above following novel approaches are presented in this
work:

1. As mentioned earlier, when preparing a SR system at �rst UBM has to be trained from a huge
amount of development data (several thousands of hours, see Section 7.1). The estimation
process is based on Expectation Maximization (EM) algorithm based on maximization of the
data likelihood given the model. Moreover, the data statistics from the EM algorithm are
utilized also in adaptation algorithms (e.g. MAP adaptation), which are used to extract SVs.
Hence, it is in great demand to have a really fast and robust implementation. For this purpose
parallel technologies like supercomputers, clusters, grids, and cloud infrastructures may be
utilized. However, in order to fully exploit the potential of the computing power, the algorithm
has to be parallelized in a proper way and the memory management has to be handled too.
Since supercomputers are not easily and broadly available, we have focused on the computing
power provided by the Graphics Processing Unit (GPU), which developed through time to a
highly parallel and computationally powerful tool for high performance computing [7]. GPUs
are widespread and easily available for a reasonable price. For all this reasons in Chapter 8
a highly e�cient parallel implementation on a GPU is proposed leading to a hundreds times

faster EM algorithm and statistics extraction for UBM, GMM and SV estimation. Since this
chapter contains the (GPU) implementation of an estimation algorithm without any theoretical
background, but the results are of high signi�cance, the last chapter is devoted to its description
rather than a section in the appendix.

2. Next novel approach concerns the PLDA model estimation, where each speaker/individual has
to contain several examples/sessions. The one described in [8] is extremely slow mainly for
high dimensional feature vectors containing distinct numbers of examples for each individual.
In addition, the operating principle of the method stays hidden. Utilizing theorems from linear
algebra concerning the inversion of matrices along with some suitable rearrangements of formulas
and noticing the stand-alone summation terms a much more e�cient training algorithm is
proposed in Section 6.2.2 and Section 6.2.3. In addition, the background of the algorithm is
clari�ed. The revisited algorithm is thousands time faster than a naive implementation assuming
a large dataset to be processed, see Section 7.7.3.

3. Two kinds of methods dominate the task of speaker recognition: based on eigenvector decompo-
sition such as Principal Component Analysis (PCA) and Nuisance Attribute Projection (NAP,
described in Section 5.7), and based on Factor Analysis (FA). Therefore a special section is de-
voted to the analysis of their similarities and dissimilarities. Formulations of both methods are
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converted to the problem of Least Squares (LS), and in the light of LS they are simultaneously
analysed. All the details are given in Section 6.5.

4. In Chapter 7 experiments on state-of-the-art SR systems are performed utilizing data from
NIST Speaker Recognition Evaluations (SREs) 2008 and 2010. It is shown in what extent do
additional normalization techniques help to decrease the error rates, results are analysed, and
also the dimensionality reduction of SVM models is examined in Section 7.6. Since SVM is used
to train a speaker model associated with a speaker dependent SV, kernels (used to map � in a
linear or non-linear way � input vectors to some other favourable feature space) proposed for
SVs related to UBM are tested and the results are inspected.

5. Since huge amounts of development data are available, the question is how does a system behave
when the amount of development data changes. The focus is laid on the system based on i-
vectors and a PLDA model. Several development subsets are created and one PLDA model
is trained for each of them. Moreover, two alternatives are experimentally tested: pooling all
the development data and training one PLDA model, or training one PLDA model for each
development subset and fusing the veri�cation results. Experiments in Section 7.7 are provided
with analysis of the results.

6. Finally, the complementarity of implemented methods is examined in Section 7.8. Since a variety
of methods was tested based on generative and discriminative modelling, subspace decompo-
sition, dimensionality reduction, etc. the combination of these methods/systems should bring
additional improvements to the recognition unless one of the techniques signi�cantly outper-
forms the rest of the methods. Experiments are provided with the discussion on the di�erences
between tested methods.
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Chapter 2

Classi�ers

The classi�cation can be seen as a mapping of feature space vectors into a �nite set of labels
(classes/clusters). The basic assumption is that the vectors does form clusters. In the speaker
recognition such an assumption is met, however it may be that the clusters cannot be recognized.
Each speaker s can be regarded as a separate class, and the set of (parametrized) speaker data Xs

as the set of respective feature vectors. The task of a classi�er (decision function) D(x) is to decide
on the pertinence of an input data to one of the classes (speakers), hence label the input data in
agreement with a set of reference labels ys assigned to reference speakers. For the sake of clarity
let's state, that reference speakers are those speakers whose data were seen during the training of a
classi�er. In this chapter we will assume (without the loss of generality) that each portion of data
corresponds to one of the given classes (e.g. each speaker's data were seen during the training). The
classi�er can be expressed as a mapping in the form

D : X 7→ Y , Y = {y1, . . . , yQ}, yq = D(x) , (2.1)

where Y is the �nite set of Q reference labels, and X represents a set of feature vectors spread in the
feature space according to a probability density function p(X). In the following, the concept of an
Bayes Optimal Classi�er (BOC) will be discussed, which can be thought of as a theoretical base of
the classi�cation task. Subsequently the parametric and nonparametric algorithms will be described
and the main emphasis will be laid on parametric statistical models (e.g. Gaussian Mixture Models)
and nonparametric linear discriminants (e.g. Support Vector Machines).

2.1 Optimal Classi�er

From the theoretical point of view an optimal classi�er should minimize the overall risk R given
as [9]

R(D) =

∫
X
R(D(x)|x)p(x)dx (2.2)

where R(D(x)|x) represents the conditional risk,

R(D(x)|x) =

Q∑
q=1

l(D(x)|yq)p(yq|x) , (2.3)

where l(yi|ys) is the loss that will be taken when the feature vector x belonging to the class ys will
be labeled as yi, hence classi�ed into the ith class. The loss can be regarded also as a cost function
c(x, ys,D(x)) for D(x) = yi, penalizing misclassi�cations so that the following holds

c(·, ·, ·) ≥ 0 and c(·, ys, ys) = 0 . (2.4)
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Figure 2.1: The a-posteriori probability distributions for classes y1, y2 and y3 given the feature vector x. The bold lines
represent the optimal decision rule that should the optimal classi�er D∗ obey.

Now, the optimal classi�er D∗ should be chosen in order to minimize the following form

R(D) =

Q∑
q=1

∫
X
c(x, yq,D(x))p(x, yq)dx . (2.5)

Assuming Y continuous, open set of labels, the preceding equation can be rewritten as

R(D) =

∫
X×Y

c(x, y,D(x))dP (x, y) . (2.6)

Thus, all possible pairs of feature vectors and labels are considered and rated while (2.4) holds. One
of the popular cost functions is the zero-one loss function de�ned as

c(x, ys,D(x)) = l(D(x)|ys) =

{
0 if D(x) = ys
1 if D(x) 6= ys

, (2.7)

hence it penalizes only the incorrect classi�cations. The conditional risk becomes now

R(D(x)|x) =

Q∑
q=1

p(yq|x)− p(ys|x) = 1− p(ys|x) . (2.8)

It can be seen, that the conditional risk (so the overall risk) is minimized when the involved classi�er
D assigns a vector x to the class with maximal posterior probability given x. Hence, the optimal
classi�er D∗ is chosen according to the rule

D∗(x) = arg max
yq ∈ Y

{p(yq|x)}, ∀x ∈X . (2.9)

Such a rule is also known as optimal Bayes or optimal Maximum A-Posteriori (MAP) decision rule.
Note that the overall risk represents now the probability of an error. The optimal Bayes decision
rule is strictly optimal in the sense of minimizing the probability of an error, and only optimal for
minimizing the overall risk subject to the 0-1 loss function [10]. An example of an optimal decision
rule when three classes are present is shown in Figure 2.1.

Regrettably, prior and posterior distributions of X and Y are unknown. Therefore, none of the
before mentioned equations can be evaluated. However, in real-life applications each problem goes
along with some examples. If the examples would not exist, the problem would not exist as well
(no information = no problem). Such examples are called training data and are the only submitted
source of information. Thus, only approximations of the optimal classi�er can be found, whereas the
accuracy is strictly dependent on the quality of the training data (i.e. how well do they represent
their parent class).

7
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2.2 Parametric Classi�ers

Parametric classi�ers try to build a structure upon the data in the training set to learn the prior
and posterior probabilities discussed in the previous section. The idea is to estimate a model (e.g.
statistical) that represents each class, and compute the decision rule (2.9) indirectly utilizing the
Bayes theorem, where the posterior probability for class yq can be expressed as

p(yq|x) =
p(x|yq)p(yq)

p(x)
, (2.10)

and

p(x) =

Q∑
q=1

p(x|yq)p(yq) (2.11)

is called the evidence. The decision rule (2.9) can be now rewritten into the form

D∗(x) = arg max
yq ∈ Y

{ln p(x|yq) + ln p(yq)} (2.12)

and for equiprobable classes we get

D∗(x) = arg max
yq ∈ Y

{ln p(x|yq)} . (2.13)

The entity p(x|yq) is derived from the training data and is called the class conditional density or class
model. The logarithmic function is involved because of the computational convenience. Classi�ers
based on class models are also denoted as generative. One of the bene�ts is that they can generate
samples of the data through (2.11). We will focus on Gaussian Mixture Models (GMMs) and also the
concept of Hidden Markov Models (HMMs) will be discussed.

2.2.1 Gaussian Mixture Model (GMM)

Gaussian Mixture Models were �rstly introduced to the speaker recognition by Reynolds [11] and
are widely used up to now. For a D dimensional feature vector x the GMM containing M Gaussians
takes the form

g(x) = p(x|λ) =
M∑
m=1

ωmp(x|m,λ) , (2.14)

p(x|m,λ) = N (x;µm,Cm) =
1

(2π)D/2 |Cm|1/2
exp

{
−0.5 (x− µm)TC−1

m (x− µm)
}
, (2.15)

where ωm,µm,Cm denote mth Gaussian weight, mean and covariance, respectively, and

λ = {ωm,µm,Cm}Mm=1 (2.16)

is the set of unknown parameters of the model. There are some restrictions laid on the Gaussian
weights of a GMM in order to preserve the property of a probability distribution function. These can
be expressed as

∀m : 0 ≤ ωm ≤ 1 and
M∑
m=1

ωm = 1 . (2.17)

Generally, the covariance matrix Cm is considered full, nevertheless in praxis often diagonal matrices
are assumed. This is caused especially because of numerical stability and computational costs, these
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can occur mainly in situations when working in higher dimensions. After the class models have been
trained, the label yq in (2.13) is replaced by speaker speci�c model parameters λq and the classi�er is
brought to bear. GMMs are well suited for description of static (context-independent) data sources,
where the time progress of samples is of no interest. In speaker recognition they are used mainly
in text-independent tasks. They delimitate subspaces in the feature space that are characteristic for
individual speakers. To train the GMM an iterative method called Expectation-Maximization (EM)
algorithm may be exploited [12]. It is based on the Maximum Likelihood (ML) approach and tries to
maximize the output probability of the model for submitted training data.

2.2.2 Hidden Markov Model (HMM)

Hidden Markov Models were developed in the 1960's by Baum and his colleagues [13] and have
successfully spread to all the scienti�c branches. Now, the class to which a feature vector is assigned
depends not only on the presented feature vector, but also on values of the other feature vectors
and on relations among various classes [14]. There are several assumptions concerning the HMMs.
Consider a sequence of classes Υ : y1, . . . , yQ, then the Markov model assumes that

• the class dependence is limited within two succesive classes; p(yq|yq−1, . . . , y1) = p(yq|yq−1),

• the feature vectors are statisticaly independent given Υ,

• the probability distributions in one class are independent of the other classes.

The principle of speech modelling according to the HMM comes from the idea that the arrangement
of the vocal tract arises from a �nite set of states, where each state corresponds to a distinct vocal
tract con�guration responsible for a speci�c sound signal. We will focus on HMMs with output
probabilities of states represented by GMMs. Such models are also denoted as Continuous Density
Hidden Markov Models (CDHMMs). Note that in this scenario the classes y1, . . . , yQ can represent
distinct phonemes or some other phonetic events.

The Hidden Markov Model is characterized by a set of parameters Λ = {U ,A,G,π}, where
U = {u1, . . . , uJ} represents the set of J states andA = [aij ] stands for the matrix of state transitions.
Elements in A determine the probability of being in the state i and subsequently moving to the state
j, hence

aij = p(u(t+ 1) = uj |u(t) = ui), i, j ∈ {1, . . . , J} . (2.18)

The column vector π = [πi] represents the initial state probabilities

πi = P (u(1) = ui) . (2.19)

Sometimes even �nal state probabilities are de�ned. And at last, the set G = {λu1 , . . . ,λuJ} de�nes
the GMM parameters (see (2.16)) for the states, though not each of the parameters has to be de�ned.
States with de�ned probability distributions are called emitting states. The non-emitting states are
used when several, separately trained HMMs have to be concatenated (e.g. for each monophone an
individual HMM is trained and subsequently, the HMMs are concatenated utilizing the non-emitting
states to model a word, sentence, etc.).

After the model parameters Λ have been estimated, the HMM output probability can be computed
in the following way. Let X = {x1, . . . ,xN} be the set of N feature vectors, ψ denote a state-level
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Figure 2.2: An example of a left-to-right, �ve state Hidden Markov Model with two non-emitting states s1 and s5. The transition
probabilities are described by aij and the output probabilities of states s2, s3 and s4 are represented by the GMMs (illustrated
below each state).

path through the HMM and Ψ the entire set of such paths [10], then

p(X|Λ) =
∑
ψ∈Ψ

p(X, ψ|Λ) =
∑
ψ∈Ψ

p(X|ψ,Λ)p(ψ|Λ) =

=
∑
ψ∈Ψ

(
N∏
k=1

gψu(k)(xk)

)(
N∏
k=1

aψu(k),u(k+1)

)

=
∑
ψ∈Ψ

(
N∏
k=1

gψs(k)(xk) a
ψ
u(k),u(k+1)

)
,

(2.20)

where gψu(k)(xk) is the state output probability de�ned in (2.14) and the upper index ψ indicates the
presence in the state-level path ψ. Using directly (2.20) is computationally unbearable, therefore
several e�cient methods were developed, e.g. forward-backward or Viterbi algorithm (for details see
[14]). Similarly to the GMM case, the classi�cation is done according to

Λ∗ = arg max
Λ ∈ L(Λ)

{p(X|Λ)} , (2.21)

where L(Λ) represents the set of parameters describing each participating HMM (classi�er). To train
the HMM an iterative Baum-Welch algorithm may be utilized. It is a ML parameter estimation
procedure, basically similar to the EM algorithm. Regrettably a method that would lead to the
global maximum was not found yet, hence it is wise to run the training algorithm several times with
di�erent initial conditions.

HMM classi�ers are well suited and mostly exploited in the text-dependent recognition. However,
they can be utilized also in the text-independent recognition in the form of so-called ergodic models

[15]. In the task of speech recognition, the topology of an HMM depends mostly on the choice of the
linguistic unit (e.g. triphone, monophone, sylable, word etc.) that statistical dependencies should be
captured. An example of a left-to-right, �ve state HMM with two non-emitting states is depicted in
Figure 2.2.

2.3 Nonparametric Classi�ers

Such classi�ers learn decision rules directly from the data. They do not involve class models and
may be more accurate in cases when only a few training data are present. As the evidence (2.11) is
not available, nonparametric classi�ers cannot generate samples of the data. We will focus on linear
discriminant functions of the form

H : f(x|θ) = wTx+ b, θ = {w, b}, (2.22)
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where w is the normal vector of the hyperplane H and the scalar b denotes the o�set, θ are model
parameters. Such a function divides the space into two half-spaces appropriate for two classes y1 and
y2. The output value of the function (2.22) does not de�ne the geometrical distance of the point x
from the hyperplane H, this can be acquired according to

d(x,H) =
f(x)

‖w‖
. (2.23)

The classi�cation obeys the rule

D(x) =

{
y1 if f(x) ≥ 0

y2 if f(x) < 0
. (2.24)

Of course, such linear discriminants behave well when the classes are linearly separable, but such
an assumption is relatively rare and often nonlinear classi�ers are demanded. It is quite di�cult to
ensure good generalization ability of nonlinear classi�ers. However, utilizing training algorithms that
involve so-called kernels, one can extend linear classi�ers also to nonlinear cases. The kernel trick
may be exploited in all the algorithms that approach the data only through dot products. Another
question concerns the requirement laid on the choice of the separating hyperplane. All the before
stated demands are solved in the concept of the Support Vector Machine (SVM).

2.3.1 Support Vector Machine (SVM)

Support Vector Machine was �rstly introduced by Vapnik [16]. The requirement set on the decision
hyperplane H concerns the width of the margin between the two classes that should be separated.
Let us adjust (2.24) in the manner of (2.25).

H1 : wTxi + b ≥ +1 for yi = +1
H2 : wTxi + b ≤ −1 for yi = −1

=⇒ ∀i : yi(w
Txi + b)− 1 ≥ 0 . (2.25)

Hence, we have requested a margin between the two classes y1 and y2. The width of the margin can
be easily computed using (2.23). Thus, |d(0,H1) − d(0,H2)| = 2/‖w‖, where 0 represents a zero
vector (origin). The formulation of SVM demands the widest margin, therefore we are seeking for w
with the minimal norm. To allow errors (points that violate the decision boundaries H1 and H2) and
to relax the constraint of strict class pertinence in (2.25), Vapnik introduced non-negative variables
ξi denoted the slack variables. The constraints become now

H1 : wTxi + b ≥ +1− ξi for yi = +1 ,

H2 : wTxi + b ≤ −1 + ξi for yi = −1 ,

ξi ≥ 0 .

(2.26)

Thus, when an error occures, the slack variable exceeds unity and
∑

i ξi will measure the upper bound
of errors, otherwise ξi remains zero. The term

∑
i ξi represents the cost (loss) de�ned in (2.3). Now,

the problem can be formulated as

minimize

[
1

2
‖w‖2 + C

∑
i

ξi

]
, (2.27)

subject to (2.26), where C is an additional term de�ned by the user to set a cost for errors. There are a
lot of other possibilities how to choose the loss function, e.g. squared-error cost

∑
i ξ

2
i (for other choices

see [17]). An example of the SVM composition is depicted in Figure 2.3. Note that the square of w

11
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Figure 2.3: An example of the non-separable case of the SVM problem. Vectors encapsulated in circles denote support vectors.

was involved in order to ensure convexity of the proposed problem and to guarantee only one, globally
optimal solution. To solve the problem of constrained convex optimization, Lagrange multipliers are
involved, whereas the solution is obtained in its dual form (for details see [18]). Another handy tool
providing useful informations about the solution are the Karush-Kuhn-Tucker (KKT) conditions, well-
known in the nonlinear programming. The Lagrange formula of the primal problem with Lagrange
multipliers αi and βi can be expressed as

LP =
1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi{yi(wTxi + b)− 1 + ξi} −
∑
i

βiξi . (2.28)

Solving the problem (2.28) (seeking for mimimum) results in

∂LP
∂w

= w −
∑
i

αiyixi = 0 ,

∂LP
∂b

= −
∑
i

αiyi = 0 ,

∂LP
∂ξi

= C − αi − βi = 0 ,

(2.29)

with additional KKT conditions

yi(w
Txi + b)− 1 + ξi ≥ 0 ,

αi{yi(wTxi + b)− 1 + ξi} = 0 ,

βiξi = 0 ,

ξi, αi, βi ≥ 0 .

(2.30)

Substituting (2.29) to (2.28) gives us the dual formulation, which has to be maximized, in the form of

LD =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjx
T
i xj (2.31)

subject to (2.30). According to (2.29) the normal vector w can be computed as

w =
∑
i

αiyixi . (2.32)

12
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Thus, the decision hyperplane (2.22) results in

H : f(x) =

(∑
i

αiyix
T
i

)
x+ b = wTx+ b . (2.33)

After inspection of the KKT conditions it is quite clear that αi ∈ (0, C) (consider the third condition
in (2.29) and fourth condition in (2.30)). Furthermore, the second condition in (2.30) implies that
αi is zero for all the vectors that lie on the correct side of the margin, and nonzero only for vectors
that violate the margin (ξi > 0) or vectors lying on the margin generated by hyperplanes H1 and H2

(de�ned in (2.26)). Vectors with nonzero αi are called the support vectors as just they participate
in (2.32). The o�set b cannot be computed directly � it does not occur in (2.29). However, it can
be computed utilizing the second KKT condition in (2.30) choosing any i for which αi 6= 0, but it is
numerically safer to take the mean value of b resulting from all such equations [18].

Note that equations (2.31) and (2.33) depend on feature vectors X = {x1, . . . ,xN} only through
their dot products. Consider a mapping Φ : X 7→ X , where X represents some Euclidean feature
space (even in�nite dimensional). Then, all the dot products in (2.31) and (2.33) may be replaced
by dot products Φ(xi)Φ(xj) de�ned in the space X . Furthermore, utilizing a function K(xi,xj) =
Φ(xi)Φ(xj) all that matters is the output of such a kernel function K(·, ·), the individual mappings
Φ(xi) become unnecessary. Now, the two equations (2.31), (2.33) can be rewritten as

LD =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjK(xi,xj) , (2.34)

H : f(x) =
∑
i

αiyiK(xi,x) + b . (2.35)

It should be stated that the matrix

H = [Hij ], Hij =
∂2LD
∂αi∂αj

= −yiyjK(xi,xj) (2.36)

represents the Hessian matrix, which is used to determine the global maximum of the optimization
problem (2.34).

Some of the most popular kernel functions are

• simple linear kernel: K(xi,xj) = xTi xj ,

• general polynomial kernel: K(xi,xj) = (axTi xj + c)p,

• Radial Basis Function (RBF) kernel: K(xi,xj) = exp(−γ |xi − xj |2), γ > 0.

Of course, many other kernels were developed and tested through the time (kernels utilized in
speaker recognition will be in more depth discussed in Chapter 4). Generally, any function repre-
senting a dot product in some space may be considered as a kernel function. The condition that a
function has to satisfy to be a valid kernel is known as Mercer's condition [16]. Suppose any square
integrable function f(x), ∫

f(x)2dx <∞ . (2.37)

Then K(x, z) is a valid kernel if and only if∫
K(x, z)f(x)f(z)dxdz ≥ 0 . (2.38)

13
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The main aspects of the Mercer's condition are that the kernel function has to be symmetric (K(x, z) =
K(z,x)) and non-negative de�nite.

To train the SVM nonlinear programming techniques are utilized. Many trainers have been already
developed and coded, e.g. Thorsten's SVMlight [19] suitable for sparse data problems (e.g. derivative
kernels � see Section 4.4) or also very popular SVMtorch [20] and LibSVM [21].

Multi-class Problem SVM is inherently a binary classi�er. The pertinence to a class is established
in accordance to the position of a vector on one of the sides of the separating hyperplane, see (2.24).
When several classes are given one-against-all training can be utilized, where in the training process
all the examples from other classes are pulled together and used as negative examples. For each of
the classes yq, q = 1, . . . , Q one hyperplane θq = {wq, bq} is estimated, and the classi�cation of an
unknown vector x is given as

yq = D(x) = arg max
q

(wT
q x+ bq). (2.39)

Another way to train the SVM is the all-pairs technique described in [22]. For each pair of classes
a binary classi�er is trained and the pairwise results are combined at the end. Hence, during the
training of a decision boundary between two di�erent classes the data from other classes are ignored.
Now, for each class yq we get Q hyperplanes (decision boundaries). Obviously, the main disadvantage
of such an approach is the need to evaluate the relative distance (2.22) of a vector from all of the Q
hyperplanes when classifying an unknown vector. This may be computationally expensive in cases
when many classes are present.

Dealing with Unbalanced Data The problem arises when the amount of positive and negative
examples submitted to the SVM training is highly disproportional. This occurs mainly when models
for several classes are trained and one-against-all training is utilized. One of the solutions is to
implement a weighting of misclassi�ed examples directly in the formulation of the SVM problem [23],
thus the formulation of the problem changes to

minimize

1

2
‖w‖2 + C+

∑
i:yi=+1

ξi + C−
∑

j:yj=−1

ξj

 (2.40)

subject to
∀i : yi(w

Txi + b) ≥ 1− ξi . (2.41)

Hence, we are able to adjust the cost of misclassifying positive and negative examples separately �
the setting C+ > C− implies that greater cost is set on misclassifying positive examples and vice
versa. Now, the class with less examples should get higher penalization.

Probabilistic Outputs for SVM The probability outputs are very handy in situations when
several systems are combined in order to obtain an overall decision. The result of the SVM classi�er
is the relative distance from the decision boundary and it is in principle unbounded. Thus, it can
take any values in the interval (−∞,∞), what makes the fusion with other systems ambiguous.

In order to get a probabilistic output of a SVM one can use a GMM to rescale the results [24].
The posterior probabilities p(f(xi)|yq = +1) and p(f(xi)|yq = −1) are estimated utilizing the ML
approach and labeled data. The �nal decision is computed according to the Bayes rule

p(yq = +1|f(xi)) =
p(f(xi)|yq = +1)P (y = +1)∑
j∈{1,−1} p(f(xi)|yq = j)P (y = j)

, (2.42)
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where f(xi) represents the SVM hyperplane, yq represents the class label of xi, and priors P (y = ±1)
are estimated on a training set.

In [25] a frequently used sigmoidal function is used. The probability p(yq = +1|f(xi)) is estimated
as

p(yq = +1|f(xi)) =
1

1 + exp(af(x) + b)
, (2.43)

where a, b control the slope and the position of the in�ection point of the sigmoid, respectively. Both
can be estimated using ML, see [25].
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Figure 2.4: Overtraining phenomena.

2.4 Conclusion and Remarks

When a classi�er is proposed and trained, it is very important to have appropriate testing data,
which were not seen during the training. Consider a GMM with gradually increasing number of Gaus-
sians. The situation is illustrated in Figure 2.4. At the beginning, the error rates acquired on test and
training data will decrease, e.g. Gaussian mixtures with diagonal covariances will try to approximate
the full-covariance case. But when too many Gaussians are employed, the Gaussians will unneces-
sarily oppress each other, each Gaussian will cover less training data (its variance will decrease), and
generalization to unseen data will diminish. Such a problem is known as overtraining. The proper
choice of the number of GMM mixtures is task dependent, relevant factors are dimensionality and
amount of training data.

In this chapter only three classi�ers, important for the successive explanation of the thesis objec-
tives, were presented. Some other successfully exploited parametric classi�ers are Markov Random
Fields (MRFs) or Bayesian Networks (BNs), moreover the Chapter 6 will be devoted to a special class
of generative models based on factor analysis. Systems based on these models represent a state-of-
the-art in the speaker recognition. In the case of non-parametric classi�ers popular Neural Networks
(NN) and Logistic Regression (LR) should be mentioned (for details see e.g. [14]).
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Chapter 3

Adaptation Techniques

The main assumption when using an adaptation technique is that some reliable/robust model
was trained, and we wish to update its parameters according to given data leading to a reasonable
model even in cases when the amount of training/adaptation data is small (one could not train a new
reliable model from the scratch).

Techniques presented in this chapter will adjust the model so that the probability of the adaptation
data would be maximized. Assuming a set of model parameters λ we can write

λ∗ = argmax
λ

p(λ|O1, . . . ,OS) = argmax
λ

p(O1, . . . ,OS |λ)p(λ), (3.1)

where Os = {os1,os2, . . . ,osT }, s = 1, . . . , S, is the sequence of feature vectors related to some mea-
surement s, and λ∗ is the best estimate of the model parameters given the feature vectors. Note that
p(λ) stands for the prior of model parameters λ. In case where the prior is unknown (e.g. parameters
are distributed uniformly) we speak about Maximum Likelihood (ML) estimation, otherwise we speak
about Maximum A-posteriori Probability (MAP) training. The prior is useful mainly in situations,
where the amount of input data is low � ML training would give inaccurate estimates. However, in
following sections also ML training procedures will be described leading to good estimates even in
situations when only a small amount of data for training is available. These techniques are based on
restricting the number of free model parameters to be estimated via clustering of model parameters.

From now on we will focus on Gaussian Mixture Models (GMMs) described in Section 2.2.1, where
the set λ = {ωm,µm,Cm}Mm=1 is the set of GMM parameters, ωm,µm,Cm is the weight, mean, and
covariance matrix of the mth Gaussian, respectively. Note that instead of a full covariance matrix
Cm often only its diagonal σ2

m = diag(Cm) is estimated, where the function diag(X) transforms a
matrix to a vector taking only the diagonal of the input matrix X. The set Os will from now on
represent the set of feature vectors related to the sth speaker. The model λ∗ de�ned in (3.1) is often
denoted as Universal Background Model (UBM) [26], it is trained using the ML approach from a huge
amount of data acquired from a large set of speakers, therefore the estimates of UBM parameters are
su�ciently accurate. The speakers data should match all the conditions, in which the recognition
system is going to be used. Then, the UBM is adapted to a small population of feature vectors of a
speaker in order to get a Speaker Dependent (SD) model.

Since GMMs incorporate latent variables (the assignment of a feature vector to a Gaussian is un-
known) Expectation Maximization (EM) algorithm is utilized, where the following auxiliary function
is optimized

QML(λ, λ̄) =
M∑
m=1

T∑
t=1

p(m|ot,λ) log p(ot,m|λ̄) . (3.2)

This is the case in the ML estimation. MAP adds an additional term that represents the contribution
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Figure 3.1: Adaptation of 3 Gaussians according to given data. The Gaussians of the initial GMM to be adapted (UBM)
are shown as yellow ellipsoids with dotted borders. Adaptation data are represented by the x-marks, and ellipsoids with solid
borders represent the adapted Gaussians. Ellipsoids express the distance from the mean of the Gaussian given as a multiple of
the standard deviation.

from the prior distribution, hence

QMAP(λ, λ̄) = QML(λ, λ̄) + log p(λ̄) . (3.3)

The adaptation principle of GMM composed of 3 Gaussian is depicted in Figure 3.1.

3.1 Adaptation Statistics

Equations (3.4) � (3.6) are common for all the adaptation techniques and we will refer to them
in the consequent text. They represent the zero, �rst and second moments of given feature vectors
aligned to individual Gaussians. It should be stated that all of the adaptation techniques approach
the data only through the statistics introduced below. Hence, the adaptation process can be divided
into two stages. In the �rst stage, the statistics are accumulated till the data are introduced to the
algorithm, and in the second stage the desired type of adaptation is applied. These statistics are

γm(t) = p(m|ot,λ) =
ωmp(ot|m,λ)∑M
m=1 ωmp(ot|m,λ)

, (3.4)

cm =

T∑
t=1

γm(t), (3.5)

εm(o) =
1

cm

T∑
t=1

γm(t)ot, ε
2
m(o) =

1

cm

T∑
t=1

γm(t)oto
T
t , (3.6)

the posterior probability of mth Gaussian given a feature vector ot, the zero (soft count), the �rst
and the second moment of feature vectors aligned to the mth Gaussian, respectively.

3.2 Maximum A-Posteriori Probability (MAP) Adaptation

MAP adapts each of the GMM parameters from the set λ = {ωm,µm,Cm}Mm=1 separately. Thus,
it is necessary to have enough adaptation data for all the parameters, otherwise would be the result
of adaptation negligible (but the new model estimate would be still robust). The new parameters
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λ̄ =
{
ω̄m, µ̄m, C̄m

}M
m=1

are acquired by optimizing the objective function (3.3) [27]. This leads to
update formulas

ω̄m = [αmcm/T + (1− αm)ωm]χ , (3.7)

µ̄m = αmεm(o) + (1− αm)µm , (3.8)

C̄m = αmε
2
m(o) + (1− αm)(Cm + µmµ

T
m)− µ̄mµ̄Tm , (3.9)

where
αm =

cm
cm + τ

. (3.10)

Hence, αm represents the adaptation coe�cient (relevance factor) that controls the balance between
old and new parameters using the parameter τ . The parameter τ is set by the user and determines
the amount of new data that have to match a speci�c Gaussian till the Gaussian parameters change
(they shift in the direction of new parameters) [28]. χ is a normalization factor, which guarantees
that all the new weights of a GMM sum to one.

3.3 Maximum Likelihood Linear Regression (MLLR)

In contrast to the MAP adaptation, where large amount of data is needed in order to change the
values of GMM parameters, MLLR reduces the number of available model parameters via clustering
(commonly used are regression trees) of similar components. Parameters from the same cluster/class
Kn, n = 1, . . . , N , share the same transformation matrix. Thus, less data are needed for MLLR to
be e�ective. Now, the ML objective function (3.2) is maximized, hence none a-priori information is
utilized. It can be rewritten to the form

QML(λ, λ̄) = const− 1

2

∑
m

∑
t

γm(t)
[
constm + log |C̄m|+ (ot − µ̄m)TC̄−1

m (ot − µ̄m)
]
, (3.11)

where λ̄ =
{
ωm, µ̄m, C̄m

}M
m=1

, thus Gaussian weights are not adapted, and const, constm denote
terms independent of λ̄. Also note that the presence of the model λ persists in the posterior γm(t)
(in order to compute γm(t) model parameters λ are used). The task is to �nd linear transformations
of GMM means and GMM variances that would maximize the auxiliary function speci�ed in (3.11),
where we assume that means are transformed according to the formula

µ̄m = A(n)µm + b(n) = W(n)ξm, m ∈ Kn, (3.12)

W(n) = [A(n), b(n)], ξm = [µTm, 1]T, (3.13)

where µm is the UBM mean of the mth Gaussian classi�ed to the cluster Kn, µ̄m is the new adapted
mean, A(n) and b(n) are the adaptation matrix and the additive vector related to the nth cluster Kn,
respectively. And the adaptation formula for the new covariance matrix C̄m is

C̄m = H(n)CmH
T
(n), (3.14)

where again H(n) is associated with the cluster Kn. Note that the covariance matrix Cm and the
mean µm of the mth Gaussian do not have to be necessarily in the same cluster Kn (this depends on
how the regression tree is constructed and what kind of similarity measure is used in the clustering
process).

The part of the objective function (3.11) that changes with the current transform W(n) can be
written as [29]

QW(n)
= const−

∑
m∈Kn

cm

D∑
i=1

(wT
(n)iξm)2 − 2(wT

(n)iξm)εmi(o)

σ2
mi

, (3.15)
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where the column vector w(n)i equals the transpose of the ith row ofW(n) and D is the dimension of
feature vectors. Equation (3.15) can be further rearranged to the form

QW(n)
=

D∑
i=1

(
wT

(n)ik(n)i − 0.5wT
(n)iG(n)iw(n)i

)
, (3.16)

where the const part was omitted and (3.15) was divided by the factor of 2, and

k(n)i =
∑
m∈Kn

cmξmεmi(o)

σ2
mi

(3.17)

and

G(n)i =
∑
m∈Kn

cmξmξ
T
m

σ2
mi

. (3.18)

And �nally the maximization of equation (3.16) gives us the updating formulas

∂Q(λ, λ̄)

∂W(n)
= 0⇒ w(n)i = G−1

(n)ik(n)i . (3.19)

The transformation equations for covariance matrices can be derived in analogy with the previous
approach. They will be not discussed here as they are no important for further explanations and can
be found in [30].

3.4 Feature MLLR (fMLLR) and
Constrained MLLR (CMLLR)

Compared to MLLR the transformation is now applied on the feature space (feature MLLR)
instead of on model parameters. The objective function (3.2) changes to [30]

Q(λ, λ̄) = const− 1

2

∑
m

∑
t

γm(t)[constm + log |Cm| − log |A(n)|2+ (3.20)

+ (ōt − µm)TC−1
m (ōt − µm)] . (3.21)

The feature vectors are transformed according to the formula

ōt = A(n)ot + b(n) = A−1
(n)cot +A−1

(n)cb(n)c = W(n)ξ(t) , (3.22)

where W(n) = [A(n), b(n)] is the transformation matrix corresponding to the nth cluster/class Kn,
ξ(t) = [oTt , 1]T represents the extended feature vector. It can be shown [30] that the transformation
performed on features may be replaced by an equivalent transformation performed on model means
and covariances utilizing matrices A(n)c = A−1

(n) and b(n)c = A−1
(n)b(n). Hence, model parameters can

be transformed using formulas
µ̄m = A(n)cµm − b(n)c , (3.23)

and
C̄m = A(n)cCmA

T
(n)c . (3.24)

This method is known as Constrained MLLR (CMLLR), because the same transformation matrix
is used for means as well as for covariances. Loosely speaking, fMLLR and CMLLR are equivalent
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transformations and the only di�erence consists in their interpretation. In analogy with the previous
section, it is possible to rearrange the objective function (3.21) to the form [29]

QW(n)
(λ, λ̄) = β(n) log |A(n)|+

D∑
i=1

(
wT

(n)iki −
1

2
wT

(n)iG(n)iw(n)i

)
, (3.25)

where D is the dimension of feature vectors ot, and

β(n) =
∑
m∈Kn

∑
t

γm(t) , (3.26)

k(n)i =
∑
m∈Kn

cmµmiεm(ξ)

σ2
mi

, (3.27)

G(n)i =
∑
m∈Kn

cmε
2
m(ξ)

σ2
mi

, (3.28)

εm(ξ) =
[
εTm(o), 1

]T
, (3.29)

ε2
m(ξ) =

[
εm(ooT) εm(o)
εm(o)T 1

]
. (3.30)

In order to �nd the solution of equation (3.25) we have to express A(n) in terms of W(n) (realize
that W(n) = [A(n), b(n)]). One of the possible solutions is the use of the equivalency log |A(n)| =

log |wT
(n)iv(n)i|, where v(n)i stands for transpose of the ith row of cofactors of the matrixA(n) extended

with a zero in the last dimension. Let α(n)i = wT
(n)iv(n)i. After the maximization of the auxiliary

function (3.25) we receive

w(n)i = G−1
(n)i

(
v(n)i

α(n)i
+ k(n)i

)
, (3.31)

where α(n) can be found as the solution of the quadratic function

β(n)α
2
(n)i − α(n)i v

T
(n)iG

−1
(n)ik(n)i − vT(n)iG

−1
(n)iv(n)i = 0 . (3.32)

Because the equation (3.32) is quadratic, two di�erent solutions w1
(n)i,w

2
(n)i are obtained in (3.31).

The one that maximizes the auxiliary function (3.25) is chosen.

Note that due to the fact that in fMLLR the transformation function f(ot) = A(n)ot + b(n) is
applied directly on feature vectors, an additional term � Jacobian of f(ot) � will occur in the log
likelihood related to each Gaussian [30]. Hence, for CMLLR we get the log likelihood

log p
(
ot|µm,Cm,A(n)c, b(n)c

)
= logN

(
ot;A(n)cµm − b(n)c,A(n)cCmA

T
(n)c

)
, (3.33)

but for fMLLR we get

log p
(
ot|µm,Cm,A(n), b(n)

)
= logN

(
A(n)ot + b(n);µm,Cm

)
+ 0.5 log |A(n)|2 . (3.34)

Another di�erence from MLLR is that the estimation ofW(n) in fMLLR becomes iterative since when
computing w(n)i in (3.31) both v(n)i and α(n)i does depend on w(n)i from the previous iteration.
Therefore matrices A(n) and b(n) have to be correctly initialized �rst. The initialization for A(n) can
be chosen as a diagonal matrix with ones on the diagonal, and b(n) can be initialized as a zero vector.
The estimation ends when the change in parameters of transformation matrices is small enough (about
20 iterations are su�cient) [29].
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Figure 3.2: An example of a binary regression tree. Numerical values represent occupation counts of nodes (clusters). Nodes
C3 and C4 have occupations lesser than the occupation threshold Toccup = 850, therefore all the parameters of a Gaussian that
belong to C3 and C4 will share the transformation matrix de�ned for node C5.

3.5 Regression Classes for MLLR

The advantage in MLLR-like methods is the possibility to cluster similar Gaussian parameters of
the model using binary Regression Trees (RTs), where the �nal number of clusters depends on the
amount of adaption data. All parameters belonging to the same cluster are then transformed by the
same transformation. Several methods for construction of RTs were already developed, e.g. divisive
hierarchical algorithms utilizing Euclidean distance between Gaussian mixture means [31], optimal
clustering techniques trying to maximize the likelihood of the adaptation data [32] and others. The
�nal set of clusters in the RT is established during the adaptation process according to the amount
of data that align to Gaussians in each of the clusters � cluster ocuppations, where an empirical
threshold has to be set. For example, let us analyze the tree depicted in Figure 3.2 with four leaves
{C1, C2, C3, C4}. The clusters C3 and C4 have small occupation counts (lower than the threshold
Toccup = 850), therefore all components in clusters C3 and C4 will be transformed with matrices
de�ned for the cluster C5. On the other hand, two individual transformation matrices will be used
for C1 and C2.

3.6 Conclusion and Remarks

Since the adaptation process can be divided into two stages (as mentioned in Section 3.1), there is
no need to specify the adaptation type in advance. It can be de�ned after the adaptation data have
been accumulated. The computational costs are also low since the updating matrices G(n)i,k(n)i

do not have to be recalculated in each iteration (they are computed only once at the end of the
adaptation). It also turns out to be useful to combine some of the adaptaion techniques. A suitable
combination is that of MAP and fMLLR [33] � in the order MAP after fMLLR. The fMLLR method
transforms all the Gaussians from the same cluster at once, thus Gaussian with insu�cient amount of
adaptation data are transformed as well. MAP a�ects each of the Gaussians separately, however only
Gaussians with su�cient amount of data are improved (shifted towards adaptation data). Hence,
the second MAP-pass can be thought of as a re�nement stage of Gaussians with su�cient amount of
data, whereas all the other Gaussians are adjusted only by fMLLR.

Another important fact to recall is that MLLR and fMLLR are based on the ML estimation � none
prior information about the model parameters (transformation matrices W(n)) is included. Hence,
when the amount of data is too low MLLR/fMLLR can completely spoil the estimates of model
parameters. Several approaches were already proposed. They are based e.g. on proper initialization
of the accumulators G(n)i and k(n)i by statistics estimated on a larger population of speakers [34].
Thus,W(n) is pulled to an identity matrix [35]. Another approach is based on an additional reduction
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of number of free parameters of the transformation matrices assuming a low dimensional basis [36].

It should be stated, that the transformation matrices W(n) carry information about the speakers
identity. More precisely they give us advice how should be the SI model "moved" to �t a new speaker,
and, of course, this information should di�er for each speaker (under the assumption that the initial
SI model remains the same).
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Chapter 4

Kernels & Mappings

In this chapter we will discuss in more depth the problem of high dimensional mappings of fea-
ture vectors, in the task of speaker recognition often denoted as supervectors, and both linear and
non-linear kernels outlined in Section 2.3. The majority of presented mappings will be related to
generative models, more precisely to GMMs. First connection between generative models and super-
vectors was made by Jaakkola and Haussler [37]. They proposed a method how to map a sequence of
feature vectors varying in length to a vector of high, but �xed dimension utilizing generative models.
Experiments were performed in the context of DNA and protein sequence analysis. During a short
period of time the approach was extended also to the task of speaker recognition by people working
in the IBM Thomas J. Watson Research Center, NY [38], and further investigations were carried out
by Wan [39], Smith and Gales [40] and others. These mappings are based on GMM derivatives (see
Section 4.4) and they were used along with kernels (mainly linear) and Support Vector Machines
(SVMs) as a discriminative trainer. Since both generative and discriminative trainers were included
in the estimation process, the concept is also known as Hybrid Modeling. The main di�erence between
generative and discriminative methods is that generative algorithms process the input data belonging
to separate classes individually and focus on e�cient description of submitted data, whereas discrimi-
native algorithms consider and process the whole set at once seeking for boundaries between di�erent
classes. Models incorporating both techniques are able to generate new data samples, and at the
same time they make use of the discriminative power of discriminative classi�ers. With time new
mappings and new kernels arose, which are going to be discussed in following sections.

4.1 Basic Structure

We will adhere to a basic hierarchical structure of kernels proposed in [41], where parametric

and derivative kernels are united under the concept of dynamic kernel (also known as sequence

kernel). Parametric kernels utilize parametric mappings, where the name parametric points out
that supervectors will be composed directly from parameters of some statistical models, whereas the
derivative mappings used in derivative kernels will utilize some additional function/operator in order
to extract a "derived" information from these statistical models. A block diagram of the training
procedure of a target speaker model is shown in Figure 4.1.

Linear dynamic kernels have the form

K(Os,Ok,θ) = ψ(Os;θ)Tψ(Ok;θ), (4.1)

where Os = {os1,os2, . . . ,osT }, s = 1, . . . , S, represents the sequence of feature vectors extracted from
the speech of the sth speaker, ψ(Os;θ) stands for a mapping, which transforms the utterance to a
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Figure 4.1: Block diagram depicting a training procedure of a target speaker model. Supervector (SV) Extractor takes as input
feature vectors (depending on the utilized mapping also UBM may be required) and outputs supervectors (SVs). The target
speaker's SV and SVs obtained from speakers from a development set are then redirected to the output of the kernel machine
(e.g. SVM) and a proper kernel type is chosen. Output of the kernel machine is the model of the target speaker.

feature vector of a higher �xed dimension, and θ denotes a set of parameters upon the mapping ψ(·)
depends. Thus, the kernel can be seen as a distance metric of two vectors in feature space (generated
by the mapping ψ(·)), generally non-Euclidean. To correctly compute the dot product in such a
feature space a normalization matrix G has to be introduced, which is the inverse covariance matrix
of the transformed data. The kernel can be now rewritten to the form

K(Os,Ok,θ) = ψ(Os;θ)TGψ(Ok;θ), (4.2)

where
G−1 = E[(ψ(O;θ)− µψ)T(ψ(O;θ)− µψ)], (4.3)

µψ = E[ψ(O;θ)], (4.4)

and E[·] represents the statistical expectation. In the following text the kernel function will be used
in the truncated form K(Os,Ok), the content of θ will be clear from the context. Note that unless
stated otherwise, the notation f(·) will be used to distinguish functions and ordinary variables.

4.2 Parametric Mappings

Recent parametric mappings focus mainly on GMM means and/or adaptation matrices derived
from Speaker Independent (SI) models according to the speaker dependent data (see Chapter 3). A
very common mapping is based on the concatenation of GMM means so that a high-dimensional
supervector is formed. Thus, the mapping ψ(·) has the form

ψ(O;λ) = [µT1 , . . . ,µ
T
i , . . . ,µ

T
M ]T , (4.5)

where µm are the MAP-adapted GMM means (Gaussian weights and covariance matrices remain
the same), M is the number of Gaussians in the Universal Background Model (UBM � for further
details see Section 3), and λ = {ωm,µm,Cm}Mm=1 is the set of parameters of the generative GMM
(see Section 2.2.1). To ensure the correspondence between two Gaussians of two di�erent GMMs and
the same dimensionality of subsequently formed supervectors, it is appropriate to MAP-adapt GMMs
of speakers utilizing an UBM. The adaptation ensures same initial conditions in the training process
and de�nes connections between Gaussians in the adapted GMM and the original UBM. Thus, it
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is easy to determine which two Gaussians should be compared when considering two GMMs (both
adapted from the same UBM).

A slightly di�erent mapping proposed in [42] takes into consideration the di�erence between means
of the model of a new speaker and UBM means, and can be written as

ψdi�(O; {λ, λ̂}) = ψ(O;λ)− ψ( · ; λ̂) =

= [(µ1 − µ̂1)T, . . . , (µi − µ̂i)T, . . . , (µM − µ̂M )T]T ,
(4.6)

where µ̂i represents the mean of another �xed GMM (same for all sequences Os related to speci�c
speakers), and the notation ψ( · ; λ̂) represents the mapping of its means. When µ̂i are taken from
UBM the mapping (4.6) can be seen as the centered version of (4.5).

Another kind of supervector extraction utilizes the MLLR transformation matrices computed
according to Section 3.3 and given in equation (3.13). The rows of such transformation matrices
are subsequently concatenated into one high-dimensional supervector. The mapping ψ(·) can be
expressed as

ψ(O; {W(k)}Kk=1) = [wT
(1)1, . . . ,w

T
(1)D,w

T
(2)1, . . . ,w

T
(2)D, . . . ,w

T
(K)1, . . . ,w

T
(K)D]T , (4.7)

where D is the dimension of feature vectors, K is the number of transformation matrices and wT
(k)i

denotes the ith transposed row of the matrix W(k). The matrix W(k) can be thought of as a "data
error" from which the generative model su�ers, or as the scale and direction (in the sense of a matrix
transform) in which the data are located given an initial UBM. Assuming one initial UBM same for
all the speakers, and further assuming that the position of their feature vectors in the acoustic space
is unique, the adaptation matrix W(k) should be for each speaker unique too.

A high dimensional mapping not directly connected to generative models and GMMs was proposed
in [43]. It is called Generalized Linear Discriminant Sequence (GLDS), and it is based on a vector
function that transforms directly the feature vectors. The mapping has the form

ψ(O;ϕ(·)) =
1

T

T∑
t=1

ϕ(ot) , (4.8)

ϕ(ot) = [ϕ1(ot), . . . , ϕj(ot), . . . , ϕJ(ot)]
T , (4.9)

ϕ(·) represents an expansion of the input space into a vector of scalar functions, ϕj : RD 7→ R, D
is the dimension of the input space and J is the dimension of the vector function ϕ(·). In [43] the
considered feature expansion consisted of monomials up to the kth order, e.g. for monomials up to
the second order of the feature vector o = [o1, o2, . . . , oD]T we get

ϕ(o; k = 2) = [1, o1, . . . , oD, o
2
1, o1o2, . . . , o1oD, o

2
2, o2o3, . . . , o2oD, o

2
3, . . . , o

2
D] , (4.10)

where dim(o) = D and dim(ϕ(o; k)) = [(D + k)!]/[D! k! ]. After substituting (4.10) into (4.8)
one can notice, that the mapping (4.8) comprises �rst- and second-order moments � the mean and
the covariance of dimensions of feature vectors (higher moments will be obtained for higher order
monomials) [44]. Thus, again data statistics are collected (as in the case of GMM supervectors),
however now also statistics of higher order may be acquired. Further generalizations of GLDS and
associated kernels allowing not only polynomial degrees but also in�nite dimensional expansions were
studied in [45, 46].

In [47] the vector function ϕ(o) was chosen as

ϕPS(ot;λ) = [γ1(ot), . . . , γm(ot), . . . , γM (ot)] , (4.11)
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where γm(ot) is the mth Gaussian's posterior speci�ed in (3.4). The mapping based on ϕPS(ot;λ) is
called the Probabilistic Sequence (PS) mapping and has the same form as (4.8) except for the vector
function, hence

ψ(O;ϕPS(·)) =
1

T

T∑
t=1

ϕPS(ot) . (4.12)

In order to use such a mapping, it is useful to cover the part of the acoustic space of interest with
well distributed Gaussians over the area, e.g. it is useful to utilize some anchor models chosen from
the background population of speakers [44].

4.3 Parametric Kernels

4.3.1 Mean Supervector Based Kernels

A basic, frequently used and well-working kernel is the one in (4.2), where the matrixG is assumed
nearly always diagonal (as its size is often huge and there are not enough data for its full estimation,
e.g. to ensure its invertibility) � in many cases even replaced by the identity matrix [39].

Other kernels utilize mainly the Kullback-Leibler Divergence (KLD), which is a standard tool
used when comparing two GMMs. Since KLD cannot be expressed in closed form solution when
multi-Gaussian GMMs are involved several approximations have to be made. First KLD kernel was
proposed in [48], where the unapproximated KLD was utilized using a single Gaussian model. This
kernel was denoted as Probabilistic Distance Kernel (PDK). Further investigations were carried out in
[49, 50]. In [50] two kernels were proposed � Supervector Linear Kernel (SLK) and L2 Inner Product
Kernel (L2IPK). The SLK is an extension of the PDK, and it is based on the approximated Kullback-
Leibler Divergence (KLD). In [51] not only the GMM means, but additionally also the GMM weights
were adapted and used when constructing the kernel function. All of these kernels are going to be
reviewed now.

Probabilistic Distance Kernels (PDK) was proposed in [48] and as already mentioned, they
utilize the KLD. The symmetricity of such a dissimilarity measure was preserved using symmetric
KLD of the form

DS(p(o|λ1) || p(o|λ2)) =

∞∫
−∞

p(o|λ1) log

(
p(o|λ1)

p(o|λ2)

)
do+

∞∫
−∞

p(o|λ2) log

(
p(o|λ2)

p(o|λ1)

)
do. (4.13)

and the validity of the kernel was ensured introducing equation

KPDK(Ospk1,Ospk2) = e−a1DS(p(o|λ1) || p(o|λ2))+a2 , (4.14)

where a1, a2 represent scale and shift factors, respectively. They were involved because of stability
reasons and were set empirically. In the case of GMM there is no analytic solution of (4.13) and some
numerical approximations have to be employed (e.g. [52]), but in the case of a full covariance GMM
with a single Gaussian, the distance in (4.13) can be computed directly as

DS(N (·;µ1,C1) || N (·;µ2,C2)) =
1

2

(
tr
(
C1C

−1
2

)
+ tr

(
C−1

1 C2

)
− 2I +

+ tr
[(
C−1

1 +C−1
2

)
(µ1 − µ2)(µ1 − µ2)T

])
,

(4.15)

where I = dim(o). Thus, not only mean vectors are involved, but also covariance matrices (however
just for single Gaussian models). It is easy to see, that for C = C1 = C2, the distance (4.15)
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degenerates to

DS(N (µ1,C) || N (µ2,C)) = d(µ1,µ2;C) = (µ1 − µ2)TC−1(µ1 − µ2) . (4.16)

Further extensions to multi-Gaussian GMMs were performed using the KLD approximation [52] via
log sum inequality. The approximation may be expressed as

D

(
M∑
m=1

ωmNm ||
M∑
m=1

ω̃mÑm

)
≤

M∑
m=1

D(ωm || ω̃m) +
M∑
m=1

ωmD(Nm || Ñm), (4.17)

where D(Nm || Ñm), D(ωm || ω̃m) is the KLD between the mth Gaussian and mth Gaussian's weight of
the model λ and the model λ̃, respectively. The question, which two Gaussians should be "compared"
against each other when evaluating D(Nm || Ñm) and D(ωm || ω̃m) is implicitly solved by the MAP
adaptation of UBM when estimating parameters λ, λ̃ of both GMMs (see discussion in Section 4.2).
Su�cient condition for left- and right-hand side in (4.17) to equal is γm(t) = γ̃m(t) for all pairs
m = 1, . . . ,M , where the posterior γm(t) is given in (3.4).

Assuming equal weights (thus D(ωm || ω̃m) = 0) and covariances in both models, and symmetric
KLD DS(λ||λ̃) = D(λ||λ̃) +D(λ̃||λ) we get

DS(λ||λ̃) ≤
M∑
m=1

ωmd(µ, µ̃;C) =
M∑
m=1

ωm(µm − µ̃m)TC−1
m (µm − µ̃m), (4.18)

however as stated above this is not a valid kernel (e.g. it cannot be decomposed to a dot product of
the form K = φ(x)Tφ(x), where φ(·) is some mapping function of x).

Supervector Linear Kernel (SLK) follows the conclusions made in the PDK, but uses the KLD
approximation (4.18). It is adjusted in order to ensure the validity of the Mercer's condition (2.38) to
get a valid kernel. Only the inner product between distinct but adjacent means is taken. Assuming
diagonal covariances the resulting kernel can be written in the form

KSLK(Ospk1,Ospk2) =

M∑
m=1

ωm(µspk1
m )TC−1

m µspk2
m = ψ(Ospk1;λ)T ΩG̃ψ(Ospk2;λ) , (4.19)

G̃ : diag(G̃) = [diag(C−1
1 ), . . . , diag(C−1

m ), . . . , diag(C−1
M )]T , (4.20)

Ω : diag(Ω) = [ω1, . . . , ωM ]T ⊗ 1D , (4.21)

where λ = {ωm,µm,Cm}Mm=1 are parameters of a GMM given in (2.16), µspk1
m ,µspk2

m are adjacent,
speaker dependent, MAP-adapted means, 1D is a D dimensional vector of ones, where D = dim(o) =
dim(µ), ⊗ denotes the Kronecker product, the function diag(X) transforms a matrix X to a vector
with its entries equal to the diagonal of the matrix X, and G̃, Ω are zero matrices with diagonals
speci�ed in (4.20), (4.21), respectively. The matrix Cm can be taken directly from the UBM as the
UBM's covariances were not adapted. The matrix G̃ can be thought of as an approximation of (4.3)
and Ω represents an additional weighting factor. There are several advantages of such a kernel [43].
The matrix R = ΩG̃ can be factored using Cholesky decomposition yielding R = UTU (in fact
R is diagonal, thus U contains square roots of R on its diagonal), and all the supervectors can be
transformed before the SVM training as y = Uψ(O;λ). The kernel takes the form

KSLK(Ospk1,Ospk2) = yTspk1yspk2 , (4.22)

there is no need to multiply supervectors with R whenever the kernel function is evaluated and
the computational costs during the training will be reduced. Furthermore, the model compaction
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technique can be applied, thus the SVM decision hyperplane (2.35) with L support vectors can be
computed in advance and the �nal decision function can be expressed as

f(Oj) =

(
ΩG̃

L∑
k=1

αkykψ(Ok;λ)

)T

ψ(Oj ;λ) + b . (4.23)

L2 Inner Product Kernel (L2IPK) is derived from the function space inner product of two
GMMs and has the form

KL2IPK(Ospk1,Ospk2) =

∫
Rn
gspk1(o)gspk2(o) do. (4.24)

The closed form solution has the form

KL2IPK(Ospk1,Ospk2) =
M∑
i=1

M∑
j=1

ωiωjN
(
µspk1
i − µspk2

j ; 0,Ci +Cj

)
, (4.25)

where 0 stands for a zero vector. Under the assumption that means corresponding to the ith and jth

Gaussian for i 6= j lie far apart, (4.25) can be simpli�ed to the form

KL2IPK(Ospk1,Ospk2) =

N∑
i=1

N∑
j=1

ω2
iN (µspk1

i − µspk2
j ; 0, 2Ci). (4.26)

PDK2 was proposed in [49]. It is based on a similar approach to SLK, however the Mercer's
condition is guaranteed by (4.14) with a1 = 1, a2 = 0 rather than taking only the inner product
between distinct but adjacent means. The kernel can be expressed as

KPDK2(O
spk1,Ospk2) = e−

∑M
m=1 ωmd(µspk1m ,µspk2m ;Cm)

= e−
∑M
m=1 ωm(µspk1m −µspk2m )TΩG̃(µspk1m −µspk2m )

= e−‖U(ψ(Ospk1;λ)−ψ(Ospk2;λ))‖2 ,

(4.27)

where R = ΩG̃ = UTU , Ω and G̃ were speci�ed in (4.21) and (4.20), respectively.

4.3.2 One-class MLLR Kernels

In this section we will focus only on supervectors constructed from one transformation matrix
(global transformation) common for all the model means. Loosely speaking, only one cluster is
constructed containing all the model parameters (in this case the GMM means), thus only one trans-
formation matrix is computed for each speaker.

The kernel function considered can be a simple linear inner product (4.1) of MLLR based super-
vectors as used in [53], nevertheless one could also transform the means according to the formula
(3.12) and utilize kernels described in Subsection 4.3.1.

A more �exible kernel approach was proposed in [54]. It arises from (4.19), where means µm are
transformed according to equation (3.12), hence

K(Ospk1,Ospk2) =
M∑
m=1

(
∆

1
2
m(Aµm + b)

)T(
∆

1
2
m(Hµm + d)

)
, (4.28)
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where [A, b ] and [H,d ] are global transformation matrices for speakers spk1 and spk2, respectively,
and ∆m = ωmC

−1
m . After expanding equation (4.28) we get

K(Ospk1,Ospk2) =
M∑
m=1

(
∆

1
2
mAµm

)T(
∆

1
2
mHµm

)
+

M∑
m=1

(
∆

1
2
mAµm

)T(
∆

1
2
md

)
+

+
M∑
m=1

(
∆

1
2
mb

)T(
∆

1
2
mHµm

)
+

M∑
m=1

(
∆

1
2
mb

)T(
∆

1
2
md

)
.

(4.29)

Let us have a look on the �rst term in (4.29). Some notations shall be introduced, tr(A) stands
for the trace of the matrix A, ek is a zero vector with 1 on its kth position, ∆ik is the kth diagonal
element of the matrix ∆i, D represents the number of rows in A and ak equals the transpose of the
kth row of A. Then (assuming diagonal covariance matrices Cm)

M∑
m=1

(
∆

1
2
mAµm

)T(
∆

1
2
mHµm

)
=

M∑
m=1

tr
(

∆
1
2
mAµmµ

T
mH

T∆
1
2
m

)
=

M∑
m=1

tr
(
∆mAµmµ

T
mH

T
)

=

=
M∑
m=1

tr

[(
D∑
k=1

∆mkeke
T
k

)
Aµmµ

T
mH

T

]
=

=
M∑
m=1

D∑
k=1

tr
[
eke

T
kA

(
∆mkµmµ

T
m

)
HT

]
=

=

D∑
k=1

tr

[
eTkA

(
M∑
m=1

∆mkµmµ
T
m

)
HTek

]
=

=
D∑
k=1

aTk

(
M∑
m=1

∆mkµmµ
T
m

)
hk =

=

D∑
k=1

aTkRkhk .

(4.30)
All the other terms in (4.29) can be rearranged in a similar fashion, what results in

M∑
m=1

(
∆

1
2
mAµm

)T(
∆

1
2
md

)
=

D∑
k=1

dka
T
k rk , (4.31)

M∑
m=1

(
∆

1
2
mb

)T(
∆

1
2
mHµm

)
=

D∑
k=1

bkr
T
k hk , (4.32)

M∑
m=1

(
∆

1
2
mb

)T(
∆

1
2
md

)
=

D∑
k=1

bkdkδk , (4.33)

where rk =
∑M

m=1 ∆mkµm and δk =
∑M

m=1 ∆mk. Now, the kernel (4.28) can be rewritten as

K(Ospk1,Ospk2) =

D∑
k=1

aTkRkhk + dka
T
k rk + bkr

T
k hk + bkdkδk =

= ψ(Ospk1; [A, b ])TQ ψ(Ospk2; [H,d ]) .

(4.34)

The matrix Q is symmetric, positive-de�nite (the kernel satis�es the Mercer's condition (2.38)) as it
arises from (4.19) and it consists of D blocks of size (D + 1)× (D + 1), where each block Qk can be

30



CHAPTER 4. KERNELS & MAPPINGS

Figure 4.2: Regression tree based on phonetic classes.

expressed as

Qk =

(
Rk rk
rTk δk

)
. (4.35)

The matrix Q depends only on the UBM, therefore is the same for all speakers and can be computed
in advance. Another advantage of the block diagonal property ofQ is the possibility to easily compute
the Cholesky decomposition of Q and apply the model compaction technique as discussed in Section
4.3.1.

Note that the dimension of MLLR based supervectors (D×(D+1); D = dim(ot)) is in comparison
with the dimension of mean-supervetors (D ×M) often signi�cantly lower since the number M of
Gaussians in the UBM is often high.

4.3.3 Multi-class MLLR Kernels

The extension to the multi-class case is straightforward. The regression tree is involved (see
Section 3.5), thus several transformation matrices are computed at a time. The crucial problem to
be solved is the construction of the regression tree. The approaches in Section 3.5 do not directly
concern the dissimilarities between speakers. They mainly focus on clustering of features close in
the acoustic space without an explicit knowledge how do these features characterize the speaker's
identity. A method how to handle such a problem was introduced in [53], where the regression tree is
designed according to broad phonetic classes depicted in Figure 4.2. Each of the classes contains a set
of Gaussians for which a separate transformation matrix is going to be computed. The use of an text-
independent GMM is now unfeasible � one cannot decide which Gaussian belongs to which phonetic
class. The possible solution would be to utilize the Large Vocabulary Continuous Speech Recognition
(LVCSR) system based on a set of Hidden Markov Models (HMMs) with states formed by GMMs,
where each HMM represents an elementary linguistic unit (e.g. monophone, triphone, syllable, etc.).
Thus, a decision about the phonetic class pertinence can be made. Such an LVCSR system can be
adapted according to formulas in Section 3.3 and the regression tree depicted in Figure 4.2. Hence,
the resulting matrices will correspond to proposed phonetic broad classes.

Another method was presented in [55]. It uses an UBM with M Gaussians containing diagonal
covariances and an open-loop phonetic recognizer (phonetic recognition without lexical or phonotactic
constraints). The training data are partitioned with the use of an open-loop phonetic recognizer into
several clusters in order to match the phonetic classes. Let us consider a two MLLR-class case �
clusters will be created for obstruents and sonorants (see Figure 4.2). The proposed UBM has the
form

g(ot) = ϑS

M/2∑
m=1

ωmN (ot;µm,Cm) + ϑO

M∑
m=M/2+1

ωmN (ot;µm,Cm) , (4.36)
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where ϑS , ϑO are the weights of Gaussians associated to sonorants and obstruents, respectively. They
are calculated as the percentage of frames assigned to particular clusters. Each of theM/2 Gaussians
is trained using the Expectation Maximization (EM) algorithm separately (from the appropriate data
cluster), and they are combined at the end to form the UBM given in (4.36). Note that UBM weights
have to be rescaled to sum to unity. All three models (one UBM with M Gaussians and two models
with M/2 Gaussians) are employed in the adaptation phase. Firstly an occupation threshold Toccup
has to be speci�ed as in Section 3.5. The open-loop phonetic recognizer is used again to redistribute
the test utterance frames between participating phonetic classes. For classes, where the number of
frames is higher than Toccup, the models with M/2 Gaussians (trained for appropriate clusters) are
adapted. For classes not satisfying the criterion, the UBM with M Gaussians will be adapted. The
higher MLLR-class case can be derived in analogy with before mentioned technique.

Such an approach is in principle very similar to an adaptation of the LVCSR system, but it is much
easier to control the in�uence of Gaussians in each of the phonetic classes. Generally, the number
of Gaussians associated to each class can be di�erent from M/2, but the authors proclaim that the
performance decreases.

The last point to discuss is which kernel to use when multiple matrices are present. The kernel
function can be chosen similarly to Section 4.3.2. One can consider only a simple linear inner product
of MLLR based supervectors, or transform the model according to the formula (3.12) and use kernels
from Subsection 4.3.1, or extend the approach described at the end of Subsection 4.3.2 as was done in
[55]. The extension is straightforward if UBMs in the form of equation (4.36) are used. Nevertheless,
with some e�ort the method could be easily extended also to cases when the LVCSR system is in use.

Let us have a look on UBMs de�ned as in (4.36). The kernel function (4.28) takes now the form

K(Ospk1,Ospk2) = ϑSKS(Ospk1,Ospk2) + ϑOKO(Ospk1,Ospk2) =

= ϑS

M/2∑
m=1

(
∆

1
2
m(ASµm + bS)

)T(
∆

1
2
m(HSµm + dS)

)
+

+ ϑO

M∑
m=M/2+1

(
∆

1
2
m(AOµm + bO)

)T(
∆

1
2
m(HOµm + dO)

)
.

(4.37)

Thus, the problem can be divided into two subproblems solved separately for KS(Ospk1,Ospk2) and
KO(Ospk1,Ospk2). Two solutions are obtained

KS(Ospk1,Ospk2) = ψS(Ospk1; [AS, bS ])TQS ψS(Ospk2; [HS,dS ]) , (4.38)

KO(Ospk1,Ospk2) = ψO(Ospk1; [AO, bO ])TQO ψO(Ospk2; [HO,dO ]) , (4.39)

where ψS(·) is the sonorant part and ψO(·) is the obstruent part of MLLR based supervectors. The
matrices QS, QO are block diagonal with blocks de�ned in (4.35). The �nal kernel is

K(Ospk1,Ospk2) =
[
ψS(Ospk1)T ψO(Ospk1)T

] [ ϑSQS 0
0 ϑOQO

] [
ψS(Ospk2)
ψO(Ospk2)

]
, (4.40)

where the conditional parts of ψS(·) and ψO(·) were omitted because of lucidity. Properties of Q
mentioned at the end of Section 4.3.2 are preserved. It should be stated, that the two approaches,
either the use of the kernel (4.40) or the use of the kernel (4.19), where the means are transformed
according to the formula (3.12), are equivalent. The second method outperforms the �rst one in terms
of computational costs as there is no need to transform each mean of the model [55] (this is useful
especially when LVCSR systems are utilized).

Also note that when supervectors are constructed, some matrices may occur repeatedly in cases
when two separate classes with insu�cient amount of data descend from the same parent class, see
Figure 3.2.
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4.4 Derivative Mappings

The derivative kernels are based on the work of Jaakkola and Haussler [37], who made the �rst
connection between generative and discriminative models at all. Further investigations were carried
out by Wan [39] and by Smith and Gales [40]. They have proposed generalizations in the form of
score spaces de�ned by the mapping

ψf
F̃

(O; {λq}Qq=1) = ψF̃ (f({p(O|λq)}Qq=1)) , (4.41)

where {p(O|λq)}Qq=1 is a set of Q generative models. The function f(·) is called the score argument
and it determines the form of the output of the set of generative models and it is mapped by the score
operator F̃ to a �xed-dimensional score space ψf

F̃
(O; {λq}Qq=1) [40]. The purpose of the score operator

is to extract useful discriminative information from generative models � for derivative score spaces
derivative operators are considered such as the zeroth-order, �rst-order and higher-order derivatives
with respect to the parameters of the generative model. Nevertheless, because of computational
complexity of higher-order derivatives mainly the zeroth and �rst-order derivatives are studied. In
this work only the case to the limit Q = 2 and score argument based on logarithmic function will be
discussed. A very detailed description of the whole problem can be found in [10]. The score space
(4.41) for Q = 1, known as Log-Likelihood Score (LLS) space, can be expressed in the form

ψLLS∇ (O; λ̂, ρ) =
1

T

[
∇(0,ρ)
λ ln p(O|λ)

∣∣∣∣
λ̂

]
=

1

T



ln p(O|λ̂)

∇λln p(O|λ)

∣∣∣∣
λ̂

...

vec
(
∇ρλln p(O|λ)

∣∣∣∣
λ̂

)


, (4.42)

where the term 1
T was introduced because of the sequence length normalization with T equal to the

number of feature vectors in O = {ot}Tt=1, the function vec(·) transforms a matrix into a column
vector and ρ de�nes the order of the derivative. The score space for Q = 2, known as Log-Likelihood
Ratio Score (LLRS) space, can be expressed in the form

ψLLRS∇ (O; {λ̂q}2q=1, ρ) =
1

T

∇(0,ρ)
λ1,λ2

ln
p(O|λ1)

p(O|λ2)

∣∣∣∣λ1=λ̂1
λ2=λ̂2

 =
1

T



ln p(O|λ̂1)− ln p(O|λ̂2)

∇λ1 ln p(O|λ1)
∣∣
λ̂1

−∇λ2 ln p(O|λ2)
∣∣
λ̂2

...

vec
(
∇ρλ1

ln p(O|λ1)
∣∣∣
λ̂1

)
−vec

(
∇ρλ2

ln p(O|λ2)
∣∣∣
λ̂2

)


. (4.43)

The mapping used by Jaakkola and Haussler is a special case of (4.42) when only the �rst derivative
is considered and is also known as Fisher mapping or Fisher score. Its expected value with respect
to an observation ot is zero, and the mapping can be written in the form

ψFisher∇ (O; λ̂) =
1

T
∇λln p(O|λ)

∣∣∣∣
λ̂

. (4.44)

Further, let's analyze the �rst-order derivatives with respect to mean and covariance of a GMM
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(hence, the Fisher score). These are given by

∇µm ln p(O|λ) =

T∑
t=1

γm(t)C−1
m (ot − µm)T = ηm(εm(o)− µm)TC−1

m , (4.45)

∇Cm ln p(O|λ) =
T∑
t=1

γm(t)

2

[
−C−1

m +C−1
m (µm − ot)(µm − ot)TC−1

m

]
=
ηm
2

[
−C−1

m +C−1
m [Ĉm + (µ− εm(o))(µ− εm(o))T]C−1

m

]
,

(4.46)

where γm(t) is the mth Gaussian's posterior speci�ed in (3.4), ηm =
∑T

t=1 γm(t),

Ĉm = ε2
m(o)− εm(o)εTm(o), (4.47)

and εm(o), ε2
m(o) are the �rst and the second moment, related to the mth Gaussian of a GMM,

de�ned in (3.6). It is easy to see that the derivatives vanish when the data perfectly �t the model
thus µm ≡ εm(o) and Cm ≡ Ĉm for m = 1, . . . ,M , where M is the number of GMM components.
When data lie away from the model, absolute values of gradients in (4.45) and (4.46) increase, on
the other hand, the closer are the data to the model, the smaller are the absolute values of gradients
(under the assumption, that the amount of data does not vary signi�cantly � consider the in�uence
of ηm � however, this problem is solved involving the normalization term 1/T ). Hence, we are able to
measure the data deviation from the model. As already mentioned, the MAP adaptation is utilized
to acquire speaker dependent GMMs. When the amount of training data is small, the UBM is shifted
to the speaker's direction only partially. Therefore an additional information about the direction of
the data location is truly useful. The LLRS space takes into consideration not only the deviation
from the speaker's GMM, but also from some other model λ̂2 � often represented by the UBM. UBM
is the same for all the speakers, therefore it can be regarded as an anchor point in the score space �
a tool pointing to separate, speaker dependent data clusters.

It should be stated, that (4.46) results in a matrix. To be able to train the SVM, the matrix
should be rearranged to a vector (row-wise, eventually column-wise) utilizing the function vec(·). If
only diagonal covariances are assumed, the function vec(·) may be replaced by the function diag(·).
Note that the term ηm associated with each Gaussian can be regarded as an alternative to the
normalization term T .

4.5 Derivative Kernels

4.5.1 Basic Derivative Kernel (BDK)

BDK is related to the kernel in equation (4.2). When utilizing the Fisher mapping (4.44) the
normalization matrixG−1 from (4.3) represents the Fisher Information (FI), which plays an important
role in many scienti�c branches. Resuming the preceding analysis of Fisher score related to generative
models, the FI could be interpreted as the amount of information that a sample provides about the
value of an unknown parameter λ [56]. However, the FI is less signi�cant in our task as its only
purpose is to ensure the correctness of the dot product in the score space. Note that when training
a SVM model of one particular speaker, the score space vectors supplied to the training are build
only upon MAP-adapted model of this (target) speaker and all the utterances of all the participating
speakers (for LLRS space in (4.43) also UBM is involved). Loosely speaking, no other models than the
target speaker model are involved in the training phase of one SVM model. Since the gradients have to
be computed for each GMM and each participating speaker when training a SVM, the computational
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demands may be enormous. In order to train SVMs for N GMMs with M Gaussians of dimension
D and having S speakers in the development set, number of gradients to be computed is N × S.
Assuming the Fisher mapping the dimension of each supervector will be M ×D. Since it is usual to
have thousands of target speakers (thus thousands of GMMs to be trained) and another thousands
of speakers in the development set, the training becomes greatly time consuming.

4.5.2 Generalized Derivative Kernel (GDK)

GDK was introduced in [57]. It is based on the GLDS mapping discussed in Section 4.2 and on
the Fisher score, where only derivatives with respect to the mean are considered. Hence, (4.44) can
be rewritten to the form

ψGDK∇ (O; λ̃) =
1

η̃i

T∑
t=1

γ̃i(t)C̃
−1
i (ϕ(ot)− µ̃i)T , (4.48)

where λ̃ = {ω̃m, µ̃m, C̃m}Mm=1 are GMM parameters related to transformed features in the new space
generated by the vector function ϕ(·) de�ned in (4.9). The normalization term changes now to
η̃m =

∑T
t=1 γ̃m(t). After substituting (4.48) into (4.2) we get

K(Oi,Oj , λ̃) = ψGDK∇ (Oi; λ̃)T G ψGDK∇ (Oj ; λ̃)

=
M∑
m=1

1

η̃imη̃jm

Ti∑
t=1

Tj∑
s=1

γ̃m(t)γ̃m(s)km(oit,ojs)
(4.49)

km(oi,oj) = (ϕ(oi)− µ̃m)TC̃−1
m GmC̃

−1
m (ϕ(oj)− µ̃m) . (4.50)

There are several issues concerning the solution of (4.49). For ϕ(oi) = oi, we get identical kernel
function to the BDK, but it is merely unfeasible to construct a GMM for other choices of ϕ(·) that
maps features to high-dimensional vectors (e.g. the monomial expansion as in (4.10)). Therefore,
several approximations and adjustments are needed, for details see [57].

4.6 Conclusion and Remarks

It is quite di�cult to establish the best or most suitable mapping/kernel from the approaches
described above. Each of the techniques has its bene�ts and disadvantages. Attempts to study
the complementarity of parametric and derivative kernels have already been carried out [41]. After
meeting some assumptions, derivative mappings can be seen as gradient ascent updates of parametric
ones. This is quite straightforward if considering the discussion of the Fisher mapping in Section
4.4. Hence, the complementarity of such two kernels can be anticipated. Actually, the information
carried by supervectors based on GMM means and supervectors based on adaptation matrices should
be uncorrelated too. Mean supervector kernels try to delimitate the part of the acoustic space speci�c
for the speaker, whereas the derivative kernels and kernels based on adaptation matrices represent a
"data error" from which the generative model su�er. Thus, a combination of such systems would be
suitable.

Overwhelming majority of discussed mappings and kernels where utilized in the concept of SVM.
Nevertheless, through the time several other machines were developed. E.g. the Sparse Kernel
Logistic Regression (SKLR) proposed in [58], which models directly the posterior probabilities of the
class membership, or the learning algorithm in [59], which has the advantage that it does not su�er
from the strict Mercer's kernel restrictions de�ned in (2.38).
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In this chapter only MLLR based kernels have been discussed, but generally, supervectors can
be build on any other transformation matrix that possess a unique information about the speaker's
identity � e.g. fMLLR matrix introduced in Section 3.4 [60].
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Chapter 5

Normalization Techniques And

Whitening

In this chapter several frequently utilized normalization techniques used in the framework of super-
vectors will be presented. At �rst methods focused on feature vector normalization will be discussed.
One of the crucial problems in speaker veri�cation systems is the choice of the veri�cation threshold.
The task is in�uenced by many factors making more di�cult to correctly tune the threshold value.
Namely: inaccurate speaker models, similar voices of speakers, inter and intra speaker variabilities,
operating conditions, and many other di�culties, which re�ect themselves more or less in the veri-
�cation score. Subsequently, common methods for the score normalization will be reviewed, and at
the end a method dealing with compensation of channel variability will be discussed.

5.1 Feature Space Whitening (FSW)

FSW deals with the fact that the dot product arising in all the kernel machines is not invariant to
linear transformations. Consider a set of N two dimensional vectors X = {x1, . . . ,xN}. Let µ1, µ2

and σ2
1, σ

2
2 be the expectation and variance of the �rst and second dimension of the vectors in X,

respectively. Assuming e.g. µ1 >> µ2 and/or σ2
1 >> σ2

2 may lead to the domination of the �rst
dimension in the dot product of any two vectors from X reducing the dimensionality of the space to
one [61]. Hence, it is desirable to normalize elements of the vectors to zero mean and unit variance �
whiten the data. The unit variance normalization is performed employing the matrix G introduced
in (4.3) and the kernel function in the form of equation (4.2).

5.2 Rank Normalization (RN)

RN deals with the same problem as FSW, but in a di�erent manner. The elements of feature
vectors are adaptively rescaled to obtain approximately the uniform distribution [53]. The procedure
is as follows:

• all the utterances of impostors in the background population and the given speaker utterance
are mapped to a supervector,

• the elements of supervectors are sorted along each dimension,

• value of each element in the supervector of the given speaker is replaced by its rank in the sorted
list (along each dimension).
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Figure 5.1: Feature Warping. A part of an one dimensional signal before and after Feature Warping is shown along with
respective histograms of amplitudes of time samples. Note that the "shape" of the signal is preserved, but time samples are
non-linearly scaled.

It is useful to further normalize the vectors along each dimension to a suitable interval, e.g. [0, 1].

5.3 Feature Warping (FW)

FW was introduced in [62]. It performs a mapping of the distribution of a feature stream to the
standard normal probability distribution. A sliding window of �xed length ν (determined empirically)
is used. Firstly, all the feature vectors in the window are rank-normalized along each dimension. The
feature vectors in the window are used as the background population (see discussion of RN above).
Second, each entry of the feature vector is normalized by ν, and replaced by the output of the normal
cumulative distribution function

F (x) =
1√
2π

∫ x

−∞
e−t

2/2dt. (5.1)

A generalization of FW to any probability distribution is straightforward, one has to replace the
normal cumulative distribution function by any other cumulative distribution function. The goal is
to provide a more consistent distribution of feature vectors across distinct recording environments
[62]. These technique is frequently used mainly in the process of feature extraction (MFCC, PLP),
and proves to be of substantial importance [63] mainly when variations in channel conditions are
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Figure 5.2: Mapping of an one dimensional feature x onto the surface of a unit hypersphere. Note that the mapped feature φ(x)
is of one dimension higher than the original x.

signi�cant. An example of FW of a time sequence of samples is depicted in Figure 5.1, more examples
on FW of feature vectors along each dimension can be found in Appendix F.

5.4 Spherical Normalization (SN)

SN arises from projections used by cartographers. It can be thought of as a transformation that
maps each feature vector onto the surface of a unit hypersphere embedded in a space one dimension
higher then the feature vector itself [61]. The value of the kernel function K(xi,xj) can take small
as well as large values depending on xi, xj , and thus make the Hessian (2.36) badly conditioned
or, in the worst case, even singular � especially for polynomial kernels with high powers [64]. Such
a situation can occur even if elements of each feature vector were already normalized to a narrow
interval (e.g. [−1, 1]), because of the high dimensionality of supervectors. Therefore, the SN is applied
in advantage before the evaluation of the kernel function. The form of SN mapping φ : Rn 7→ Rn+1

used in [61] has the form

φ(x) =
1√

xTx+ d2

[
x
d

]
, (5.2)

where d is an empirically set constant (for whitened data a reasonable choice can be d = 1). One
could also utilize the L2 vector norm ‖x‖2 instead of SN, hence φ(x) = x/ ‖x‖ but this would lead to
information loss (two distinct vectors x and 2x would become one). A 1D example of SN is depicted
in Figure 5.2.

5.5 Within Class Covariance Normalization (WCCN)

Within Class Covariance Normalization [65] matrix is given as

W =
1

S

S∑
s=1

1

Ns

Ns∑
i=1

(xsi − x̄s)(xsi − x̄s)T, x̄s =
1

Ns

Ns∑
i=1

xsi, (5.3)

where Λs = {xsi}Nsi=1 is the set of Ns vectors belonging to the speaker s, and S is the number of
speakers. The idea behind WCCN is to weight the dimensions of the feature space according to
the inverse of the WCCN matrix, and thus to decrease the in�uence of the directions with high
intra-speaker variability when evaluating the linear function xiW−1xj .
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5.6 Zero and Test Normalizations

Zero and Test Normalizations are related to the veri�cation score rather than to feature vectors.
The Zero Normalization (Z-norm) method was proposed in [26] and its purpose is to ensure zero mean
and unit deviation of scores for speech of impostor speakers. The Z-normalized score for sth speaker
(target model) and ith sequence of feature vectors Oi is computed according to

LZ(Oi|s) =
L(Oi|s)− µI

σI
, (5.4)

where L(Oi|s) denotes the score for speaker s and utterance i, µI and σI are estimated from the
background population of impostors. The speaker model is scored against impostor utterances yielding
a set of scores related to the given speaker model. This set is used to compute the Z-norm parameters
µI and σI. Note that the parameters for Z-norm can be estimated o�-line during the training of a
speaker model.

The Test Normalization (T-norm) introduced in [66] is computed using the same formula as Z-
norm. The di�erence consists in estimation of µI and σI. Now, a set of impostor models is chosen
beforehand. The T-norm parameters are then estimated from the set of scores obtained during the
veri�cation phase, where all the impostor models are scored against the ith utterance. As expected,
the disadvantage of T-norm are the increased computational demands. Note that the T-norm is very
similar to the cohort normalization [67], but the score is now in addition normalized by the standard
deviation. For instructions how to adequately choose the cohort speakers for T-norm see e.g. [68].

These two techniques can be combined (as done very often) into the so-called ZT-norm, where
Z-norm is followed by the T-norm yielding a superior performance [69].

With time ZT-norm became a separate module used regularly in speaker veri�cation systems
regardless on other normalization techniques as the last tool to adjust the score. However, the choice
of the impostor/cohort speakers is still an alchemy even if some techniques were already proposed,
e.g. [68].

5.7 Nuisance Attribute Projection (NAP)

NAP was suited for the concept of SVMs and supervectors [70, 71, 42]. It reduces the in�uence
of the channel variability projecting out the supervector dimensions that are mostly vulnerable to
changes of operating conditions.

We are given a set of labeled vectors. Each group, containing vectors sharing the same label,
consists of several supervectors (representations) of one individual obtained from distinct operating
conditions. The task is to locate directions in which the variations between distinct representations
in each of the groups are highest. These directions are then removed (projected out). It can be
anticipated that the problem can be solved by an eigenvector decomposition of some covariance
matrix. Now it will be shown how does the objective function and the covariance matrix look like.

The objective function to be minimized has the form [70]

JNAP(P ) =

N−1∑
i=1

N∑
j=i+1

Wij‖P (xi − xj)‖2 (5.5)

where N is the number of input vectors, W = [Wij ] is a N × N symmetric matrix of weighting
factors (they can be seen as a set of labels discussed above), P is a D ×D projection matrix of low
rank Dp, and D = dim(xi). Note that D −Dp is known as the corank of the matrix P , and we will
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adhere to this term also in the experiments in Section 7.6. The projection matrix P will be assumed
in the form

P = I − FFT, (5.6)

where columns of the D×Dp matrix F span the subspace which we are going to project out, and we
will put a slight restriction on the basis of the subspace in the form FTF = I. Thus, columns of F
are orthonormal, otherwise the projection matrix would have the form P = I −F (FTF )−1FT (note
that the assumption that F has full column rank Dp has to be met, otherwise the inversion (FTF )−1

has to be replaced by a generalized inversion [72]). However, the objective (5.12) does not depend
on the choice of the base of the subspace, it depends only on the subspace generated by this base.
Hence choosing the projection P in the form (5.6) does not violate the generality of the solution of
(5.5). The proof is given in Appendix A.

One of the simplest weightings presented in [70] are

• Wchannel � Wij = 1 if xi and xj di�er in the channel, 0 otherwise,

• Wsession � Wij = 1 if xi and xj correspond to the same speaker, 0 otherwise.

The �rst caseWchannel can be interpreted as the minimization of cross-channel distances, and the latter
case Wsession can be seen as the minimization of the session variability. Let Xs = [xs1, . . . ,xsNs ] be
the data matrix with Ns vectors ordered in columns containing only those vectors for which Wij = 1,
and let X = [X1, . . . ,XS ] be the overall data matrix containing disjoint sets of all the input vectors.
Hence, weights Wij can be seen also as data labels, which determine the pertinence of a vector to one
of the sets Xs. After such an arrangement of vectors in X the weighting matrix W will have the
form

W =

 IN1 0 0

0
. . . 0

0 0 INS

 , (5.7)

where INs is a Ns×Ns matrix with 1 in each entry, S is the number of unique labels. Equation (5.5)
can be now rewritten as

N−1∑
i=1

N∑
j=i+1

Wij‖P (xi − xj)‖2 =
S∑
s=1

Ns−1∑
i=1

Ns∑
j=i+1

eTijX
T
s PXseij =

S∑
s=1

tr

PXs

∑
i,j

eije
T
ij

XT
s


= tr

(
P

S∑
s=1

NsXsJsX
T
s

)
= tr

(
PXJXT

)
, (5.8)

where the property P 2 = P of the projection matrix (5.6) was used (P is idempotent, projection of a
projection of a vector does not change the vector anymore since the vector is already in the subspace
generated by P , additionally P = PT), eij is a zero vector with +1 in its ith entry and -1 in its jth

entry (Xseij = xsi − xsj), and

Js =
1

Ns

∑
i,j

eije
T
ij = INs −

1

Ns
11T, (5.9)

INs is Ns ×Ns identity matrix, and

J = DIAG(W1)−W =

 N1J1 0 0

0
. . . 0

0 0 NSJS

 , (5.10)
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where the function DIAG(z) takes an input vector z and constructs a diagonal matrix Z with z on
its diagonal. Realizing that

XsJsX
T
s =

Ns∑
n=1

(xsn − x̄s)(xsn − x̄s)T, with x̄s =

Ns∑
n=1

xsn, (5.11)

we can state that the matrix (5.10) does the centering of vectors in each set Xs. Thus, the matrix
CW = XJXT is in fact the weighted sum of within covariances of each labeled set Xs weighted
according to the number of vectors it contains. The objective function (5.5) takes now the form

JNAP(P ) = tr(PCW). (5.12)

Substituting (5.6) into (5.12) and keeping only the part dependent on F we get a new objective
function

JNAP(F ) = tr(FFTCW) = tr(FTXJXTF ) = tr(Y JY T) = tr(C̃F
W), (5.13)

where Y = FTX are the coordinates of vectors from the set X in the subspace formed by columns
of F . It is now obvious that minimizing (5.5) is equivalent to maximizing the trace of the within
covariance matrix in the subspace that we wish to project out.

Using the Lagrange function with a symmetric matrix Λ (since the restriction is symmetric) [73]
of Lagrange multipliers we get

LF = tr( (I − FFT)CW ) + tr( Λ(FTF − I) ) (5.14)

Computing the derivative with respect to F and setting it to zero we get

−2CWF + 2FΛ = 0

CWF = FΛ,

SinceCW is a symmetric positive semi-de�nite matrix its eigenvalues are nonnegative and its eigenvec-
tors are orthonormal. Thus, the restriction FTF = I is satis�ed when columns of F are eigenvectors
of CW, and (5.12) is minimized when these eigenvectors correspond to Dp largest eigenvalues (high-
est variance is projected out). In fact, the concept of NAP is equivalent to the concept of Principal
Component Analysis (PCA) [74] used mainly for dimensionality reduction, where an eigenvalue de-
composition of some covariance matrix is carried out, and the eigenvectors corresponding to largest
eigenvalues are used to form the columns of the transformation matrix.

The problem with Wchannel is that it tries to put together also di�erent speakers who can be
considered as distinct representations of one speaker/voice di�ering in the channel. This can be
solved by centralizing the supervectors of one speaker in advance, and thereby normalizing out the
identity of a speaker (after some assumptions are met). However, following the previous discussion,
such an approach is equivalent to the one involving the matrixWsession, where (as was shown above)
the problem of centralization is solved implicitly.

Note that the dimension of the feature vector x after being projected (x̂ = Px) is preserved � the
vector x is projected on some subspace in the high dimensional space. The formulation of NAP was
originally proposed for SVMs, but some attempts have been made to extended it also to conventional
GMMs [75].
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Chapter 6

Factor Analysis Based Techniques

In last years Factor Analysis (FA) based techniques gained on popularity in the task of speaker
recognition. Progressive methods as Joint Factor Analysis (JFA) [76], closely related concept of
i-vectors [5] or Probabilistic Linear Discriminant Analysis (PLDA) [8] are all based on FA. FA was
integrated into the task of speaker recognition when supervectors (mostly based on GMM parameters)
were introduced. Since supervectors are of substantially high dimension methods to reduce their
dimension and/or bind the parameters in a supervecetor were requested. First techniques dealing
with the dimensionality reduction of supervectors in the sense of subspace estimation were Nuisance
Attribute Projection (NAP) described in Section 5.7 and JFA [77]. While NAP was suited for support
vector machines and addressed the channel compensation, JFA was focusing also on the within-speaker
variability. Both within- and between-speaker subspaces were estimated jointly at the same time.
Lately, in [78] it was shown how to decouple the estimation of both subspaces. At �rst the between-
speaker subspace is estimated, and subsequently the within-speaker covariance is decomposed and the
within-speaker subspace is determined. However, since the channel component of a supervector does
still contain a speaker information [5] JFA was modi�ed to the concept of i-vectors. All the methods
are going to be reviewed in following sections.

6.1 Factor Analysis (FA)

LetX = {xi}Ni=1 be a set of N feature vectors (observations) of dimension Dx and let Y = {yi}Ni=1

be a set of their latent representations of dimension Dy (often Dy << Dx). Then, Factor Analysis is
a latent linear Gaussian model of the form

xi = Byi + εi, (6.1)

where B is a Dx×Dy transformation matrix, and an assumption has been made that vectors xi were
normalized in advance to have zero mean, otherwise the formula would contain also a mean term µ,
e.g. xi = µ + Byi + εi. The term εi represents some residual noise contained in the data. In FA
an assumption is met that the variation in feature vectors can be explained in a su�cient amount by
variations of low dimensional hidden variables yi.

In order to enable and facilitate the estimation of unknown parameters restrictions on distributions
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of yi and εi are laid. We will assume that

yi, εi are independent and identically distributed (iid), (6.2)

yi ∼ N (0, I), εi ∼ N (0,Σ), (6.3)

xi ∼ N (0,BBT + Σ), alternatively xi|yi ∼ N (Byi,Σ), (6.4)

yi|xi ∼ N (Ey[yi|xi],Cyy|x), (6.5)

where Ey[·] denotes the expectation over the latent variable y. In order to get parameters of the
distribution speci�ed in (6.5) one can utilize the Bayes rule, where equations (6.3) and (6.4) are
plugged in, what gives

Cyy|x = I −BT(Σ +BBT)−1B = (BTΣ−1B + I)−1. (6.6)

Ey[yi|xi] = Cyy|xB
TΣ−1xi, (6.7)

where the inverse identity (C.1) was used in (6.6). We see that the covariance of an estimate of the
latent variable yi given an observation xi decreases when the noise corruption gets smaller than the

covariance handled by BBT (compare to 1− σ2
y

σ2
ε+σ2

y
).

6.1.1 Training

Since the set of latent variables Y as well as parameters Θ = {B,Σ} are unknown Expectation
Maximization (EM) algorithm has to be involved in order to train the model. The objective function
in EM to be optimized is given as

Q(Θ,Θold) = Ey [ln p(X,Y |Θ)|X,Θold] = Ey

[
N∑
i=1

(ln p(xi|yi,Θ) + ln p(yi)) |X,Θold

]
, (6.8)

Both distributions in (6.8) are known (de�ned in (6.3) and (6.4)), thus

Q(Θ,Θold) = const − 1

2

N∑
i=1

Ey
[
ln |Σ|+ (xi −Byi)TΣ−1(xi −Byi)|X,Θold

]
(6.9)

where everything not dependent on Θ is contained in the const part. In order to maximize (6.9) we
use identities [79]

∂

∂B
(x−By)TΣ−1(x−By) = −2Σ−1(x−By)yT, (6.10)

∂

∂Σ
xTΣ−1y = −Σ−TxyTΣ−T, (6.11)

∂

∂Σ
ln|Σ| = Σ−T, (6.12)

and according to the Leibniz integral rule we get

d

dx

∫ y1

y0

f(x, y)dy =

∫ y1

y0

∂

∂x
f(x, y)dy, thus

d

dx
Ey[f(x,y)] = Ey

[
∂

∂x
f(x,y)

]
. (6.13)

Finally, before the the very beginning of deriving the update formulas note that

Ey[yiy
T
i |xi] = Cyy|x + Ey[yi|xi]Ey[yTi |xi]. (6.14)
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Taking derivatives of objective function (6.9) we obtain

∂Q(Θ,Θold)

∂B
=

N∑
i=1

Ey
[
Σ−1xiy

T
i −Σ−1Byiy

T
i |X,Θold

]
=

=
N∑
i=1

(
Σ−1xiEy[y

T
i |xi]−Σ−1BEy[yiy

T
i |xi]

)
(6.15)

∂Q(Θ,Θold)

∂Σ
= −1

2

N∑
i=1

Ey
[
Σ−1 −Σ−1(xi −Byi)(xi −Byi)TΣ−1|X,Θold

]
=

= −1

2

N∑
i=1

(
Σ−1 −Σ−1xix

T
i Σ−1 −Σ−1BEy[yiy

T
i |xi]BTΣ−1 +

+ Σ−1xiEy[y
T
i |xi]BTΣ−1 + Σ−1BEy[yi|xi]xTi Σ−1

)
, (6.16)

where for clarity the conditional part in the expectation Ey[yi|xi,Θold] was shortened. Setting them
to zero we get following update formulas

B =

(
N∑
i=1

xiEy[y
T
i |xi]

)(
N∑
i=1

Ey[yiy
T
i |xi]

)−1

, (6.17)

Σ = BCyy|xB
T +

1

N

N∑
i=1

(xi − x̂i)(xi − x̂i)T, x̂i = BEy[yi|xi], (6.18)

where x̂i = BEy[yi|xi] ≈ Byi is the reconstructed vector xi, and the term BCyy|xB
T represents

the latent covariance expressed in the feature space. We can conclude that Σ explains the residual
variance and in addition it grows also in regions where the covariance of latent variables given observed
xi is high (regions of high degree of uncertainty of observed- to latent-variable mapping). Realizing
that the symmetry∑N

i=1BEy[yi|xi]xTi =
∑N

i=1 xiEy[y
T
i |xi]BT =

∑N
i=1BEy[yiy

T
i |xi]BT =

=
(∑N

i=1 xiEy[y
T
i |xi]

)(∑N
i=1Ey[yiy

T
i |xi]

)−1 (∑N
i=1Ey[yi|xi]xTi

)
holds when we substitute (6.17) for B and using the fact that Ey[yi|xi]Ey[yTi |xi] = Ey[yiy

T
i |xi] −

Cyy|x, the update formula (6.18) can be rewritten into a more e�cient form

Σ = BCyy|xB
T +

1

N

N∑
i=1

xix
T
i −

1

N

N∑
i=1

BEy[yi|xi]xTi −
1

N

N∑
i=1

xiEy[y
T
i |xi]BT

+
1

N

N∑
i=1

B(Ey[yiy
T
i |xi]−Cyy|x)BT =

1

N

N∑
i=1

(
xix

T
i −BEy[yi|xi]xTi

)
. (6.19)

To summarize the training procedure given in Alg.1, the expectation step requires to compute (6.6),
(6.7) and (6.14), which are then used in the maximization step to estimate new model matrices B
and Σ according to (6.17) and (6.19). These two steps are iterated until the change in the objective
function (6.8) between two successive steps is small enough or predetermined number of iterations
Niter was reached. To initialize the algorithm the matrices may be chosen randomly.

Note that in order to use the update formula (6.19) new estimate of B given in (6.17) must be
evaluated prior to Σ, whereas Ey[yi|xi], i = 1, . . . , N have to be the same as in (6.17) (thus computed
utilizing the estimate of B from the previous step), otherwise the semi-de�niteness and symmetry of
the noise covariance matrix Σ would not be guaranteed.
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Algorithm 1 FA estimation algorithm

Require: a set of centralized feature vectors {xi}Ni=1 of dimension Dx;
dimension Dy < Dx of latent representations yi;
initialization (random) matrices Binit, Σinit;
number of iterations Niter

1: B = Binit, Σ = Σinit

2: Zxy = Zyy = 0

3: CX = 1
N

∑N
i=1 xix

T
i

4: for iter = 1 to Niter do
// Expectation step:

5: Cyy|x = (BTΣ−1B + I)−1

6: for i = 1 to N do
7: Ey[yi|xi] = Cyy|xB

TΣ−1xi
8: Ey[yiy

T
i |xi] = Cyy|x + Ey[yi|xi]Ey[yTi |xi]

9: Zxy = Zxy + xiEy[y
T
i |xi]

10: Zyy = Zyy + Ey[yiy
T
i |xi]

11: end for
// Maximization step:

12: B = ZxyZ
−1
yy

13: Σ = CX − 1
NBZ

T
xy

14: end for
15: return B and Σ

6.1.2 Notes on FA

Until now none restrictions have been put on the form of the noise covariance matrix Σ. The
standard FA model assumes diagonal Σ, thus

Σ =
1

N

N∑
i=1

diagz
(
xix

T
i −BEy[yi|xi]xTi

)
, (6.20)

where the function diagz() zeros all the non-diagonal elements of a matrix. The matrix B is often
called the factor loading matrix, entries of yi are called factors, and the diagonal elements of Σ are
called uniqueness.

An interesting fact to note is that (6.17) minimizes also the objective function

JB =
1

2

N∑
i=1

‖xi −BEy[yi|xi]‖2 +
N

2
tr(BCyy|xB

T). (6.21)

It is straightforward to show that setting the derivative of (6.21) according to B to zero having both
Ey[yi|xi] and Cyy|x �xed (independent of the new estimate of B) and expressing B yields (6.17).
It is the problem of regularized least squares and it brings new insight into the concept of FA. The
iterative estimation of B consists of two steps. At �rst the current B is used to get the mean and
the covariance of latent variables yi|xi given in (6.5), and subsequently new B that minimizes (6.21)
is found. Also note that the noise covariance Σ appears only when evaluating Ey[yi|xi] and Cyy|x,
thus it alters only the latent variables. The second term in (6.21) � the regularization term � is used
to push the directions of B, in which the covariance of latent variables is high, toward zero; note that

tr(BCyy|xB
T) ≈ tr

(
1

N

∑
i

(yi − Ey[yi|x])TBTB(yi − Ey[yi|x])

)
. (6.22)
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Figure 6.1: The white ellipsoid represents the spread of the sample covariance S of some three-dimensional feature vectors (i.e.
the surface is given by (x − µ)TS−1(x − µ) = k, where µ is the mean of x and k > 0 is some constant), and the green plane
is the two-dimensional subspace formed by columns of B. Eigenvalues of the sample covariance matrix S are λ1, λ2, λ3, where
λ1 > λ2 > λ3. Note that columns of B are the leading eigenvectors of the sample covariance matrix S - this is the case in
the problem of PPCA. In the second image the covariance of projected feature vectors is shown. The latent covariance Cyy|x is
inversely proportional to λ1, λ2, thus the wider is the spread of feature vectors in a direction of the feature space the lower is the
covariance of the latent estimate yi in this direction.

Thus, the rank of the matrix B can decrease below Dy (assuming that the rank of the sample
covariance matrix is at least Dy).

Whenever Gaussianity is involved ambiguities in rotation of coordinates occur. Since distribution
of latent variables yi is Gaussian with covariance equal to the identity matrix, the covariance of
latent variables is invariant under any arbitrary rotation matrix. Loosely speaking, any rotation in
the latent space does not change the solution, thus xi = Byi + εi and xi = B̂Ryi + ε̂i, where R is
any rotation matrix such as RT = R−1, results in B = B̂ and Σ = Σ̂. This brings a lot of di�culties
when attempting to assign a meaning to the latent variables (factors).

In [80] it was shown that if Σ = σ2I is isotropic, the solution (in the sense of maximum likelihood
of p(xi) ∼ N (0,BBT + Σ)) is given by the scaled leading eigenvectors of the sample covariance
matrix Cxx = 1/N

∑N
i=1 xix

T
i , which form the columns of B and the mean of residual (unused)

eigenvalues determines Σ. Thus, in some special cases the solution of the estimation of the FA model
may be expressed analytically. Such an approach was denoted as Probabilistic Principal Component
Analysis (PPCA), and it is worth writing down the solution

B = U(Λ− σ2I)1/2R, (6.23)

where U , Λ are the matrices of eigenvectors (stored in columns) and of corresponding Dy leading
eigenvalues λi of the sample covariance matrix Cxx, respectively, and R is an arbitrary rotation
matrix. In this scenario the latent covariance becomes (choosing R = I)

Cyy|x = (BTΣ−1B + I)−1 = (σ−2
(
Λ− σ2I

)
+ I)−1 = σ2Λ−1.

Hence the latent covariance Cyy|x is diagonal with diagonal elements σ2/λi. It is obvious that the
latent covariance will grow when the noise variance σ2 is high, but it will grow also in directions where
the data variance is low. Loosely speaking, the estimate of the latent variable will be more reliable
in those subspaces, in which the spread of feature vectors xi is wider, see Figure 6.1. The rationale
are that such a direction can be estimated more reliably than a direction where feature vectors are
concentrated near the origin leaving that direction ambiguous.
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Another interesting property is that if the noise covariance Σ is �xed (e.g. it is derived a-priori,
and it is not updated in each iteration � see Section 6.3), the standard FA decomposition described
in this section leads to the same result as the FA decomposition of the dataset X̂ = {Σ−1/2xi}Ni=1

with
Ĉyy|x = (B̂TB̂ + I)−1 and Êy[yi|xi] = Ĉyy|xB̂

Tx̂i, (6.24)

up to some rotation matrix R, yielding BR = Σ1/2B̂, Ĉyy|x = RTCyy|xR, and Êy[yi|xi] =

RTEy[yi|xi]. It is easy to see that

Σ−1/2xi = x̂i = B̂Êy[yi|xi] = Σ−1/2BRRTCyy|xRR
TBTΣ−1/2Σ−1/2xi = Ey[yi|xi] =

= Σ−1/2BCyy|xB
TΣ−1xi = Σ−1/2BEy[yi|xi], hence xi = BEy[yi|xi].

Such an observation may bring some additional computational savings when implementing a FA
system. The input dataset is normalized beforehand so that all the multiplications with Σ−1 in the
FA update formulas will vanish.

Be aware that we are unable to recover the latent representation yi of a given feature vector
xi, we can recover only the distribution of yi given xi and if needed we can use the mean value
yMAP
i = Ey[yi|xi] of the distribution as a Maximum A-Posteriory (MAP) point estimate of yi.

6.2 Probabilistic Linear Discriminant Analysis (PLDA)

PLDA was designed as a probabilistic alternative to Linear Discriminant Analysis (LDA), where
the aim is to maximize the ratio of between- to within-class covariance in order to increase the
separability of given classes. It was introduced to the image processing by Prince and Elder. This
section will contain a thorough analysis of the method and its modi�cations, which will result in a
much faster implementation of the training procedure.

Following notations in [8] the PLDA generative model can be written in the form

xij = µ+ Fhi +Gwij + εij , (6.25)

where vectors from the set X = {xi1, . . . ,xiJi}Ii=1,
∑I

i=1 Ji = N represent I individuals and Ji
distinct representations of each individual and N is the number of vectors in X. Let us denote the
set of distinct representations of one individual as Λi = {xij}Jij=1. The term µ = E[xij ] is the mean
value of vectors in X, hi is a vector representing the mutual information shared between vectors in
Λi, wij denotes the representation dependent part of each vector in X and εij stands for the residual
noise factor. Further, columns of the matrix F span the between-individual subspace and columns of
the matrix G span the within-individual subspace of the space formed by vectors in X. Thus, one
can identify the identity component µ + Fhi and the noise/channel component Gwij + εij of each
vector xij . Usually dimensions of hi and wij are lower than the dimension of the feature vector xij .
Denoting Dx = dim(xij) = dim(εij), Dh = dim(hi), Dw = dim(wij), a reasonable choice would be
Dx > Dh + Dw. Hence, the high-dimensional representation xij can be fully explained by two low-
dimensional decompositions and some additional information redundancy (caused by the inequality
sign). However, the dimensions Dh and Dw are not restricted in any way. For completeness lets add
that F is a Dx ×Dh matrix and G is of size Dx ×Dw.

In order to facilitate the estimation of unknown parameters restrictions on distributions of hi,wij , εij
are laid as in Section 6.1. We will assume that

hi,wij , εij are independent and identically distributed (iid), (6.26)

hi ∼ N (0, I),wi,j ∼ N (0, I), εij ∼ N (0,Σ), (6.27)

xij ∼ N (µ,FFT +GGT + Σ), alternatively xij |hi,wij ∼ N (µ+ Fhi +Gwij ,Σ). (6.28)
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The term I denotes the identity matrix of corresponding dimension. The Dx×Dx covariance matrix
Σ of the noise term εij will be assumed diagonal until stated otherwise. From (6.28) it is clear
that the task of PLDA is to divide the covariance matrix Cxx = 1/N

∑
i xix

T
i of observations xi

into three distinct matrices giving Cxx ≈ FFT + GGT + Σ (equality would be obtained when
number of parameters on both sides would equal, but in general this is not the case). The covariance
GGT + Σ is responsible for the explanation of the variation of noise. However the advantage in
introducing G instead of a full covariance matrix Σ and reducing the model into the form xij =
Fhi + εij , εij ∼ N (0,Σfull) lays in the number of free parameters of the noise covariance to be
estimated. In the reduced form and full covariance caseDx(Dx+1)/2 parameters have to be estimated,
while Dx(Dw+1) parameters have to be estimated when introducing the matrix G (equality obtained
for Dw = (Dx − 1)/2). Thus, one can directly control the description power of the noise component.

In order to express the probability distribution p(hi,wij |xij), which is again Gaussian, we will
rewrite (6.25) into the reduced form

xij = Byij + εij ,B = [F ,G],yij = [hTi ,w
T
ij ]

T, (6.29)

where xij are now assumed to have zero mean (µ was subtracted from vectors inX in advance). Since
the formula is exactly the same as (6.1), the parameters of the distribution p(yij |xij) = p(hi,wij |xij)
are given as in (6.6) and (6.7).

6.2.1 Training

To train the unknown parameters Θ = {F ,G,Σ} one has to compute the likelihood that all the
vectors in Λi share the same identity expressed by the latent variable hi. In [8] it was shown how to
solve the problem by forming a system of equations for all vectors in Λi receiving

xi1
xi2
...
xiJi

 =


F G 0 . . . 0
F 0 G . . . 0
...

...
...

. . .
...

F 0 0 . . . G




hi
wi1

wi2
...

wiJi

+


ε1

ε2
...
εJi

 , Σ̂i =


Σ 0 . . . 0
0 Σ . . . 0
...

...
. . .

...
0 0 . . . Σ

 , (6.30)

what can be written in a more compact form as

x̂i = Aiŷi + ε̂, (6.31)

where ε̂ ∼ N (0, Σ̂i). Matrices Ai, Σ̂i depend on i through the number of their row- and column-
blocks, which are given by the number of vectors in Λi. The joint probability of vectors in Λi is now
equal to

p(Λi) = N (x̂i|0,AiA
T
i + Σ̂i). (6.32)

The equation (6.31) is a standard FA problem, which can be solved according to the procedure
described in Section 6.1. At �rst, vector Eŷ[ŷi|x̂i] is estimated utilizing the matrices Ai, Σ̂i according
to (6.7), which is then decomposed to Ji vectors in order to get pairs (xij , Ey[yij |xij ]) with yij
given in (6.29). Now the reduced problem (6.29) is solved, where B = [F ,G]. Note that the
matrix Ai is used only to get the latent representations hi, wij . The procedure iterates until the
convergence or enough iterations have been reached. The complete algorithm is given in Alg.2. Note
that Eŷ[ŷi|x̂i] = [h̄i, w̄i1, . . . , w̄iJi ]

T, where the bar over the latent variables h̄i, w̄ij denotes that only
the MAP estimates (i.e. mean values of hi|xij , wij |xij) are computed. Also note that Ai, Σ̂i have to
be reassembled only when Ji changes, hence the matrix (AT

i Σ̂−1
i Ai + I)−1AT

i Σ̂−1
i is computed only

once for each distinct value of Ji (e.g. if Ji is the same for all Λi then Ai, Σ̂i are assembled only once
and only one inversion is performed in each iteration in order to compute Eŷ[ŷi|x̂i]).
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Algorithm 2 PLDA estimation algorithm

Require: I sets Λi = {xij}Jii=1, i = 1, . . . , I,
∑I

i=1 Ji = N of distinct representations of an individual
i; dimensionsDh, Dw of latent variables hi,wij ; initialization (random) matrices Finit,Ginit, Σinit;
number of iterations Niter

// Initialize:
1: F = Finit, G = Ginit, Σ = Σinit

2: Zxy = Zyy = 0

3: CX = 1
N

∑N
i,j xijx

T
ij

4: for iter = 1 to Niter do
// Expectation step:

5: B = [F , G]
6: Cyy|x = (BTΣ−1B + I)−1

7: for each Λi = {xij}Jii=1, i = 1, . . . , I do
8: x̂i = [xi1,xi2, . . . ,xiJi ]

T

9: assemble Ai, Σ̂i according to (6.30)
10: Eŷ[ŷi|x̂i] = (AT

i Σ̂−1
i Ai + I)−1AT

i Σ̂−1
i x̂i = [h̄i, w̄i1, . . . , w̄iJi ]

T

11: for j = 1 to Ji do
12: Ey[yij |xij ] = [h̄i, w̄ij ]

T // note: yij = [hi,wij ]
T

13: Ey[yijy
T
ij |xij ] = Cyy|x + Ey[yij |xij ]Ey[yTij |xij ]

14: Zxy = Zxy + xijEy[y
T
ij |xij ]

15: Zyy = Zyy + Ey[yijy
T
ij |xij ]

16: end for
17: end for

// Maximization step:
18: B = ZxyZ

−1
yy

19: Σ = diagz
(
CX − 1

NBZ
T
xy

)
20: decompose B to F and G
21: end for
22: return F , G and Σ

6.2.2 Training Revisited I

The problem associated with the training procedure described in the previous section is that the
matrix (AT

i Σ̂−1
i Ai + I)−1 given in (6.6) has to be computed in each training iteration. Hence, since

the size and the structure of Ai depends on the number of vectors in Λi, it has to be reassembled and
multiplied whenever the number of vectors in Λi changes, see (6.30). And moreover, the huge matrix
(AT

i Σ̂−1
i Ai + I) has to be inverted in order to evaluate (6.7). When observations xij are of higher

dimension (this is the case when working with supervectors) and/or the number of representations
of an individual is high, the inversion of the matrix (AT

i Σ̂−1
i Ai + I) can easily become intractable.

Even if a reliable inversion can be computed, the memory management will become expensive. In this
and the following subsection procedures are going to be proposed in order to facilitate the estimation
process. We will show how to invert the matrix given in (6.6) leading to a much faster and easier
implementation. Also, we are going to analyze the solution and infer some conclusions concerning
the algorithm of PLDA.

The task is to compute Cŷŷ|x̂ = (AT
i Σ̂−1

i Ai + I)−1 in order to evaluate (6.7), thus to invert a
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huge matrix AT
i Σ̂−1

i Ai + I. According to (6.30) (because of lucidity the case for Ji = 3 is given)

C−1
ŷŷ|x̂ =


FT FT FT

GT 0 0
0 GT 0
0 0 GT


 Σ−1 0 0

0 Σ−1 0
0 0 Σ−1

 F G 0 0
F 0 G 0
F 0 0 G

+


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I



=


3FTΣ−1F + I FTΣ−1G FTΣ−1G FTΣ−1G
GTΣ−1F GTΣ−1G+ I 0 0
GTΣ−1F 0 GTΣ−1G+ I 0
GTΣ−1F 0 0 GTΣ−1G+ I

 . (6.33)

This can be written in a block form as

Cŷŷ|x̂ =

[
Ω1 Ω3

ΩT
3 Ω2

]−1

=

[
Ω̃1 Ω̃3

Ω̃T
3 Ω̃2

]
, (6.34)

where the decomposition of the matrix C−1
ŷŷ|x̂ can be suitably chosen as

Ω1 = JiF
TΣ−1F + I, (Dh ×Dh), (6.35)

Ω2 =


GTΣ−1G+ I 0 . . . 0

0 GTΣ−1G+ I 0
...

... 0
. . . 0

0 . . . 0 GTΣ−1G+ I

 , (JiDw × JiDw), (6.36)

Ω3 =
[
FTΣ−1G, FTΣ−1G, . . . , FTΣ−1G

]
, (Dh × JiDw), (6.37)

where sizes of individual matrices are given in brackets and Ji is the number of vectors in Λi. Following
the formulas for block inverses

Ω̃1 = (Ω1 −Ω3Ω
−1
2 ΩT

3 )−1,

Ω̃3 = −Ω̃1Ω3Ω
−1
2 ,

Ω̃2 = Ω−1
2 + Ω−1

2 ΩT
3 Ω̃1Ω3Ω

−1
2 .

(6.38)

we can note that the sizes of corresponding blocks (e.g. Ω̃3 and Ω3) remain the same. Since blocks in
Ω3 repeat, we can state that Ω̃3 will contain Ji identical block-matrices Ω̃3S, each of size Dh ×Dw,
and since ΩT

3 Ω̃1Ω3 is full and contains identical Dw ×Dw blocks and Ω2 is block-diagonal, Ω̃2 will
contain two repeating block-matrices, where Ω̃2D will be repeated on the diagonal and Ω̃2S will �ll the
non-diagonal blocks (for more details see [72]). Hence, when estimating (6.7) we get (again, because
of lucidity only the case for Ji = 3 is given)

Ey[ŷi|x̂i] = Cŷŷ|x̂A
T
i Σ̂−1

i x̂i = (AT
i Σ̂−1

i A
T
i + I)−1AT

i Σ̂−1
i x̂i =

h̄i
w̄i1

w̄i2

w̄i3

 =


Ω̃1 Ω̃3S Ω̃3S Ω̃3S

Ω̃T
3S Ω̃2D Ω̃2S Ω̃2S

Ω̃T
3S Ω̃2S Ω̃2D Ω̃2S

Ω̃T
3S Ω̃2S Ω̃2S Ω̃2D



FTΣ−1

∑3
j=1 xij

GTΣ−1xi1
GTΣ−1xi2
GTΣ−1xi3

 , (6.39)

where h̄i = Eh[hi|x̂i], w̄ij = Ew[wij |x̂i]. Note that since ŷTi = [hTi ,w
T
i1, . . . ,w

T
iJi

] we get

Chh|x̂ = Ω̃1, Cwiwi|x̂ = Ω̃2D, Chw|x̂ = Ω̃3S, Cwiwj |x̂ = Ω̃2S, (6.40)
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where Chw|x̂ is the covariance of latent variables h and w given an observation vector x̂, etc. In order
to estimate the inverses we will use inverse identities given in Appendix C. Now we are ready to plug
(6.35), (6.36), (6.37) into (6.38) to get

Ω̃1 =
(
I + JiF

TΣ−1F − JiFTΣ−1G(GTΣ−1G+ I)−1GTΣ−1F
)−1

=

=
1

Ji

(
FT(Σ +GGT)−1F +

1

Ji
I

)−1

, (6.41)

Ω̃2S = (GTΣ−1G+ I)−1GTΣ−1F Ω̃1F
TΣ−1G(GTΣ−1G+ I)−1 =

= GT(Σ +GGT)−1F Ω̃1F
T(Σ +GGT)−1G, (6.42)

Ω̃2D = Ω̃2S + (GTΣ−1G+ I)−1, (6.43)

Ω̃3S = −Ω̃1F
TΣ−1G(GTΣ−1G+ I)−1 = −Ω̃1F

T(Σ +GGT)−1G. (6.44)

And utilizing (6.41)-(6.44) and (6.39) we can derive the formulas for h̄i and w̄ij , where

h̄i = Ω̃1F
TΣ−1

Ji∑
j=1

xij + Ω̃3SG
TΣ−1

Ji∑
j=1

xij =

= Ω̃1F
T
(
Σ−1 − (Σ +GGT)−1GGTΣ−1

) Ji∑
j=1

xij =

=

(
FT(Σ +GGT)−1F +

1

Ji
I

)−1

FT(Σ +GGT)−1 1

Ji

Ji∑
j=1

xij , (6.45)

and in analogy with previous steps we get

w̄ij = Ω̃T
3SF

TΣ−1
Ji∑
j=1

xij + Ω̃2DG
TΣ−1xij + Ω̃2SG

TΣ−1
Ji∑

k=1,k 6=j
xik =

= Ω̃T
3SF

TΣ−1
Ji∑
j=1

xij + Ω̃2SG
TΣ−1

Ji∑
j=1

xij + (GTΣ−1G+ I)−1GTΣ−1xij =

= GT(Σ +GGT)−1

−F Ω̃1F
T
(
Σ−1 − (Σ +GGT)−1GGTΣ−1

) Ji∑
j=1

xij + xij

 =

= GT(Σ +GGT)−1

xij − F
Ω̃1F

T(Σ +GGT)−1
Ji∑
j=1

xij

 =

=
(
GTΣ−1G+ I

)−1
GTΣ−1

(
xij − F h̄i

)
. (6.46)

In summary, we derived formulas

ΣN = Σ +GGT,µi =
1

Ji

Ji∑
j=1

xij , (6.47)

h̄i =

(
FTΣ−1

N F +
1

Ji
I

)−1

FTΣ−1
N µi, (6.48)

w̄ij =
(
GTΣ−1G+ I

)−1
GTΣ−1

(
xij − F h̄i

)
. (6.49)
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The latent variable h̄i, which represents the mutual information, is the projected mean of all the
given representations of an individual i assuming full noise covariance ΣN. In addition, the more
representations are given the lesser is the in�uence of the prior hi ∼ N (0, I). The representation
dependent latent variable w̄ij is the projection of the residual (xij − F h̄i) on the space formed by
columns of G assuming only the unexplained variance Σ, however since only one vector is used at a
time the prior is �xed. It is also obvious that h̄i depends not only on one particular xij ∈ Λi, but
on the whole set Λi, whereas w̄ij depends on xij ∈ Λi and even on hi, i.e. h̄i = Eh[hi|Λi], w̄ij =
Ew[wij |hi,xij ].

Sizes of the matrices to be inverted are now Dh×Dh and Dw×Dw instead of (Dh+JiDw)×(Dh+
JiDw), which is the size of Cŷŷ|x̂. In cases where the number of representations in Λi is high the term
1/JiI in (6.48) can be left out or set arbitrary small to handle ill-conditioned situations. Thus, one
can compute the transformation matrices TF =

(
FTΣ−1

N F + ρI
)−1

FTΣ−1
N (for some small ρ) and

TG =
(
GTΣ−1G+ I

)−1
GTΣ−1 before each EM iteration, and iterate through all the data without

the need to reestimate/invert any of the matrices when the amount of data in any of the sets Λi

changes. Hence, the di�erence from the training procedure described in Section 6.2.1 stands in the
use of TF and TG instead of Ai when estimating Ey[yij |xij ] = [h̄Ti , w̄

T
ij ]

T. The complete estimation
procedure is given in Alg.3. Note that Cyy|x can be obtained as

Cyy|x = (BTΣ−1B + I)−1 =

[
Chh|x Chw|x
CT
hw|x Cwiwi|x

]
(6.50)

where Ji = 1 since we work with individual feature vectors xij .

6.2.3 Training Revisited II

The goal of the previous section was to facilitate evaluations of latent variables, now we will
focus on the accumulation process in the PLDA training, more precisely on individual terms in
update formulas (6.17) and (6.20). Utilizing notations from previous section, these equations can be
rewritten as

B =

∑
ij

[
xijh̄

T
i ,xijw̄

T
ij

]∑
ij

[
h̄ih̄

T
i +Chh|x̂, h̄iw̄

T
ij +Chw|x̂

w̄ijh̄
T
i +CT

hw|x̂, w̄ijw̄
T
ij +Cwiwi|x̂

]−1

, (6.51)

Σ = diagz

 1

N

∑
ij

xijx
T
ij −

1

N

∑
ij

F h̄ix
T
ij −

1

N

∑
ij

Gw̄ijx
T
ij

 . (6.52)

We will now show that in order to update the matrices we do not need the whole data setX, but only
some of the data covariances. Since PLDA requires several iterations to converge such an approach
will signi�cantly speed up the estimation especially when the amount of input vectors is huge. The
fact that the training algorithm and dataset depend only on some statistics of the dataset is common
in many statistical algorithms (e.g. in techniques from Chapter 3), and it frequently facilitates the
estimation procedure.

Firstly, let X = [x11, . . . ,x1J1 , . . . ,xI1, . . . ,xIJI ] be the matrix of successively ordered input data
(as described in the context of (5.7)). Denote

CX =
1

N

I∑
i=1

Ji∑
j=1

xijx
T
ij =

1

N
XXT, (6.53)

CB =
1

N

I∑
i=1

Jiµiµ
T
i =

1

N
XJXT, (6.54)
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Algorithm 3 PLDA estimation algorithm revisited I

Require: I sets Λi = {xij}Jii=1, i = 1, . . . , I,
∑I

i=1 Ji = N of distinct representations of an individual
i; dimensionsDh, Dw of latent variables hi,wij ; initialization (random) matrices Finit,Ginit, Σinit;
number of iterations Niter; small ρ
// Initialize:

1: F = Finit, G = Ginit, Σ = Σinit

2: Zxy = Zyy = 0

3: CX = 1
N

∑N
i,j xijx

T
ij

4: for iter = 1 to Niter do
// Expectation step:

5: B = [F , G]
6: Cyy|x = (BTΣ−1B + I)−1

7: Σ−1
N = (Σ +GGT)−1

8: TF =
(
FTΣ−1

N F + ρI
)−1

FTΣ−1
N

9: TG =
(
GTΣ−1G+ I

)−1
GTΣ−1

10: for each Λi = {xij}Jii=1, i = 1, . . . , I do

11: h̄i = TFµi, µi = 1
Ji

∑Ji
j=1 xij

12: for j = 1 to Ji do
13: w̄ij = TG(xij − F h̄i)
14: Ey[yij |xij ] = [h̄i, w̄ij ]

T // note: yij = [hi,wij ]
T

15: Ey[yijy
T
ij |xij ] = Cyy|x + Ey[yij |xij ]Ey[yTij |xij ]

16: Zxy = Zxy + xijEy[y
T
ij |xij ]

17: Zyy = Zyy + Ey[yijy
T
ij |xij ]

18: end for
19: end for

// Maximization step:
20: B = ZxyZ

−1
yy

21: Σ = diagz
(
CX − 1

NBZ
T
xy

)
22: decompose B to F and G
23: end for
24: return F , G and Σ

J =


1
J2
1
IJ1 0 0

0
. . . 0

0 0 1
J2
I
IJI

 , µi =
1

Ji

Ji∑
j=1

xij ,

where CX is the overall data covariance, CB is the weighted between-class covariance, IJi is a Ji× Ji
matrix with 1 in each entry, and

TF =
(
FTΣ−1

N F + ρI
)−1

FTΣ−1
N , (6.55)

TG =
(
GTΣ−1G+ I

)−1
GTΣ−1, (6.56)

where h̄i = TFµi and w̄ij = TG
(
xij − F h̄i

)
, and ρ is a small constant arbitrary chosen. Now let us
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focus on the individual terms in (6.51), hence

Exh =
∑
ij

xijh̄
T
i =

∑
ij

xijµ
T
i

TT
F =

(∑
i

Jiµiµ
T
i

)
TT
F = NCBT

T
F , (6.57)

Exw =
∑
ij

xijw̄
T
ij =

∑
ij

xij(xij − F h̄i)TTT
G = (NCX −ExhFT)TT

G = NΣ/FT
T
G , (6.58)

where
Σ/F = CX −

1

N
(FET

xh)T (6.59)

is according to (6.18) and (6.20) the residual covariance not captured by FFT (in fact, this is true
only when the convergence was acquired � see the discussion after (6.64)). Further

Ehh =
∑
ij

h̄ih̄
T
i =

∑
i

Jih̄ih̄
T
i = TF

(∑
i

Jiµiµ
T
i

)
TT
F = NTFCBT

T
F , (6.60)

Ehw =
∑
ij

h̄iw̄
T
ij =

∑
ij

h̄i(xij − F h̄i)TTT
G = −(FEhh −Exh)TTT

G . (6.61)

Eww =
∑
ij

w̄ijw̄
T
ij = TG

∑
ij

(xij − F h̄i)(xij − F h̄i)TTT
G =

= TG
(
NCX −ExhFT − FET

xh + FEhhF
T
)
TT
G =

= NTGΣ/FT
T
G + TGF (FEhh −Exh)TTT

G =

= NTGΣ/FT
T
G − TGFEhw = TG(Exw − FEhw), (6.62)

Now the update formulas (6.51) and (6.52) have the form[
Ehh +NChh|x̂, Ehw +NChw|x̂
ET
hw +NCT

hw|x̂, Eww +NCwiwi|x̂

] [
FT

GT

]
=

[
ET
xh

ET
xw

]
(6.63)

solved for F and G, where a system of equation is solved rather than to compute the inverse of a
matrix. Let F ∗ and G∗ be the solutions of (6.63). Using the already accumulated Exh and Exw we
get

Σ = diagz
(
CX −

1

N
F ∗ET

xh −
1

N
G∗ET

xw

)
. (6.64)

Note that F ∗ET
xh is symmetric, the same is true for G∗ET

xw � it follows directly from (6.18) and
from the de�nition of the problem, where the columns of F ∗ and G∗ span di�erent subspaces, hence
F ∗ET

xh 6= G∗ET
xw, thus each of the two terms have to be symmetric. In the light of the previous

statement it should be mentioned that Σ/F given in (6.59) is not necessarily symmetric since both
FET

xh and Exh = NCBT
T
F involve the same estimate of F (see the discussion related to (6.19)).

However, Σ/F converges to a symmetric matrix.

It should be highlighted that now the time to train PLDA does not depend on the size of the
dataset. The estimation algorithm is given in Alg.4.

Exact Solution By now we have assumed that TF given in (6.55) is constant even if the number
of representations Ji of an individual changes. This is useful when the number of representations
of involved individuals di�ers widely and recomputing TF would signi�cantly slower the estimation
procedure.
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Algorithm 4 PLDA estimation algorithm revisited II

Require: I sets Λi = {xij}Jii=1, i = 1, . . . , I,
∑I

i=1 Ji = N of distinct representations of an individual
i; dimensionsDh, Dw of latent variables hi,wij ; initialization (random) matrices Finit,Ginit, Σinit;
number of iterations Niter; small ρ
// Initialize:

1: F = Finit, G = Ginit, Σ = Σinit

2: CX = 1
N

∑N
i,j xijx

T
ij

3: CB = 1
N

∑I
i=1 Jiµiµ

T
i , µi = 1

Ji

∑
xij∈Λi xij

4: for iter = 1 to Niter do
// Expectation step:

5: Σ−1
N = (Σ +GGT)−1 // identity (C.1) may be used to facilitate the inversion

6: TF =
(
FTΣ−1

N F + ρI
)−1

FTΣ−1
N

7: TG =
(
GTΣ−1G+ I

)−1
GTΣ−1

8: Exh = NCBT
T
F

9: Σ/F = CX − 1
N (FET

xh)T

10: Exw = NΣ/FT
T
G

11: Ehh = TFExh
12: Ehw = −(FEhh −Exh)TTT

G

13: Eww = TG(Exw − FEhw)
14: B = [F , G]
15: Cyy|x = (BTΣ−1B + I)−1

// Maximization step:

16: B = [Exh, Exw]

([
Ehh Ehw
ET
hw Eww

]
+NCyy|x

)−1

17: Σ = diagz
(
CX − 1

NB[Exh, Exw]T
)

18: decompose B to F and G
19: end for
20: return F , G and Σ

In order to avoid the approximations we need to construct TF for each distinct Ji. Let

TF (Ji) =

(
FTΣ−1

N F +
1

Ji
I

)−1

FTΣ−1
N , (6.65)

and let Ωi be the set of indexes of those individuals i who contain the same number of representations
Ji (note that sets Ω1, . . . ,ΩNJ are disjoint, and NJ is the number of distinct values of Ji). Then,

CB(Ji) = Ji
∑
j∈Ωi

µjµ
T
j . (6.66)

Thus, CB = 1/N
∑NJ

i=1CB(Ji). Noticing that TF and CB appear only in Exh and Ehh, the only
change consists in replacing (6.57) and (6.60) with

Exh =

NJ∑
i=1

CB(Ji)TF (Ji)
T, (6.67)

Ehh =

NJ∑
i=1

TF (Ji)CB(Ji)TF (Ji)
T, (6.68)
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respectively. Now, several covariances CB(Ji) have to be stored in the memory, and several TF (Ji)
have to be computed. However, if the number NJ of distinct values of Ji is small, the increase in the
computational costs is negligible. Otherwise, it is useful to �x Ji to some small value, or e.g. cluster
values of Ji into a few clusters and �x one Ji for each cluster.

6.2.4 Veri�cation

In the veri�cation phase two hypotheses are tested [8], namely

• hypotheses Hs that two vectors x1 and x2 share the same identity,

• hypotheses Hd that the identity of two vectors x1 and x2 di�ers.

The log-likelihood ratio can be written as

LLR(x1,x2) = log
p(x1,x2|Hs)

p(x1|Hd)p(x2|Hd)
=

= logN
([

x1

x2

] ∣∣∣∣[ 0
0

]
,

[
ĈX CF
CF ĈX

])
− logN

([
x1

x2

] ∣∣∣∣[ 0
0

]
,

[
ĈX 0

0 ĈX

])
, (6.69)

where ĈX = FFT +GGT + Σ and CF = FFT, and x1,x2 were normalized in advance to have zero
mean. As proposed in [81], the LLR(x1,x2) can be rearranged so that

LLR(x1,x2) = xT1 Φx1 + xT2 Φx2 + 2xT1 Υx2 + const, (6.70)

where formulas for the block inverse (6.38) and inverse identities (C.1), (C.2) were used, and

Υ = Ĉ−1
X CF (ĈX −CF Ĉ−1

X CF )−1, (6.71)

Φ = −ΥCF Ĉ
−1
X . (6.72)

Realizing that the rank of two matrices after multiplication, where one of them has full-rank and
the other has rank r, equals r, thus rank(Υ) = rank(Φ) = Dh, leads to an e�cient estimation of
LLR(x1,x2) [81]. If Dh < Dx then Υ can be decomposed to

Υ = [UDh ,UDx−Dh ]DIAG([λ1, . . . , λDh , 0, . . . , 0])[UDh ,UDx−Dh ]T =

= UDhDIAG([λ1, . . . , λDh ])UT
Dh
, (6.73)

where the function DIAG(z) creates a diagonal matrix with entries of z on its diagonal, Λ =
DIAG([λ1, . . . , λDh ]) is the diagonal matrix formed by nonzero eigenvalues of Υ and UDh is the
matrix of corresponding eigenvectors of Υ. Substituting x̃i = UT

Dh
xi, Φ̃ = UT

Dh
ΦUDh we get

LLR(x1,x2) = x̃T1 Φ̃x̃1 + x̃T2 Φ̃x̃2 + 2x̃T1 Λx̃2 + const. (6.74)

Now, for each enrolled vector xi we can pre-compute αi = x̃Ti Φ̃x̃i and store x̀i = Λ1/2x̃i for future
use. Hence, whenever a veri�cation of two vectors is carried out we only have to multiply two low-
dimensional vectors (dim(x̀i) = Df ) and add two numbers to get

LLR(x1,x2) = α1 + α2 + 2x̀T1 x̀2 + const. (6.75)

Note that in this veri�cation scenario we do not care about the form of the decomposition of x1

or x2 (latent variables hi, wij stay unknown). The question stated is whether two vectors share the
same identity given the subspaces generated by F and G.
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6.3 Joint Factor Analysis (JFA)

JFA follows a very similar reasoning as PLDA, however it was introduced for the task of speaker
recognition by Kenny & Dumouchel [82] independently of PLDA. JFA may be seen as a modi�ed
PLDA able to handle the concept of GMM supervectors, which were discussed in Chapter 4. Recall
that the set of GMM parameters is given as

λ = {ωm,µm,Cm}Mm=1, (6.76)

where M is the number of Gaussians contained in the GMM, ωm is the weight, µm is the mean and
Σm is the covariance of the mth Gaussian, and dim(µm) = Dx.

Essentially, in JFA the focus is laid on the decomposition of each speaker's mean supervector
ψs = [µTs1, . . . ,µ

T
sM ]T, obtained in the adaptation process of a UBM, to a speaker dependent part ϑs

and channel dependent part ςs so that

ψsh = ϑs + ςsh, (6.77)

ϑs = m0 + Fhs +Dzs, where hs, zs ∼ N (0, I) (6.78)

ςsh = Gwsh + εsh, where wsh ∼ N (0, I), εsh ∼ N (0,Σ), (6.79)

where h = 1, . . . ,Hs denotes the session index of a speaker s. Hence, it is assumed that each speaker
was recorded several times on di�erent channels (1 recording = 1 session). The term m0 stands for
the mean of supervectors ψs, F is a DxM ×Dh rectangular matrix with Dh = dim(hs), and G is a
DxM ×Dw rectangular matrix with Dw = dim(wsh).

Note the similarity with the formulation of PLDA given in (6.25). The meaning of matrices in
(6.77) is the same as in PLDA, columns of F span the between-speaker subspace, columns of G span
the within/session speaker subspace, and ε is some residual noise. A slight di�erence consists in the
involvement of the term Dzs, where D is assumed to be a diagonal DxM × DxM matrix and zs
is a latent variable of size equal to the size of ψs. It can be shown [76] that if F = G = 0 then
ψsh = m0 + Dzs + εsh represents the classical MAP adaptation with a relevance factor equal to
D−2Σ (to have one relevance factor common for all the dimensions of all Gaussians one can take
τ = tr(D−2Σ)/DxM). Hence, the term Dzs is used in order to re�ne the mean supervector ψsh
when the amount of training data is su�cient, and it also helps in situations when the population of
training speakers does not su�ce to estimate F reliably [83]. In JFA, the columns of F are known
as eigenvoices and columns of G as eigenchannels, they span the speaker and channel subspace,
respectively. It can be a little bit misleading since it does not relate to the eigen-decomposition of a
matrix, however the terms have adopted with time. Again, it is assumed that Dh, Dw << DxM .

Since ψsh are the mean supervectors of individual speakers a good approximation of m0 is the
UBM mean supervector and a good approximation of Σ is the DxM ×DxM block-diagonal matrix
with blocks given by covariances of UBM Gaussians. Loosely speaking, the prior distribution of
supervectors ψsh ∼ N (m0,Σ).

In fact, only accumulated statistics (zero, �rst, and second moments de�ned in Section 3.1) of
given speaker's data related to a UBM are used instead of the adapted supervector ψs, the adaptation
is implicitly present in the model of JFA (see the discussion of the term Dzs above). Assume that
each speaker's voice was recorded several times yielding distinct sets of feature vectors ot one for each
session, and let {Nsh, bsh,Esh}Hsh=1 be the set of statistics of all the sessions of a speaker s given a
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UBM with parameters λ speci�ed in (6.76), where

Nsh =
∑
t∈Ωsh

DIAG
(

[γ1(t), . . . , γm(t), . . . , γM (t)]T ⊗ 1Dx

)
of size DxM ×DxM,

bsh =
∑
t∈Ωsh

[
γ1(t)oTt , . . . , γm(t)oTt , . . . , γM (t)oTt

]T
of size DxM × 1, (6.80)

Esh =
∑
t∈Ωsh

DIAG
([
diag

(
γ1(t)oto

T
t

)
, . . . , diag

(
γM (t)oto

T
t

)])
of size DxM ×DxM,

Ωsh represents the index set of feature vectors belonging to the hth session of speaker s, 1Dx is a Dx

dimensional vector of ones, γm(t) de�ned in (3.4) is the the posterior probability of mth Gaussian
given a feature vector ot, and the function DIAG(z) is used to construct a diagonal matrix Z with
input vector z on its diagonal. Statistics (6.80) centralized around a given supervector mc are given
as

b̄i|mc
= bi −Nimc,

Ēi|mc
= diagz(Ei − 2bim

T
c +Nimcm

T
c ), (6.81)

where Ēi|mc
is a diagonal matrix with diagonal speci�ed in (6.81). Finally,

Ns =

Hs∑
h=1

Nsh, bs =

Hs∑
h=1

bsh, Es =

Hs∑
h=1

Esh, (6.82)

where we will make a reasonable assumption that channel/session in�uences are summed out meeting
the requirement for Hs to be appropriately high.

The exhaustive derivation of the estimation formulas of JFA can be found in [76]. However, it
demands to compute the correlations of all of the latent variables, which become correlated with each
other in their posterior distributions [84] (see also (6.40), where correlations between distinct latent
variables are given). This may be computationally demanding, therefore the authors in [78, 83, 84, 85]
proposed a decoupled estimation of matrices F , G and D. Three independent FA models are trained
in order

ms = Fhs + ε, input: {b̄s|m0
}Ss=1 (6.83)

mD
s = Dzs + ε, input: {b̄s|ms+m0

}Ss=1 (6.84)

msh = Gwsh + ε, input: {{b̄sh|ϑs}
Hs
h=1}

S
s=1 (6.85)

and ε ∼ N (0,Σ)

di�ering in types of input data. Since (6.83) is the speaker dependent part of (6.77), independent of
the channel, it is trained on the set {b̄s|m0

}Ss=1 � the channel e�ects should be canceled out during the
summation (6.82), and all the supervectors bs are centered according to their mean m0. Since mD

s

is the residual variance in the speaker dependent space it is estimated using the set {b̄s|ms+m0
}Ss=1 �

this time, each supervector bs is centered according to its already estimated speaker dependent part
m0+ms. At last, using the already estimated speaker dependent part ϑs = m0+ms+m

D
s the channel

dependent part (6.85) is trained on the set {{b̄sh|ϑs}
Hs
h=1}

S
s=1, where b̄sh|ϑs represents the residual part

of each supervector ms re�ecting di�erences of supervectors between sessions of individual speakers.
A good initialization of Σ is the covariance of UBM. However, after all the matrices F , G and D
have been estimated it is appropriate to re-estimate also Σ on the set {{b̄sh|ψsh}

Hs
h=1}

S
s=1 with ψsh =

ϑs +msh.
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6.3.1 Training

Given an input set of S pairs of statistics {bs,Ns}Ss=1 related to a given UBM through (6.80),
and given a FA model of the form

ms = V ys + ε, ε ∼ N (0,Σ), (6.86)

where Σ consists of diagonal blocks formed by covariance matrices of Gaussians in the UBM, the
posterior distribution is given as [84]

ys|bs,Ns ∼ N
(
Ey[ys|bs,Ns],Cyy|Ns

)
,

Cyy|Ns =
(
I + V TΣ−1NsV

)−1
=

(
I +

M∑
m=1

NsmV
T
mΣ−1

m Vm

)−1

, (6.87)

Ey[ys|bs,Ns] = Cyy|NsV
TΣ−1bs = Cyy|Ns

M∑
m=1

V T
mΣ−1

m bsm,

where NsmI, Vm, bsm,Σm are blocks of Ns, V , bs, Σ related to the mth Gaussian of the UBM,
respectively. Note that the covariance (6.87) depends on s throughNs (the number of feature vectors
aligned to individual Gaussians), thus it changes with each supervector bs. This was the case also for
PLDA, see (6.48).

Maximum Likelihood Estimation (MLE) is similar to the estimation described in Section 6.1
with some minor changes. The estimation formula has the form

Vm =

(
S∑
s=1

bsmEy[y
T
s |bs,Ns]

)(
S∑
s=1

NsmEy[ysy
T
s |bs,Ns]

)−1

, (6.88)

where Ey[ysyTs |bs,Ns] is computed according to (6.14). The di�erence from FA and (6.17) is that
now distinct dimension-blocks of input vectors/supervectors are weighted. Note that if Nsm = N
would be constant for all s,m we would have

Ey[ys|bs, N ] =

(
1

N
I +

M∑
m=1

V T
mΣ−1

m Vm

)−1

V TΣ−1

(
1

N
bs

)

and V =

(
S∑
s=1

(
1

N
bs

)
Ey[y

T
s |bs]

)(
S∑
s=1

Ey[ysy
T
s |bs]

)−1

,

thus the estimation of V assuming supervectors on the input would be identical (none distinctions
between dimensions) to the estimation of the FA matrix (6.17) with input vectors 1/Nbs, and as in
PLDA, the prior distribution of latent variables would be weighted according to the number of feature
vectors N � the higher the N the lower the in�uence of the prior (see the discussion on (6.48)).

The update formula for the diagonal matrix Σ is mostly the same as in the case of FA and (6.20).
It has the form

Σ = diagz

(
N−1

S∑
s=1

(
Es − V Ey[ys|bs,Ns] b

T
s

))
, thus

Σm = diagz

(
N−1
m

S∑
s=1

(
Esm − b̂smbTsm

))
, b̂sm = VmEy[ys|bs,Ns]. (6.89)
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wher N =
∑

sNs The discussion on the form of (6.89) is the same as in Section 6.1.

Note that when only the diagonal of the matrix V = [Vij ] has to be estimated (this is the case for
the square matrix D from (6.84)), where V has to be square, the update formula (6.88) has the form

Vii =
ai
ci
, (6.90)

where

a =
S∑
s=1

diag
(
bsmEy[y

T
s |bs]

)
, c =

S∑
s=1

diag
(
NsmEy[ysy

T
s |bs]

)
.

An e�cient MLE algorithm containing some algebraic improvements and approximations was
proposed in [86].

Minimum Divergence Estimation introduced in [87] was proposed as an enhancement of MLE.
It does corrections in the subspace formed by V once V was estimated reliably accurate. Assume a
reliable estimate V0 thn the re-estimation formula for V is given as

V = V0T
T
yy, (6.91)

TT
yyTyy =

(
1

S

S∑
s=1

Ey[ysy
T
s |bs,Ns]

)
− µyµTy , and µy =

1

S

S∑
s=1

Ey[ys|bs,Ns].

It is obvious that (6.91) does not allow to leave the subspace formed by columns of V0. It only rotates
the eigenvectors and scales the eigenvalues of V0V

T
0 within this subspace. Such a technique can be

helpful in situations when a system already trained on large corpora is used on a smaller data set not
seen during the training of V . Then, it is useful to adjust at least the orientation of the subspace to
meet di�erent operating conditions [88].

6.3.2 New Vector Enrollment

Suppose that the matrices F , D, G and Σ were already estimated on some large data set, and
now a new set of feature vectors {ot}Tt=1 of a speaker s is given. The task is to get the decomposition
of the sth speaker's supervector ψs in the form (6.77). At �rst, statistics Ns, bs de�ned in (6.80) are
accumulated utilizing a given UBM. Subsequently, these statistics are centered and projected onto
particular subspaces in order

E[hs|bs,Ns] =
(
FTΣ−1NsF + I

)−1
FTΣ−1(bs −Nsm0)⇒ms = m0 + FE[hs|bs,Ns],

E[zs|bs,Ns,ms] =
(
DTΣ−1NsD + I

)−1
DTΣ−1(bs −Nsms)⇒ υs = ms +DE[zs|bs,Ns],

E[ws|bs,Ns,υs] =
(
GTΣ−1NsG+ I

)−1
GTΣ−1(bs −Nsυs),

yielding a decomposition of the sth speaker's supervector in the form

ψs = m0 + FE[hs] +DE[zs] +GE[ws], (6.92)

where the conditional part was left out to increase readability. In this scenario we assumed that
only one recording of speaker s was given. In case when several sessions Hs would be available we
would extract bsh,Nsh from each session, use bs =

∑Hs
h=1 bsh and Ns =

∑Hs
h=1Nsh when estimating

E[hs] and E[zs]. Thus υs = m0 + FE[hs] +DE[zs] would be the same for all the sessions, but the
channel dependent part ςsh = GE[wsh|bsh,Nsh,υs] would be di�erent for each supervector bsh of
each session h.
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6.3.3 Veri�cation

Given an unknown set of feature vectors Ox = {ot}Tt=1 we wish to compute the log-likelihood

log p(Ox|ysx,Ω,λ) (6.93)

where ysx = [hTs , z
T
s ,w

T
sx]T represents parameters of the sth speaker's model given Ox, Ω = {m0,F ,

D,G,Σ} is the set of JFA parameters, and λ = {ωm,m0m,Σm}Mm=1 is the set of UBM parameters
(see (2.16)). The speaker dependent part [hTs , z

T
s ]T of ysx can be determined at the enrollment time

of the speaker, however the channel dependent part wsx depends on (and has to be determined
according to) the current set of feature vectors Ox (see previous section).

Let ψsx = m0 + msx be a supervector of size DxM , msx = V ysx and V = [F ,D,G]. The
log-likelihood (6.93) can be computed in the manner of GMM likelihood as

log p(Ox|ysx,Ω,λ) =
T∑
t=1

log
M∑
m=1

ωm
1

(2π)Dx/2|Σm|1/2
e−0.5(ot−ψsxm)TΣ−1

m (ot−ψsxm), (6.94)

where ψsxm is a block of ψsx containing dimensions from (m−1)Dx+1 to (m−1)Dx+M . However,
this method is quite time consuming [89]. The scoring can be greatly simpli�ed aligning each vector
ot to a Gaussian (e.g. by Viterbi). Then, the GMM likelihood simpli�es to [76]

log p(Ox|ysx,Ω,λ) =
M∑
m=1

Nxmlog
1

(2π)Dx/2|Σm|1/2
− 1

2

M∑
m=1

∑
t∈Λm

(ot −ψsxm)TΣ−1
m (ot −ψsxm)

= log p(Ox|λ) + h(Ox|ysx,Ω), (6.95)

log p(Ox|λ) =

M∑
m=1

Nxmlog
1

(2π)Dx/2|Σm|1/2
− 1

2

M∑
m=1

∑
t∈Λm

(ot −m0m)TΣ−1
m (ot −m0m),

(6.96)

h(Ox|ysx,Ω) =

M∑
m=1

mT
sxmΣ−1

m

∑
t∈Λm

(ot −m0m)− 1

2

M∑
m=1

Nxmm
T
sxmΣ−1

m msxm, (6.97)

where Nxm is the number of feature vectors from the set Ox aligned to Gaussian m, Λm is the index
set of feature vectors from the set Ox aligned to Gaussian m, and p(Ox|λ) is the likelihood of Ox in
the UBM described by parameters λ assuming an alignment of vectors to Gaussians. Denoting

bVx =

∑
t∈Λ1

oTt , . . . ,
∑
t∈Λm

oTt , . . . ,
∑
t∈ΛM

oTt

T ,
EV
x = DIAG

∑
t∈Λ1

diag
(
oto

T
t

)
, . . . ,

∑
t∈ΛM

diag
(
oto

T
t

) , (6.98)

Nx = DIAG ([Nx1, . . . , Nxm, . . . , NxM ]⊗ 1Dx) ,

and

b̄Vx|m0
= bVx −Nxm0,

ĒV
x|m0

= diagz
(
EV
x − 2bVx (mV

0 )T +Nxm0m
T
0

)
, (6.99)
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(these are the Viterbi alternatives to (6.80), (6.81)), we get

log p(Ox|λ) =

M∑
m=1

Nxmlog
1

(2π)Dx/2|Σm|1/2
− 1

2
tr(Σ−1ĒV

x|m0
), (6.100)

log p(Ox|ysx,Ω,λ) = log p(Ox|λ) +mT
sxΣ

−1b̄Vx|m0
− 1

2
mT

sxNxΣ
−1msx. (6.101)

Note that in (6.101) only the last two terms on the right-hand side depend on the speaker s.

Since the channel factor wsh for each new recording and each model is unknown, it is useful to
integrate it out [83], thus get rid of the extra computations. For convenience let us adjust the notation
p(Ox|hs, zs,wsx) = p(Ox|ysx,Ω,λ). The integration has the form

p(Ox|hs, zs) =

∫
p(Ox|hs, zs,wsx)N (wsx|0, I)dwsx, (6.102)

where N (wsx|0, I) is the standard Gaussian kernel function of wsx. The result is given as

log p(Ox|hs, zs) =
M∑
m=1

Nxmlog
1

(2π)Dx/2|Σm|1/2
− 1

2
tr(Σ−1ĒV

x|υs)−

− 1

2
log |C−1

ww|x|+
1

2
‖C1/2

ww|xG
TΣ−1b̄Vx|υs‖

2, (6.103)

where υs = m0 + FE[hs] +DE[zs] is the sth speaker model (see (6.92)),

Cww|Nx =
(
GTΣ−1NxG+ I

)−1
,

and C1/2
ww|Nx is obtained from the Cholesky decomposition of Cww|Nx . Note that one can integrate

out all the latent variables, for further details see [76, 83]. Some e�cient approximations made in the
veri�cation process leading to a less time consuming scoring can be found in [89].

It should be stated that veri�cation scores in real systems are given mostly as Log-Likelihood
Ratios (LLRs), thus two hypothesis are tested. Hypothesis that the new recording does belong to a
di�erent speaker against the hypothesis that the recording does belong to the given speaker (same as
in PLDA, see Section 6.2.4). The former hypothesis uses the parameters of UBM (the decomposition
of UBM supervector is ψUBM = m0 +Gwx, thus Fh+Dz = 0) and the latter hypothesis uses the
speaker model described in the previous section to be evaluated. The �nal LLR is given as

LLR(s,UBM) = log p(Ox|s)− log p(Ox|UBM). (6.104)

6.4 Identity Vectors (i-vectors)

The question raised by researchers in [5] was whether the channel space obtained by the JFA
decomposition is free from any speaker information. Experiments proved that channel factors still
contain enough speaker information that even brings improvements when fused. Therefore a com-
bination of speaker and channel space was proposed leading to a total variability space containing
simultaneously both speaker and channel variabilities. The speaker model has now the form

ψsx = m0 + Twsx + ε, wsx ∼ N (0, I), ε ∼ N (0,Σ), (6.105)

where the index x in wsx illustrates that wsx depends also on the channel, wsx is often called the
i-vector and its components are called total factors, m0 is the mean vector of ψs (can be again taken
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from the UBM), T is the total variability space matrix, and ε is some residual noise with diagonal
covariance Σ.

In order to train T the same algorithm as for JFA is used (described in Section 6.3.1), however
now instead of labeling the input data according to speakers and their sessions, it is assumed that each
recording represents a di�erent speaker [5]. Loosely speaking, for each recording Osx one supervector
bsx is extracted along with the matrix Nsx (both given in (6.80)), all the supervectors are pooled
together and used to train T without any prior information about the labeling of bsx.

In the enrolment phase of a new speaker the number of supervectors of each speaker is equal to
the number of sessions of that speaker (in JFA only one speaker model was obtained). An i-vector is
extracted according to

w̄sx =
(
TTΣ−1NsxT + I

)−1
TTΣ−1(bsx −Nsxm0), (6.106)

where again w̄sx is the MAP estimate of the true latent variable wsx. Since the latent variable wsx

is assumed to have standard normal distribution the MAP estimate is the mean and the mode of
p(wsx|Osx).

6.4.1 Veri�cation

Techniques from previous sections may be utilized. The authors in [90, 5] use SVM with cosine
kernel

k(x1,x2) =
xT1 x2

‖x1‖ ‖x2‖
(6.107)

to train the speaker model, and even the cosine kernel alone was used to get the veri�cation score.
Some additional channel normalizations (WCCN, LDA, NAP) are often performed in the total vari-
ability space (rather than in the supervector space).

In [91, 6] the veri�cation is based on the PLDA model trained in the total variability space, where
the labeled i-vectors are utilized.

6.5 Relation of Factor Analysis (FA) and Nuisance Attribute Pro-
jection (NAP)

Since NAP, described in Section 5.7, is used to treat the within-class covariance in the manner of
channel compensation and the decoupled JFA does the channel compensation too, let us explore the
similarities and dissimilarities of both approaches.

In fact the estimation algorithm used in JFA to handle supervectors di�ers from the standard FA
algorithm only in that it puts weights on distinct dimensional blocks of supevectors. Because of this
fact and also to make the relation of NAP and FA more evident rather than the JFA algorithm the
FA algorithm will be addressed now.

An obvious di�erence is that FA is represented by a statistical model (one can generate new
samples), whereas NAP is given as a transformation matrix minimizing some objective function.
However, both can be expressed as a solution of a Least Square (LS) problem. In the following the
consequences of the LS formulation are going to be discussed, and it will be shown in what extent do
solutions of NAP and FA overlap [92].

Let Xs be a matrix of Ns vectors of speaker s ordered in its columns, let assume that they were
normalized to a zero mean in advance, and let X = [X1, . . . ,XS ], N =

∑S
s=1Ns. For simplicity

let further assume that Nc = N1 = N2 = . . . = NS . Thus, the overall within covariance matrix
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decomposed in NAP (see (5.12)) is given as CW =
∑S

s=1Ns
∑Ns

i=1 xsix
T
si = Nc

∑N
i=1 xix

T
i . To

simplify the computations let us (without loss of generality) drop the scaling term Nc and let us use
the overall within covariance matrix CW = 1/N

∑N
i=1 xix

T
i . In order to show the NAP objective

function in the form of LS let us rewrite (5.12) to

JNAP(F ) = tr (PCW ) = tr

(
(I − F⊥FT

⊥ )
1

N

N∑
i=1

xix
T
i

)
=

1

N

N∑
i=1

tr
(
xTi (I − F⊥FT

⊥ )xi
)

=

=
1

N

N∑
i=1

‖(I − F⊥FT
⊥ )xi‖2 =

1

N

N∑
i=1

‖xi − F⊥FT
⊥xi‖2 =

=
1

N

N∑
i=1

‖xi − F⊥zi‖2, and zi = FT
⊥xi, (6.108)

where P is given in (5.6), the idempotent property (I − F⊥FT
⊥ )2 = (I − F⊥FT

⊥ ) of a projection
matrix was used, and recall that the columns of F⊥ are orthonormal (FT

⊥F⊥ = I), thus F⊥zi is the
orthogonal projection of xi onto the subspace formed by columns of F⊥. In fact we could solve (5.6)
also iteratively iterating between two steps: 1) �x F⊥ and �nd the coordinates zi in the column
space of F⊥ for each xi, 2) �nd a new F⊥ that minimizes

∑N
i=1 ‖xi − F⊥zi‖2. Such an iterative

procedure does not guarantee the orthogonality of columns of F⊥, however since the objective (5.12)
does not depend on the basis of the subspace formed by columns of F⊥ (see the discussion following
after (5.6)), we can perform orthogonalization of columns of F⊥ (e.g. by QR decomposition) after
each iteration to make the estimation process more robust.

In the case of FA, the objective function (6.21) written in the form of LS have to be minimized.
In order to unify the notations let us use F instead of B, however be aware that columns of F in
NAP are assumed to be orthogonal, whereas none assumptions are made in FA. Thus (6.21) can be
rewritten utilizing the new notation as

2

N
JFA(F ) =

1

N

N∑
i=1

‖xi − Fzi‖2 + tr(FHFT), (6.109)

where

zi = (FTΣ−1F + I)−1FTΣ−1xi, (6.110)

H = (FTΣ−1F + I)−1. (6.111)

We will come out of conclusions made in [80], where it was shown that generative model (6.1)
with an isotropic noise covariance Σ = σ2I, which maximizes the likelihood (6.4) of input data, is
given by the eigenvector decomposition of the data covariance matrix. However we will use a di�erent
approach to get more insight into the problematic. Assuming isotropic noise we get

zi = (FTΣ−1F + I)−1FTΣ−1xi = σ−2(σ−2FTF + I)−1FTxi =

= (FTF + σ2I)−1FTxi,

H = (σ−2FTF + I)−1 = σ2(FTF + σ2I)−1. (6.112)

And the criterion (6.109) can be written in the form (see Appendix B)

2

N
JFA = tr(CW )− tr(K1CF −K2), (6.113)

where FTF = QTDQ is obtained using Singular Value Decomposition (SVD), QTQ = I, and since
FTF is positive semi-de�nite matrix, D = [dii] is a diagonal matrix with dii ≥ 0), F⊥ = FQTD−1/2,
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Figure 6.2: The dependency of diagonal entries of K1 and K2 on di�erent values of dii and σ2.

FT
⊥F⊥ = I, thus F⊥FT

⊥xi is an orthogonal projection onto the subspace spanned by columns of F
and FT

⊥xi are the coordinates of xi in this space, CF = 1/N
∑N

i=1(FT
⊥xi)(F

T
⊥xi)

T = 1/N FT
⊥CWF

T
⊥ ,

K1 =

[
d2
ii + 2diiσ

2

(dii + σ2)2

]
, K2 =

[
diiσ

2

dii + σ2

]
(6.114)

are diagonal matrices and tr(K2) = tr(FHFT). Thus,K1 andK2 depend on the diagonal matrixD,
and CF depends on F⊥. Note that sinceK2 is a diagonal matrix consisting of singular values of FTF ,
the second term in (6.109) is responsible only for the scaling of basis vectors of the subspace formed
by columns of F according to the level of noise, see Figure 6.2. Examining (6.113) and Figure 6.2 we
can make conclusions on the role of K1 and K2. At �rst, note that the diagonal elements of K1 are
lower and upper bounded by 0 and 1, respectively, whereas diagonal elements of K2 are only lower
bounded by 0 (recall that dii ≥ 0, σ2 ≥ 0). If σ2 >> dii then the corresponding directions do not
contribute to minimize JFA, and the task of K2 is to completely eliminate these directions.

Since K1, K2 perform only scaling of directions, in order to minimize (6.113) at �rst tr(CF ) has
to be maximized. This is done when columns of F⊥ are formed by eigenvectors of CW corresponding
to highest eigenvalues, see Section 5.7. A useful side e�ect is that CF becomes diagonal with Dy

highest eigenvalues λi of CW on its diagonal, where Dy is the latent dimension � number of columns
of F . To �nd D (once F⊥ have been found) one has to subsequently maximize tr(K1CF −K2):

∂

∂dii

Dy∑
i=1

d2
ii + 2diiσ

2

(dii + σ2)2
λi −

diiσ
2

dii + σ2
= 0, i = 1, . . . , Dy. (6.115)

After taking the derivative we get dii = 2λi − σ2, D is given by eigenvalues of CW. Since dii ≥ 0, a
condition dii = 0 if λi ≤ σ2/2 has to be introduced, which is in accordance with previous discussion
on the role of K2.

Before making any judgments on the equivalence of solutions of NAP an FA let express (6.108) as

JNAP(F ) = tr

(
(I − FFT)

N∑
i=1

xix
T
i

)
= tr(CW )− tr(CF ). (6.116)

Recall that in the case of NAP the solution is also given by the eigenvalue decomposition of CW,
thus if the noise model in FA is isotropic the solutions (more precisely the estimated subspaces) for
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NAP and FA become identical if for all eigenvalues λi > σ2/2. Otherwise, the FA subspace will be
a subspace of the NAP subspace (some directions in FA will have zero gain, i.e. dii = 0). However,
criteria JNAP and JFA will still di�er in some extent (K1 and K2). If σ2 = 0 then K1 = I, K2 = 0
and both criteria become equivalent. The same is true if we put an orthonormal restriction on columns
of F , hence FTF = QTIQ and dii = 1. Now, both K1 = (1 + 2σ2)/(1 +σ2)2 and K2 = σ2/(1 + 2σ2)
become constants independent of the choice of F , and JFA = α1JNAP + α2 becomes a scaled version
of JNAP for some constants α1, α2.

Generally, the FA criterion does incorporate also the in�uence of noise, thus the value of the
criterion di�ers from JNAP even if the resulting subspaces are identical. To get an idea what is going
on when the noise covariance Σ is diagonal rather than isotropic we can turn to (6.24). Hence, at �rst
the input data are rescaled according to the given covariance matrix Σ (the feature space is adjusted
to promote dimensions with low amount of noise), and subsequently the previous discussion can be
followed assuming σ2 = 1. Note that we have focused on the decomposition of the within covariance
matrix CW, thus we were estimating in both cases (NAP and FA) the speaker's session space.

6.6 Conclusion and Remarks

The aim of this chapter was to introduce the concept of Factor Analysis (FA) and present the
methods derived from FA. In summary, PLDA is the extended version of FA, where additionally the
variance of an individual is treated. The concept of JFA is an alternative to PLDA, but now distinct
dimension blocks of given vectors (supervectors) are weighted. Moreover, the between-class variance
and within class variance may be estimated independently as discussed in Section 6.3. Also a novel
approach to the estimation of PLDA model was proposed that signi�cantly reduces the computational
costs. Note that e�cient implementations of JFA and i-vector extraction were already studied e.g. in
[86, 110, 89].

It should be stated that the discussion in Section 6.5 can be used also when comparing Principal
Component Analysis (PCA) and FA. NAP is a special case of PCA, where the input covariance
occurring in the objective function is the within covariance computed across several classes of feature
vectors.

And �nally, note that even if the factor loading matrix B in FA has to be estimated iteratively,
if the noise matrix Σ is known beforehand or it is isotropic, the columns of B can be computed
analytically. If Σ is isotropic then B is given in (6.23), and if Σ is known beforehand then at �rst
the training data are rescaled as in (6.24) and again B is given in (6.23) with σ2 = 1.
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Experiments

In this chapter experiments utilizing techniques from previous chapters will be performed. The
focus will be laid on supervectors (SVs) from Chapter 4, more precisely on GMM-mean based, GLDS
based and MLLR based SVs. Models for supervectors will be estimated mainly utilizing the Support
Vector Machines (SVMs) described in Section 2.3.1. Several distinct kernel types and their in�uence
on the speaker recognition will be analysed along with distinct normalizations of SVs presented in
Chapter 5.

Further, system based on i-vectors (see Section 6.4) will be trained and a PLDA model from
Section 6.2 will be used as a generative model (hence as a veri�cation tool) in the total variability
space. Since the PLDA training procedure proposed in Section 6.2.3 enables a lot of experiments
to be performed, the in�uence of di�erent values of latent dimensions and the in�uence of distinct
development corpora on the PLDA estimation will be analysed.

In fact, many parameters of the system are set empirically by an expert (e.g. number of Gaussian
in the GMM, values of latent/reduced dimensions in PLDA/NAP/PCA, etc.) leading to high dimen-
sional SVs. However, it can be anticipated that the true information lies in a much lower dimension.
Regrettably, the transformations/functions leading from the extracted feature vector (often contain-
ing incomplete information on the subject of interest) to the information itself are highly non-linear
and in praxis untraceable. Utilizing only linear transformations the dimensionality reduction can be
performed only to some degree (if at all). Methods like PLDA and NAP are inherently reducing the
dimension of feature vectors, but also experiments concerning the models based on SVM and the
in�uence of recognition rates on their dimension will be performed and reviewed.

In summary, experiments will be focused on:

1. (baseline) experiments utilizing GMM/UBM based system, where each speaker's GMM is MAP
adapted and the Log-Likelihood Ratio (LLR) is computed to get a veri�cation score

2. in�uence of normalization of SVs on the SVM modelling and speaker recognition

3. dimensionality reduction of SVM models

4. i-vector extraction and PLDA based generative models in the total variability space

5. in�uence of development speech corpora on the veri�cation rates utilizing PLDA models

6. analysis of the complementarity of mentioned techniques

Results will be presented on two NIST Speaker Recognition Evaluation (SRE) corpora, namely
NIST SRE 2008 and NIST SRE 2010 reviewed in the following section. The NIST SRE 2008 will be
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Table 7.1: Summary of number of recordings, average number of sessions and number of speakers in distinct corpora.

female male
corpus ID #recordings #sessions #speakers #recordings #sessions #speakers

NIST040506 5500 8 690 3787 8 465
SW1 2311 12 197 2342 11 211
SW2 2862 10 285 2183 10 216
SWC 3753 12 311 2707 12 232
FSH 5774 3 1905 4923 3 1612

overall 20200 - 3388 15942 - 2736

used mostly to calibrate parameters of the speaker recognition system, and the validity of adjusted
parameters will be then tested on NIST SRE 2010.

7.1 Used Corpora

In order to be able to perform reliable tests following corpora were utilized: NIST SRE 2004
(NIST04), NIST SRE 2005 (NIST05), NIST SRE 2006 (NIST06), Switchboard 1 Release 2 (SW1),
Switchboard 2 Phase 3 (SW2), Switchboard Cellular Audio Part 1 and Part 2 (SWC) and Fisher
English Training Speech Part 1 and Part 2 (FSH) for development purposes, and NIST SRE 2008
(NIST08), NIST SRE 2010 (NIST10) were used for calibration and/or testing purposes. Only those
speakers from development corpora were used who had more than 4 recorded sessions. In the case of
FSH the lower bound on number of sessions was set to 3 (no more sessions were available). Further,
the development corpora were divided into following sets:

1. NIST040506 � containing 3787 recordings of 465 males of approximately 8 sessions for each male
speaker, and 5500 recordings of 690 females of approximately 8 sessions for each female speaker
from NIST04, NIST05 and NIST06

2. SW1 � containing 2342 recordings of 211 males of approximately 11 sessions for each male
speaker, and 2311 recordings of 197 females of approximately 12 sessions for each female speaker

3. SW2 � containing 2183 recordings of 216 males of approximately 10 sessions for each male
speaker, and 2862 recordings of 285 females of approximately 10 sessions for each female speaker

4. SWC � 2707 recordings of 232 males of approximately 12 sessions for each male speaker, and
3753 recordings of 311 females of approximately 12 sessions for each female speaker

5. FSH � 4923 recordings of 1612 males of approximately 3 sessions for each male speaker, and
5774 recordings of 1905 females of approximately 3 sessions for each female speaker

The summary is given in Table 7.1. Each of the recordings (except those in FSH) had approximately 5
minutes in duration including the silence, length of recordings in FSH was varying from 6 minutes to 12
minutes. The data source of all the recordings was a telephone conversation, however in NIST040506
also a few microphone interviews are present. All corpora were recorder in the United States of
America. The data are conversational telephone speech in English from all areas of the United
States. In the case of SW2 all speakers should be native speakers of English, however this is not true
for other corpora. In NIST040506 and NIST08 also other languages than English are present (e.g.
Arabic, Russian, Mandarin and Spanish). Speech data for NIST040506, NIST08 and NIST10 were
taken mainly from the Mixer Project using the Linguistic Data Consortium's "Fishboard" platform
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Table 7.2: Number of speakers and number of trials in NIST SRE 2008 and NIST SRE 2010.

NIST08 NIST10
female male female male

#target speakers 1140 648 1739 1394
#test segment speakers 2498 1535 3267 2474

#trials 28536 16968 103062 74762
#non-target trials 25157 15043 101977 73812

#target trials 3379 1925 1085 950

[93], but also some additional speech data were collected each year speci�c for each year's evaluation.

In all the tests (for details of the evaluation terminology see Appendix D) "short2-short3" trials
from NIST SRE 20081 were utilized, and in the case of NIST SRE 2010 "core-core" trials2 were used.
Since development corpora contain only telephone speech (to some minor exceptions) only telephone
speech was used in tests (note that in both evaluations also tests utilizing microphone speech are
available). The duration of all the test and target recordings in both corpora was approximately 5
minutes including the silence. In all trials only speakers of the same gender were scored against each
other. Since the information concerning the gender of the speakers was known, the presented results
will be given separately for each gender. Detailed informations on the trials are given in Table 7.2. It
should be noted that only one recording for each target and test segment speaker in NIST08, NIST10
was available.

Note that NIST08 will be used mainly for calibration purposes, parameters of individual systems
will be tuned mainly on this corpus; NIST10 will be utilized to prove the validity of tuned parameters.
Overall more than 4000 hours of speech were processed.

7.2 Feature Extraction

The sample rate of all the telephone speech recordings was 8000 Hz and the sampling format
was µ-law. The feature extraction was based on Linear Frequency Cepstral Coe�cients (LFCCs),
Hamming window of length 25 ms was used, the shift of the window was set to 10 ms. 25 triangular
�lter banks were spread linearly across the frequency spectrum, 20 LFCCs were extracted, and delta
coe�cients were added leading to D = 40 dimensional feature vectors. Next, Voice Activity Detector
(VAD) was used in order to discard the non-speech frames. VAD was based on the detection of
energies in �lter banks located in the frequency domain. Local Signal-to-Noise Ratios (SNRs) were
estimated for each frame as a mean value of SNRs in each of the �lter-banks, and global SNR was
represented as a mean value of local SNRs computed across whole utterance. Frames with local
SNR lower than the global SNR were marked as non-speech. Now, the Feature Warping (FW � see
Section 5.3) was applied utilizing a sliding window of length 3 seconds along each dimension. Note
that FW was applied after the delta coe�cients were added, hence variance in each dimension was 1.
To lower the correlation among successive feature vectors all the feature vectors were down-sampled
by a factor of 2 at the end.

1http://www.itl.nist.gov/iad/mig/tests/spk/2008/sre08_evalplan_release4.pdf
2http://www.itl.nist.gov/iad/mig/tests/spk/2010/NIST_SRE10_evalplan.r6.pdf
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Figure 7.1: Example of DET curves for two di�erent systems, sys1 performs better than sys2. Also values of the Equal Error
Rate (EER) and the minimum of the Decision Cost Function (minDCF) are given. Note that the values of the threshold θ for
which EER and minDCF occurred can not be inferred from the graph.

7.3 Evaluation Methodology

In order to evaluate the performance of the speaker recognition system Detection Error Trade-
o� (DET) curve [94] will be used. It depicts the dependency of the miss probability (target trial
is classi�ed as a non-target trial) on the false alarm probability (non-target trial is classi�ed as a
target trial) for a given veri�cation threshold, moreover error rates plotted on both axes are spread
non-linearly so that if the target and non-target scores have Gaussian distribution the DET curve
becomes close to linear (i.e. a line) and if both distribution have the same variance the line has a
unit slope.

Given a set of trials and a corresponding set of correct results for each trial a point on the DET
curve is determined using the following procedure.

1. specify a threshold θ

2. let NT be the number of target trials and let N−T (θ) be the number of target trials for which
the veri�cation score < θ; the miss probability given the threshold θ is equal to PMT(θ) =
N−
T

(θ)
NT

· 100[%]

3. let NNT be the number of non-target trials and let N+
NT(θ) be the number of non-target trials

for which the veri�cation score ≥ θ; the false alarm probability given the threshold θ is equal to

PFA(θ) =
N+
NT

(θ)
NNT

· 100[%]

It should be stated that the DET curve does not give any information on the value of the threshold
for which a point with coordinates [PFA(θ), PMT(θ)] was acquired.

In order to express the performance of a system only with one number often the Equal Error Rate
(EER) is used, which is the point on the DET curve where PFA(θ) and PMT(θ) equal.

Another way how to express the error rate with one number specifying some additional prior
information is the minimum of the Decision Cost Function (minDCF). DCF is de�ned as a weighted
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sum of miss and false alarm error probabilities3:

CDCF(θ) = CMT × PMT(θ)× PT + CFA × PFA(θ)× (1− PT), (7.1)

where CMT and CFA are the costs of respective detection errors, and PT is the prior probability of
the speci�ed target speaker. In this thesis we will use

CMT = 10, CFA = 1, PT = 0.01 (7.2)

used in all the NIST Speaker Recognition Evaluations (SREs)4. Note that even if the cost on missing
the target speaker is higher than the false alarm, the prior probability of being a target speaker is
much smaller. Thus, the minimum of DCF is likely to occur in regions with small values of false
alarm. Example of a DET curve is given in Figure 7.1.

7.4 System Setup

UBM At �rst, two gender dependent Universal Background Models (UBMs) were estimated, one
for male and one for female speakers. Each UBM (in fact a GMM) had M = 1024 Gaussians and was
trained on pooled development corpora NIST040506, SW1, SW2, SWC and FSH from recordings of
the respective gender utilizing EM algorithm and 32 reestimations.

GMMs of Speakers GMMs of individual speakers were MAP adapted (see Section 3.2, only means
were adapted with a relevance factor τ = 14) using the UBM of respective gender.

Supervector (SV) Extraction Three types of SVs were extracted:

1. ψGSV � mean of each speaker's GMM were concatenated into one SV of dimension M × D =
1024× 40 = 40960; the mapping is speci�ed in (4.5)

2. ψGLDS � monomials up to the k = 3rd order were expanded, and a (D+k)!
D!k! = 12341 dimensional

SV was extracted; the mapping is speci�ed in (4.8) and the monomial expansion is given in
(4.10)

3. ψMLLR � MLLR adaptation of UBM was performed given each speaker's feature vectors, only
one (global) MLLR matrix was computed (only one cluster containing all the means was cre-
ated), the rows of the adaptation matrixW = [A, b] given in (3.13) were concatenated yielding
a (D + 1)×D = 41× 40 = 1640 dimensional SV; the mapping is speci�ed in (4.7)

SVM Note that for each speaker's recording only one SV of each type was extracted. SVM is a bi-
nary classi�er, thus to train a SVM for each speaker a SVM impostor/background set was constructed
(one-against-all training) from all SVs extracted from NIST040506. The main reason was to speed up
the estimation process. However, NIST040506 should contain the most similar (and therefore most
problematic) speakers to speakers from NIST08 and NIST10 since it is a part of the same corpora (see
Section 7.1). In fact, in the training process of a SVM all the vectors lying far from the separating
hyperplane are discarded, for more detail see the discussion after (2.33). Since the dimensionality

3taken from http://www.itl.nist.gov/iad/mig/tests/spk/2010/NIST_SRE10_evalplan.r6.pdf, but available in
each NIST SRE evaluation plan

4in NIST SRE 2010 new weighting and prior values were introduced, however the results published in this thesis
will not involve them
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Figure 7.2: Block diagram depicting the estimation procedure of PLDA model. At �rst, development set containing hundreds
of speakers is used to train UBM. Next, Supervectors (SVs) are extracted from the development data, and an i-vector extractor
is trained (the dimension of i-vectors have to be speci�ed by the user). Subsequently, i-vectors are extracted from development
SVs. Finally, PLDA model is trained from development i-vectors, where the latent dimensions Dh and Dw have to be speci�ed
(see Section 6.2) and also information on sessions of speakers have to be given.

Figure 7.3: Block diagram depicting the veri�cation process. Two utterances of two speakers are given, also a UBM is speci�ed.
Two supervectors representing each speaker are extracted and moved to the i-vector extraction phase. At the end, already
estimated PLDA model is used to evaluate the Log-Likelihood-Ratio (LLR), de�ned in Section 6.2.4, of these two i-vectors.

of SVs was high enough to be separated by a hyperplane, only a linear kernel was used. Instead of
the kernel trick utilized in the concept of SVM the non-linear mapping was performed explicitly via
supervector extraction (for more details see Section 4.2). Thus, the veri�cation consisted only in a
scalar multiplication of two vectors � the SV of the hypothesized speaker and the normal vector of
the separating hyperplane as given in (2.33). SVM was trained using SVMtorch [20].

NAP In order to train a NAP matrix from Section 5.7 corpora SW1, SW2 and SWC were used
because of a lot of available sessions (for some speakers more than 20). Details on the corank of the
NAP matrix will be given in Section 7.6. Recall that corank of a matrix is given as D −Dp, where
D×D is the size of the projection matrix P and Dp is the rank of this projection matrix, for details
see Section 5.7.

Rank Normalization (RN) Experiments with RN of SVs were also performed. SVs were rank
normalized along each dimension, and the rank was determined according to a background population
of SVs from SW1, SW2 and SWC. For details of RN see Section 5.2.
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Figure 7.4: DET curves, EERs and minDCF for GMM based system. The left plot depicts performance for females and right
plot for males.

i-vectors and PLDA The training procedure of the i-vector extractor and PLDA model in the total
variability space is shown in Figure 7.2. Development data to train the UBM were speci�ed above,
development data to train the i-vector extractor consisted of corpora NIST040506, SW1, SW2, SWC
and FSH (i.e. all the available development data were used). In this case, the block SV Extractor
depicted in Figure 7.2 extracts SVs given in (6.80), which are needed to train the total variability space
matrix T . Seven Maximum Likelihood (ML) iterations and at the end one Minimum Divergence (MD)
iteration were carried out, see Section 6.3.1. Subsequently, i-vectors from all development corpora
were extracted according to (6.106), normalized to unit lengths [81], and used to train a PLDA model.
The PLDA model was trained according to Alg. 4, but rather than �xing the weight ρ of the prior of
the latent variable hi, the exact solution described at the end of Section 6.2.3 was used, 50 iterations
were performed. Details on values of latent dimensions will be given in upcoming sections. Once a
PLDA model was trained the score of a trial was computed as shown in Figure 7.3, where LLR is
given in (6.75).

Score Fusion In order to fuse scores of di�erent systems the linear logistic regression from the
FoCal tool kit [95] was used. Hence, the combined/fused score was a weighted linear combination of
outputs (veri�cation scores) of distinct systems.

7.5 GMM/UBM: Baseline Experiments

GMMs dominated the task of speaker recognition for more than a decade, the concept was in-
troduced by Reynolds in [11]. The veri�cation score of a trial is given as the Log-Likelihood Ratio
(LLR)

LLLR =

T∑
t=1

log p(xt|λspeaker)− log p(xt|λUBM), (7.3)

where {xt}Tt=1 is a set of T feature vectors from the test segment speaker and λspeaker, λUBM are the
parameters of the target speaker's and UBM's model, respectively. Veri�cation results are depicted
in Figure 7.4.
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Figure 7.5: DET curves, EERs and minDCF computed on NIST08 for GSV/SVM based system. The left plot depicts perfor-
mance for females and right plot for males given distinct types of normalizations and kernels.

Nowadays, GMMs play still an important role in the state-of-the-art speaker recognition systems,
however they are used mainly to extract data statistics related to distinct parts of the feature space.

7.6 SuperVectors (SVs) and SVM

Experiments will be performed on three types of SVs, namely ψGSV, ψMLLR, ψGLDS, which
extraction is described in Section 7.4. Several normalizations will be tested and also the dimensionality
reduction will be examined.

7.6.1 Gaussian-mean Supervector (GSV)

Normalizations Since the dimensionality of GSVs is huge, linear kernels are satisfactory and per-
form best with GSVs [50, 96]. The one often used in the �eld of speaker recognition is the Supervector
Linear Kernel (SLK) introduced in (4.19). In fact it incorporates the whitening step discussed in Sec-
tion 5.1, but distinct dimension blocks are weighted. Since each dimension block is associated with a
Gaussian in the UBM, the weighting relates to the number of feature vectors aligned to this Gaussian.
Also Rank Normalization (RN) from Section 5.2 was performed along each dimension of a SV (as pro-
posed in [53]) utilizing a background data set containing SW1, SW2 and SWC, the rank normalized
dimensions where then transformed with an inverse normal cumulative distribution function yielding
Gauss Normalized (GN) SVs, see Section 5.3. Results on NIST08 can be seen in Figure 7.5. Note
that RN-GN is the case of FW when standard normal distribution is used.

Interestingly, best performing system is the one with a simple linear kernel (K = ψT
GSVψGSV � in

Figure 7.5 denoted as "no-norm"). Hence, no additional normalization helped. This is most probably
caused by the FW of feature vectors in the feature extraction phase described in Section 7.2. Since
FW is applied independently to each dimension it does retain the correlations between dimensions,
moreover also the concentrations of feature vectors in a local area are partially preserved, for several
examples of a feature warped dataset see Appendix F. Information on the local variance is captured
by the covariance matrix of a Gaussian in the UBM build upon the feature warped feature space.
Obviously, the information on the variance in a local area of the feature space is helpful and does not
need to be removed. Note that FW (or other variance normalization technique) of feature vectors
before the UBM training is of crucial importance when dealing with telephone speech [63].
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Figure 7.6: DET curves for GSV/SVM based system. The left plot depicts performance for females and right plot for males for
di�erent values of corank of the NAP matrix.

Table 7.3: Error rates acquired on female (F) and male (M) parts of NIST08 and NIST10 utilizing the NAP normalization and
GSV/SVM based system.

NIST08 NIST10
NAP corank 0 32 64 128 256 512 0 256
F EER [%] 9.38 8.79 8.73 8.94 9.12 9.38 12.17 9.31

minDCF 0.0471 0.0454 0.0450 0.0455 0.0465 0.0470 0.0548 0.0460
M EER [%] 8.78 7.06 7.17 7.17 7.27 7.48 10.63 7.68

minDCF 0.0388 0.0345 0.0345 0.0340 0.0343 0.0346 0.0473 0.0393
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NAP Now the in�uence of the corank of the NAP matrix will be examined. Several values were
tested, the results can be found in Figure 7.6 and in Table 7.3 (corank 0 stands for none NAP). The
increase in the performance of the speaker recognition system for NIST08 is more evident for male
speakers, but error rates decreased for all tested values of the NAP corank. Note that one value of the
corank was taken and tested on NIST10. Since the dimensionality of GSV is very high and it is quite
hard to predict the behaviour of the system on unseen data the corank 256 was taken (rather than
the best performing one) in order to suppress possible undesirable (strong) within-speaker deviations
in test data. Note that the decrease of error rates obtained on NIST10 is substantial.

Principal Component Analysis (PCA) We will investigate whether the dimensionality of a
SVM model can be further reduced without loosing any information. We could do a dimensionality
reduction in the SV space and then train a SVM model for each set of SVs with reduced dimension.
However this would be computationally demanding (after each reduction a SVM model has to be
estimated) and would not give direct information on the SVM model space. Therefore, a SVM
model was trained for each recording from corpora SW1, SW2, SWC, FSH, where the background
population of SVs (negative examples) for the training were taken the same as for SVM modelling
of NIST08, NIST10 (thus SVs extracted from NIST040506). In order to �nd a SVM model subspace
PCA was performed � eigenvalue decomposition of the covariance matrix computed from SVM models
obtained from the development set, eigenvectors corresponding to Dred-dim highest eigenvalues form
the columns of the dimensionality reduction matrix F⊥ and FT

⊥F⊥ = I.

Note that SVM model of speaker s is given as νs = [wT
s , bs]

T, where ws is the normal of the
separating hyperplane and bs is its o�set, both are speci�ed in (2.33). Hence, the covariance matrix
Cν to be decomposed by PCA is given as

Cν = 1/Sd
∑
s∈Ωd

(νs − ν̄)(νs − ν̄)T, ν̄ = 1/Sd
∑
s∈Ωd

νs, (7.4)

where Ωd is the set of SVM models trained for recordings from development corpora SW1, SW2,
SWC, FSH, Sd is cardinality of Ωd, and ν̄ is the overall mean of SVM models. The SVM model
projected onto the subspace formed by columns of F⊥ is given as

ys = F⊥F
T
⊥ (νs − ν̄) + ν̄ (7.5)

(note that ys and νs are of the same dimension). Since the kernel is linear, given a SV %q of speaker
q extended by one in its last dimension (%q ← [%Tq , 1]T) we get a score

score(ν̂s,%q) = yTs %q = (νs − ν̄)TF⊥F
T
⊥%q + ν̄T%q = ŷTs %̂q + εq, (7.6)

where ŷs = FT
⊥ (νs − ν̄), %̂q = FT

⊥%q and εq = ν̄T%q. Hence, both the SVM model and the extended
SV are of the same dimension Dred-dim, they were both projected to the same SVM model space. The
comparison is of course faster than before the projection since the dimensionality of SVs is now lower.

The question is whether the dimensionality reduction does preserve the recognition rates and in
what amount. The case for GSV/SVM system is depicted in Figure 7.7 and Table 7.4.
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Figure 7.7: DET curves for GSV/SVM based system. In the left column performance for females and in the right column for
males is given for di�erent dimensionality reductions of SVM model. 1st row is for NIST08 and 2nd for NIST10.

Table 7.4: Error rates acquired on female (F) and male (M) parts of NIST08 and NIST10 utilizing GSVs and the dimensionality
reduction of SVM models. Results are given as EER[%]/(100*minDCF).

SVM dim full-dim 7000 5000 3000 1000 500
F NIST08 9.12/4.65 9.77/4.66 9.53/4.69 9.85/4.65 10.09/4.70 10.48/4.75

NIST10 9.31/4.60 9.68/4.65 9.49/4.69 9.59/4.65 9.86/4.76 9.95/4.85
M NIST08 7.27/3.43 8.05/3.61 7.79/3.36 7.84/3.43 8.10/3.56 8.52/3.79

NIST10 7.68/3.93 7.79/4.30 7.79/4.20 7.68/4.19 8.21/4.17 8.11/4.36

What we did is that we projected the SVM models of target speakers from NIST08 and NIST10
into the models space of development corpora. Error rates increased a little, but the performance
is still very high even if the dimension of SVs and SVM model is 8-times lower, in case of NIST10
the system is still performing very well (regarding the "full-dim" system) even for Dred-dim = 500.
Note that since only approx. 12 000 recordings are available in SW1 + SW2 + SWC + FSH for each
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Figure 7.8: DET curves, EERs and minDCF computed on NIST08 for GLDS based system. The left plot depicts performance
for females and right plot for males given distinct types of normalizations and kernels.

gender, only 12 000 SVM models were trained. Therefore the highest dimension we could reduce to
is around 12 000. It is obvious that the dimensionality of the SVM model space contains a lot of
redundant information, and it would be interesting to utilize a SVM kernel that maps into a lower
dimensional space instead to higher in cases when such high dimensional SVs are used.

7.6.2 GLDS Supervector

Normalizations In the case of GLDS based SVs at �rst the same normalizations were tested as
in the case of GSV, except the SLK kernel. Instead of the SLK kernel the inverse of the diagonal
covariance C−1

SV of SVs computed on development corpora NIST040506, SW1, SW2, SWC was used
in the kernel evaluation yielding a kernel function K = ψT

GLDSC
−1
SVψGLDS, for details see (4.2) or

Section 5.1. Note that since GLDS is based on a sum of polynomial expansions up to order k of feature
vectors ot = [ot1, ot2, . . . , otD] of dimension D (see example (4.10)) that were FW normalized, the �rst
D dimensions of GLDS will be 0 and all the dimensions corresponding to powers o2

ti, o
3
ti, . . . , o

k
ti will

be constants (after FW vectors ot have zero mean and unit variance). Hence, the variance computed
across the development set will be in these dimensions of GLDS 0 and the inversion C−1

SV will fail.
Therefore, all these dimensions were left out when working with GLDS supervectors (they do not
contain any information).

Results can be found in Figure 7.8. Again, the best performing system is the one denoted as "no-
norm" using a simple linear kernel function K = ψT

GLDSψGLDS without any normalizations performed
on SVs. The same reasoning as in the previous section can be used.

NAP Also performance of the Speaker Recognition (SR) system in dependence on the value of
the corank of the NAP matrix was examined on NIST08, and the corank 64 was taken to carry out
experiments on NIST10. Results are given in Figure 7.9 and Table 7.5, 0 stands for no NAP.

PCA Results on the dimensionality reduction of the SVM model are given in Figure 7.10 and
Table 7.6. Again, the dimensionality of the SVM model space can be signi�cantly compressed without
greater loss in the performance.
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Figure 7.9: DET curves for GLDS/SVM based system. The left plot depicts performance for females and right plot for males
for di�erent values of corank of the NAP matrix.

Table 7.5: Error rates acquired on female (F) and male (M) parts of NIST08 and NIST10 utilizing the NAP normalization and
GLDS/SVM based system.

NIST08 NIST10
NAP corank 0 32 64 128 256 512 0 64
F EER [%] 11.16 10.09 10.12 10.45 11.25 12.28 14.75 11.71

minDCF 0.0508 0.0485 0.0481 0.0486 0.0492 0.0509 0.0605 0.0569
M EER [%] 9.19 8.05 8.21 8.26 8.88 9.45 12.21 9.16

minDCF 0.0417 0.0376 0.0365 0.0379 0.0375 0.0385 0.0485 0.0430
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Figure 7.10: DET curves for GLDS/SVM based system. In the left column performance for females and in the right column for
males is given for di�erent dimensionality reductions of SVM model. 1st row is for NIST08 and 2nd for NIST10.

Table 7.6: Error rates acquired on female (F) and male (M) parts of NIST08 and NIST10 utilizing GLDS SVs and the dimen-
sionality reduction of SVM models. Results are given as EER[%]/(100*minDCF).

SVM dim full-dim 7000 5000 3000 1000 500
F NIST08 10.12/4.81 10.33/4.90 10.30/4.92 10.42/4.95 11.07/5.15 11.75/5.34

NIST10 11.71/5.69 11.89/5.73 11.80/5.74 11.98/5.82 12.53/6.02 13.46/6.26
M NIST08 8.21/3.65 8.31/3.74 8.31/3.74 8.62/3.89 9.25/4.11 10.03/4.22

NIST10 9.16/4.30 9.26/4.33 9.26/4.40 9.37/4.42 10.11/4.69 10.63/5.02

7.6.3 MLLR Supervector

Normalizations The one-class alternative described in Section 4.3.2 was utilized. The same nor-
malizations as in previous sections were tested, namely: Rank Normalization (RN), Gauss Normaliza-
tion applied after RN (RN-GN), the One-Class Kernel (OCK) given in (4.34) utilizing a block-diagonal

81



CHAPTER 7. EXPERIMENTS

Figure 7.11: DET curves, EERs and minDCF computed on NIST08 for MLLR/SVM based system. The left plot depicts
performance for females and right plot for males given distinct types of normalizations and kernels.

normalization matrix; OCKD is the OCK alternative, where only the diagonal from the block-diagonal
matrix was taken. Results are given in Figure 7.11.
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Figure 7.12: DET curves for MLLR/SVM based system. The left plot depicts performance for females and right plot for males
for di�erent values of corank of the NAP matrix.

Table 7.7: Error rates acquired on female (F) and male (M) parts of NIST08 and NIST10 utilizing the NAP normalization and
MLLR/SVM based system.

NIST08 NIST10
NAP corank 0 8 16 32 64 128 0 16
F EER [%] 13.61 13.29 13.17 13.55 14.23 16.01 16.96 14.38

minDCF 0.0563 0.0553 0.0552 0.0569 0.0597 0.0617 0.0696 0.0652
M EER [%] 12.21 11.84 11.90 12.05 11.84 12.99 14.42 11.37

minDCF 0.0474 0.0444 0.0442 0.0455 0.0459 0.0497 0.0607 0.0547

The best performing system is again the one utilizing a simple kernel function K = ψT
MLLRψMLLR

without any further normalization of SVs.
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NAP Tests with the corank of the NAP matrix are given in Figure 7.12 and Table 7.7. Note
that the contribution to the recognition on NIST08 is not apparent (however it does not spoil the
performance), but it does signi�cantly improve the error rates of recognition on NIST10.

PCA Results are given in Figure 7.13 and Table 7.8. Even if the dimensions of MLLR SVs are very
low in comparison to GSVs or GLDS SVs, the dimension can be reduced to its half without any loss.

The contribution of MLLR SVs to the recognition is lower than the contribution of GSVs and
GLDS SVs, the causes are: the low dimensionality of MLLR SVs, the fact that only one MLLR
transformation matrix was used, and that the UBM was adapted instead of adaptation of an complex
HMM based system. Much lower error rates can be acquired when LVCSR system is in use [97, 53].
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Figure 7.13: DET curves for MLLR/SVM based system. In the left column performance for females and in the right column
for males is given for di�erent dimensionality reductions of SVM model. 1st row is for NIST08 and 2nd for NIST10.

Table 7.8: Error rates acquired on female (F) and male (M) parts of NIST08 and NIST10 utilizing MLLR SVs and the
dimensionality reduction of SVM models. Results are given as EER[%]/(100*minDCF).

SVM dim full-dim 1400 1200 1000 600 500
F NIST08 13.17/5.52 13.17/5.52 13.20/5.53 13.23/5.53 13.32/5.59 13.61/5.75

NIST10 14.38/6.52 14.38/6.53 14.38/6.52 14.65/6.52 14.38/6.65 14.47/6.73
M NIST08 11.90/4.42 11.84/4.41 11.84/4.41 11.90/4.42 11.90/4.50 12.10/4.58

NIST10 11.37/5.47 11.37/5.48 11.37/5.47 11.47/5.51 11.79/5.56 12.11/5.67
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7.7 PLDA and i-vectors

The crucial problem when proposing a speaker veri�cation system composed of modules (e.g. JFA,
PLDA) is that data from a lot of speakers are required, moreover several sessions have to be available
for each speaker in order to train a reliable i-vector extractor and a PLDA model. The problem faced
in this section will address the question whether distinct speech corpora (SW1, SW2, NIST040506,
SWC) should be pooled together and used to train one PLDA model, or if each corpus should be used
individually to train a separate PLDA model. In the latter scenario the results are fused at the end.

In fact, PLDA (along with all the other FA based techniques and NAP) does the decomposition
of a covariance matrix. Hence, the question can be reformulated whether the overall covariance of all
the development data should be used, or if the covariance of one corpus should be handled separately.
If each covariance is handled separately (one PLDA model is acquired for each development corpus)
the contribution of the decomposition of each corpora's covariance to the recognition is handled in
the fusion phase. Loosely speaking, if the PLDA model leads to poor recognition rates, the fusion
weights used to weight this system's score get lower.

Since often the veri�cation conditions are unknown in advance (e.g. in the Speaker Recognition
Evaluations (SREs) organized by NIST and other institutions) we cannot count on the use of one
speci�c speech corpus performing best on the development set. It is more convenient to utilize several
corpora, and in a way described in the previous paragraph handle inappropriate deviations in acoustic
conditions of distinct corpora.

We will now analyse the performance of PLDA models in dependence on di�erent amounts of
development data. Experiments are an extension of results published in [98]. Moreover, the depen-
dence on the dimension Dh and Dw of latent variables hi and wij will be examined. In order to
decrease number of graphs to be depicted only EERs will be given. At �rst the behaviour of the
system utilizing corpora NIST040506, SW1, SW2 will be discussed, and subsequently corpora SWC
will be added to the development data.

7.7.1 Development Corpora: NIST040506, SW1, SW2

At �rst all the development data are pooled together and one PLDA model is trained. Next, one
PLDA model is trained for each corpus (hence, three models are trained in total), each system based
on one PLDA model is then scored against trials in NIST08. Given true identities of each pair of
speakers scored in the trials the logistic linear regression is used to estimate the Fusion Coe�cients
(FCs) related to each PLDA model. Finally, to prove the validity of learned FCs trials from NIST10
are scored, results are depicted in Figure 7.14.

85



CHAPTER 7. EXPERIMENTS

100
200

300
400

500
600

700
800 100

200
300

400
500

600
700

800

9

10

11

12

D
w

NIST08 female − PLDA=NIST040506SW12: median EER = 9.23%
min EER = 9.12% [D

h
 = 600, D

w
 = 700]   max EER = 11.48% [D

h
 = 100, D

w
 = 300]

D
h

E
E

R
 [%

]

100
200

300
400

500
600

700
800 100

200
300

400
500

600
700

800

7

7.5

8

8.5

9

9.5

D
w

NIST08 male − PLDA=NIST040506SW12: median EER = 7.53%
min EER = 7.43% [D

h
 = 500, D

w
 = 400]   max EER = 8.94% [D

h
 = 100, D

w
 = 200]

D
h

E
E

R
 [%

]

100
200

300
400

500
600

700
800 100 200 300 400 500 600 700 800

11

12

13

14

D
w

NIST10 female − PLDA=NIST040506SW12: median EER = 11.71%
min EER = 11.52% [D

h
 = 300, D

w
 = 500]   max EER = 12.81% [D

h
 = 100, D

w
 = 700]

D
h

E
E

R
 [%

]

100
200

300
400

500
600

700
800 100 200 300 400 500 600 700 800

8

8.5

9

9.5

10

10.5

D
w

NIST10 male − PLDA=NIST040506SW12: median EER = 8.84%
min EER = 8.63% [D

h
 = 500, D

w
 = 400]   max EER = 9.68% [D

h
 = 100, D

w
 = 500]

D
h

E
E

R
 [%

]

100
200

300
400

500
600

700
800

100
200

300
400

500
600

700
800

7.5

8

8.5

9

9.5

10

D
h

NIST08 female − PLDA=NIST040506SW12: median EER = 8.14%
min EER = 7.93% [D

h
 = 300, D

w
 = 500]   max EER = 9.38% [D

h
 = 100, D

w
 = 100]

D
w

E
E

R
 [%

]

100
200

300
400

500
600

700
800 100

200
300

400
500

600
700

800

6

6.5

7

7.5

D
w

NIST08 male − PLDA=NIST040506SW12: median EER = 6.81%
min EER = 6.39% [D

h
 = 300, D

w
 = 300]   max EER = 7.01% [D

h
 = 100, D

w
 = 800]

D
h

E
E

R
 [%

]

100
200

300
400

500
600

700
800

100
200

300
400

500
600

700
800

9.5

10

10.5

11

11.5

12

D
h

NIST10 female − PLDA=NIST040506SW12: median EER = 10.32%
min EER = 10.14% [D

h
 = 100, D

w
 = 400]   max EER = 11.24% [D

h
 = 200, D

w
 = 100]

D
w

E
E

R
 [%

]

100
200

300
400

500
600

700
800

100
200

300
400

500
600

700
800

7

7.5

8

8.5

9

D
w

NIST10 male − PLDA=NIST040506SW12: median EER = 7.79%
min EER = 7.37% [D

h
 = 100, D

w
 = 400]   max EER = 8.21% [D

h
 = 400, D

w
 = 100]

D
h

E
E

R
 [%

]

Figure 7.14: First four plots: One PLDA model trained on pooled corpora NIST040506, SW1 and SW2. Also the maximal, min-
imal and median value of EER are given along with dimension of latent variables for which they occur (given in brackets). Results
were computed on NIST08 (1st row) and NIST10 (2nd row) for females (1st column) and males (2nd column). Second four plots:
Three distinct PLDA models were trained, one for each corpora: NIST040506, SW1 and SW2. Subsequently the veri�cation scores
for trials from NIST08 were evaluated and the linear logistic regression was utilized in order to compute the fusion coe�cients.
These coe�cient were then used to fuse scores obtained on NIST08 (3rd row) and NIST10 (4th row)
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Figure 7.15: Plots depict the comparison of situations when development corpora are pooled and fused. In the left half EERs
obtained on NIST08 are compared, and in the right half EERs obtained on NIST10 are compared. In order to plot the graph
EERs from the fused system were sorted in ascending order (blue line). The red line represents EERs from the pooled system
that correspond to the values of dimensions of latent variables Dh and Dw for which the value of EER on the blue line occurred.
Note that the vectors on the x-axis are couples [Dh, Dw]T, but since the lines are sorted according the values of EER of the fused
system, they are in any order.

The question is which of the systems, the pooled or the fused one, performs better. One could
compare graphs in Figure 7.14, however a visual inspection of these graphs is quite di�cult. Therefore
Figure 7.15 was created, where EERs of the fused system (blue line) were sorted, and for each value
of EER and dimension Dh and Dw for which this value occurred, value of EER of the pooled system
(red line) in point [Dh, Dw]T is plotted. For several values of EER also the dimensions Dh and Dw of
latent variables are speci�ed on the x-axis. Again, results are depicted for NIST10 as well as NIST08.
Note that the fused system performs better in each of the conditions (for each dimension Dh and
Dw), moreover variations in error rates related to distinct latent dimensions are lower.

7.7.2 Development Corpora: NIST040506, SW1, SW2, SWC

Now the SWC corpus is added, and the previous experiments will be repeated.

Results related to the pooled corpora and to the fused system (fusion coe�cients trained again on
NIST08) can be found in Figure 7.16, and a easy-to-inspect comparison of fused and pooled systems
is depicted in Figure 7.17. Note that the fused system does still outperform the pooled one in the case
of female speakers, but for male speakers this is no longer true for a substantial amount of values of
latent dimensions. However, the fused system does not get worse than the pooled one, and for certain
values of Dh and Dw the fused system still performs best. Apparently, having a larger development
set leads to more e�cient cancelling/averaging of undesirable acoustic deviations in this set.
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Figure 7.16: First four plots: One PLDA model trained on pooled corpora NIST040506, SW1, SW2 and SWC. Also the
maximal, minimal and median value of EER are given along with dimension of latent variables for which they occur (given in
brackets). Results were computed on NIST08 (1st row) and NIST10 (2nd row). Second four plots: Four distinct PLDA models
were trained, one for each corpora: NIST040506, SW1, SW2 and SWC. Subsequently the veri�cation scores for trials from NIST08
were evaluated and the linear logistic regression was utilized in order to compute the fusion coe�cients. These coe�cient were
then used to fuse scores obtained on NIST08 (3rd row) and NIST10 (4th row).
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Figure 7.17: Plots depict the comparison of situations when development corpora are pooled and fused. In the left half EERs
obtained on NIST08 are compared, and in the right half EERs obtained on NIST10 are compared. For details of the plot see the
text or caption of Figure 7.15.

Table 7.9: Time durations in seconds needed to process 10 iterations of a PLDA training algorithm.

algorithm naive TF,G exact nearly-exact
t [s] 4820.23 46.48 12.82 1.92

7.7.3 Summary

After inspection of �gures from previous section and additional �gures given in Appendix E we
can infer that more stable/robust regions (in the sense of value of EER) are for female speakers related
to higher values of latent dimension of Dh and Dw, in the case of male speakers it is more convenient
to choose Dw small. Hence, mainly in cases with lower amount of training data it is preferable to
adhere to such values of Dh and Dw.

And �nally, let us mention the time durations needed to process 10 iterations of the PLDA
estimation algorithm. Time given in seconds needed to process 8312 i-vectors from male speakers from
corpora NIST040506 + SW1 + SW2 (one i-vector for one recording, where the number of recordings
in individual corpora can be found in Table 7.1) is given in Table 7.9. All the implementations are
described in Section 6.2. The naive implementation follows the implementation from [8], where a
huge matrix has to be reassembled for each distinct number of session of a speaker, and is given in
Alg. 2. Note that for each distinct number of sessions the matrix was inverted only once and stored
for the future use. Method denoted TF,G follows Alg. 3, where the inversion of the huge matrix
was replaced by an inversion of two substantially smaller matrices and ρ = 1/8 was �xed to a small
value to avoid ill-conditioning. The method "nearly-exact" completely follows Alg. 4, where at �rst
covariances (6.53) and (6.54) are estimated and the PLDA estimation does approach the data only
through these covariances, moreover ρ = 1/8 is �xed. The exact case follows Alg. 4, but ρ is not �xed,
instead a covariance matrix (6.66) is accumulated and stored for each distinct number of sessions and
the projection matrix (6.65) is used.

Algorithms were implemented in MATLAB R© R2011b (7.13.0.564), computer with Intel Core2
Quad CPU 2.83GHz and 8GB RAM was used, and only one thread was run.

Note that in all the experiments on PLDA the exact case was used (thus no approximations where
made) and 50 re-estimations of PLDA model were performed. Since the speed burst of the algorithm
proposed in this thesis is huge it was possible to carry out high amount of experiments (more than
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4000 PLDA models were trained processing 50 iterations for each model).

7.8 Complementarity Analysis

In order to investigate the complementarity of SVM based systems and i-vector based system,
outputs (veri�cation scores) of these systems will be fused. For this purpose the logistic linear re-
gression from the FoCal tool kit [95] will be utilized. Hence, the fused score will be given as a linear
combination of scores obtained from individual systems. To train the Fusion Coe�cients (FCs) data
and trials from NIST08 will be utilized, and the learned FCs will be then used to fuse outputs of sys-
tems trained for NIST10. Let us summarize the main ideas and dissimilarities of methods examined
in this thesis:

1. i-vectors combined with a PLDA model are used to �nd a low dimensional representation of a
Supervector (SV) similar to GMM-mean SV (GSV), moreover PLDA decomposes the feature
space into speaker- and session-dependent parts

2. i-vectors and PLDA model are generative and do not discriminate between speakers, whereas
SVM as a discriminative classi�er does; note that even if PLDA is a discriminative model it
discriminates between the speaker- and the channel-subspace

3. presented SVs used with SVM incorporate di�erent kinds of information

4. GSV is build from a set of vectors pointing to positions in the feature space with increased
concentration of feature vectors; these vectors are concatenated to a high dimensional SV

5. in the case of GLDS the covariance and higher order moments of the whole speaker's data set
are extracted; as stated in Section 7.6.2, since FW is applied on low dimensional vectors in the
features space in the phase of feature extraction (see Section 7.2), the �rst D dimensions in
all GLDS SVs are zero (no information) � truly only the covariance and higher order moments
contribute to the recognition

6. MLLR is used to transform all the means of a UBM in order to �t given feature vectors, therefore
information contained in the MLLR SVs can be thought of as a "model error" (UBM error)
given a (spekaer's) feature set

Therefore the complementarity of presented methods should be preserved. In the fusion systems GSV-
NAP-256, GLDS-NAP-64, MLLR-NAP-16 (trained via SVM with a simple linear kernel) performing
best in experiments from previous sections will participate along with the fused i-vec/PLDA system
trained on NIST040506, SW1, SW2 and SWC, which result are depicted in Figure 7.16. Inspecting
Figure 7.16 and the results of i-vec/PLDA system we can notice that the setting Dh = 100, Dw = 600
does give good results in all four cases (male/female and NIST08/NIST10). Therefore the i-vec/PLDA
system used in the fusion will be based upon these values of latent dimensions; recall that Dh is the
dimension of the between-identity subspace and Dw is the dimension of the within-identity subspace.

Results are shown in Figure 7.18 for NIST08, for NIST10 in Figure 7.19, and the error rates are
summarized in Table 7.10. The fusion of systems is undoubtedly bene�cial since error rates decreased
in all cases. However, the performance of the MLLR based system is too poor in comparison with the
other systems and the fusion does not contribute any further to the recognition performance. In fact,
this is also the case with the baseline GMM system from Section 7.5, which was because of clarity
omitted from the results.
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Figure 7.18: DET curves of individual and fused systems, results and fusion coe�cients computed on NIST08. Left plot depicts
the performance for females and the right plot for males.
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Figure 7.19: DET curves of individual and fused systems, fusion coe�cients computed on NIST08, but results are given on
NIST10. Left plot depicts the performance for females and the right plot for males.

Table 7.10: Error rates for di�erent speaker recognition systems. Entries in the table represent EER[%]/minDCF obtained using
each system independently on female and male speakers for NIST08 and NIST10.

female male
NIST08 NIST10 NIST08 NIST10

GSV-NAP-256 9.12/0.0465 9.31/0.0460 7.27/0.0343 7.68/0.0393
GLDS-NAP-64 10.12/0.0481 11.71/0.0569 8.21/0.0365 9.16/0.0430
MLLR-NAP-16 13.17/0.0552 14.38/0.0652 11.90/0.0442 11.37/0.0547

i-vec/PLDA 7.96/0.0377 9.12/0.0465 6.49/0.0314 7.05/0.0415
GSV-GLDS 8.23/0.0444 9.31/0.0469 6.65/0.0311 7.05/0.0377

GSV-GLDS-MLLR 8.14/0.0445 9.22/0.0471 6.70/0.0311 7.05/0.0377
GSV-GLDS-PLDA 6.78/0.0364 8.48/0.0423 5.51/0.0283 5.79/0.0358

ALL 6.78/0.0362 8.48/0.0423 5.30/0.0283 6.00/0.0364
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7.9 Conclusion and Remarks

As proved the experiments none (variance) normalization of SVs in the SVM based system lead
to the decrease of error rates. Conclusions were made that the covariance contained in the data
does contain information and it should not be removed. Loosely speaking, the variance in distinct
dimensions of SV can be "trusted". Such an observation is strongly supported by experiments on
dimensionality reduction, which showed that directions with high variance (related to high values
of eigenvalues) do contain much more information than those with small variance, and that a lot of
redundant information is present in the SVM model (more precisely in the high dimensional parameter
space of the SVM model). It would be of interest to try out also other types of normalization of feature
vectors right after they were extracted to see if such conclusions hold.

Note that the SLK, MLLR and COV kernels in GSVs, MLLR- and GLDS-SVs are in fact simple
linear kernel functions with pre-normalized SVs. The kernel function K = xTWx, where x is a
type of SV (GSV/MLLR/GLDS) and W is a square (often diagonal) normalization matrix, can be
replaced by K = yTy, where y = W 1/2x are the pre-normalized SVs and W 1/2 can be obtained
using Cholesky decomposition, see (4.22).

Only a few techniques described in this thesis were also experimentally tested. One reason is the
limited amount of time and computing resources, but in fact a lot of discussed methods was already
examined in other published papers cited in this work. Methods analysed in this chapter are most
commonly used in the �eld of speaker recognition and perform best on telephone speech (to some
minor exceptions caused mainly by the lack of development data).

Experiments were performed on telephone speech conversations and on corpora containing thou-
sands of speakers talking on di�erent channels. Hence, methods used in the experiments along with
the presented results relate to recognition of (channel distorted) telephone speech. Without doubts
for another task with di�erent environment conditions di�erent methods may be more appropriate,
e.g. on a "clean" data set a simple GMM based system may perform well.

A very common normalization technique is the T-norm or Z-norm (eventually their combination,
or other similar alternatives [99]) presented in Section 5.6 used to normalize the veri�cation score.
There were attempts to apply such a score normalization, however the results did not get any better.
Very good behaviour of a SVM based speaker recognition system without score normalization was
observed also in [42, 100].
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Chapter 8

Estimation of GMM Statistics on GPU

The Expectation-Maximization (EM) algorithm, in clustering often used also with Gaussian Mix-
ture Models (GMMs), was in [101] identi�ed as one of the top 10 data mining algorithms. GMMs
trained via EM are widely used in many state-of-the art recognition and data mining systems. They
are of most importance in the speaker recognition. They are utilized in the concept of supervectors
(see Chapter 4) and Support Vector Machines (SVMs) and also in Factor Analysis (FA) based systems
like JFA and i-Vectors (see Chapter 6). Another usage can be found in speech recognition systems
based on Hidden Markov Models with output probabilities described by GMMs [102]. Nevertheless,
GMMs are utilized also by biologists and immunologists for counting, sorting, and analyzing cells
suspended in a �uid [103]. This chapter is based on the work published in [104].

All these techniques process huge amounts of data, thus demanding a superior computing power.
Nowadays, parallel technologies like supercomputers, clusters, grids, and cloud infrastructures gain
on importance [105]. A simpler option is to utilize the Graphics Processing Unit (GPU), which
developed through time to a highly parallel and computationally powerful tool useful not only for
graphics processing, but also for high performance computing [7]. The main advantage of GPUs over
Central Processing Units (CPUs) is their price-performance ratio. Several manufacturers have put a
lot of e�ort to improve their GPU's development environment in order to grant access to their GPU's
computing power. This chapter focuses on NVIDIA's Compute Uni�ed Device Architecture (CUDA).
It should be stated, that implementations of the GPU algorithm may be easily included also into the
above mentioned parallel technologies.

Focus is laid on GMMs described by diagonal covariance matrices. Only the estimation of GMM
statistics is implemented on GPU, rather than the overall estimation of new GMM parameters. The
statistics are more general and may be used also in other techniques, e.g. in the adaptation described
in Section 3.2 or JFA discussed in Section 6.3. Once these statistics are available it is straightforward
and fast to update the model parameters, see Section 8.2.

At �rst, basics of CUDA are described. Next, an e�cient implementation of the estimation
algorithm of GMM statistics on GPU is given. Also an augmented CPU version is proposed, it
utilizes Streaming SIMD Extension (SSE) instructions, which make the estimation on CPU signi�-
cantly faster. Note that the estimation process does not involve any approximations, GMM statistics
obtained using any of the methods are equal (to some negligible rounding errors).

8.1 GMM Statistics

Assume a set of feature vectors O = {o1, . . . ,oT }, where dim(ot) = D, and a GMM given by a
set of parameters λ = {λm}Mm=1 = {ωm,µm,Σm}Mm=1 containing M Gaussians, their weights, mean
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vectors and covariance matrices, respectively. Let us de�ne a function

L(ot, {λb, . . . ,λe}) = log
e∑

m=b

ωmN (ot|µm,Σm), (8.1)

where b ≥ 1, e ≤M . Only diagonal covariance GMMs will be assumed, where σ2
m = diag(Σm), hence

L(ot,λm) = log(ωm) +
D∑
i=1

logN (ot,i|µm,i, σ2
m,i), (8.2)

where N (o|µ, σ2) denotes the Gaussian kernel function with mean µ and variance σ2. Recall the
statistics from Section 3.1:

γm(ot) = exp
(
L(ot,λm)− L

(
ot, {λk}Mk=1

))
(8.3)

cm =

T∑
t=1

γm(ot), (8.4)

εm =
∑T

t=1 γm(ot)ot, ε2
m =

∑T
t=1 γm(ot)oto

T
t (8.5)

are the mth Gaussian's posterior probability given a feature vector ot, the mth Gaussian's soft count
(the zero moment) and the (unnormalized) �rst and second moment of feature vectors aligned to
Gaussian m, respectively. Note that L(ot, {λm}Mm=1) = L(ot,λ) represents the log-likelihood of ot
given the model λ.

8.2 EM and Adaptation

Expectation Maximization (EM) algorithm is an iterative procedure, where initial parameters λ0

have to be given. For each iteration the increase in the log-likelihood of the feature vectors given
the model parameters is guaranteed. Thus,

∑
t L(ot,λ

k) ≥
∑

t L(ot,λ
k−1), where the upper index k

denotes the iteration number. In each iteration statistics (8.3) � (8.5) are computed with old values
of model parameters, and then they are used to update the model according to:

ω̄m = cm
T , µ̄m = 1

cm
εm, Σ̄m = 1

cm
ε2
m − µ̄mµ̄Tm, (8.6)

where λ̄ are the new GMM parameters. Moreover, note that the same statistics are used also in all the
adaptation techniques described in Chapter 3, in the extraction process of GMM based supervectors
(4.5), (4.7), and also when extracting the JFA, i-vector related supervectors (6.80) and (6.106),
respectively.

8.3 Estimation Utilizing CUDA

GPU's CUDA may be seen as a fully parallel system operating with hundreds of threads at
once. According to the GPU architecture threads are organized into thread blocks. Thread blocks are
independent of each other (algorithm executed in each of the blocks does not depend on what is going
on in other blocks), while threads in each block are allowed to cooperate. All thread blocks execute
the same algorithm called a kernel. Note that not only threads in a block, but also several thread
blocks may be executed at once. Hence, CUDA parallelism is provided at 2 levels - threads and block
of threads. All thread blocks are ordered in an one- or two-dimensional grid (a 2 dimensional grid
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Figure 8.1: Two dimensional S1 × S2 grid with thread blocks. Each thread block contains several threads, where the optimal
number of threads is a multiple of the warp size.

is depicted in Fig. 8.1). Each thread block carries speci�c information about its position within the
grid (row and column position of the block in the grid).

A high GPU computing performance can be fully utilized only with proper memory management.
Several memory types exist, which signi�cantly di�er in their size, access speed and access permission.
Global memory (GM) has read/write access, has hundreds of mega bytes available and can be accessed
from every block and every thread, but the access latency is relatively high. The best performance
of GM can be achieved using the Texture Memory (TM). TM can be seen as a part of GM, but it
is read only and cached, thus the access speed may be signi�cantly faster than in the case of GM.
Another type of memory is the Shared Memory (SM), which storage size is around kilo bytes, but
the access speed is very high (very low latency). SM is visible only for threads in a thread block. In
summary, one has to carefully choose the memory management according to a given task.

For further details and deeper understanding of the problem the reader is referred to [106].

8.3.1 Preparing the Data

In order to make the best of the GPU computing power one has to align the data into Memory-
Aligned-Blocks (MABs). The optimal size of a MAB is closely related to the number of threads in a
thread block. Number of threads in a block is user dependent, but optimally has to be a multiple of
the warp size. Warp size is hardware dependent and represents the minimum number of threads in a
thread block that run at once (mostly a multiple of 32) � run in a warp. For the best performance
threads in a warp have to access data in the memory sequentially therefore data in MABs have to be
properly organized.

We have input data (a set of feature vectors O and a set of GMM parameters λ), temporary data
(Gaussian posteriors (8.3) together with log-likelihoods of feature vectors given λ), and output data
(�rst and second moments (8.5) and soft counts (8.4)) that have to be properly organized in the GPU
memory. The memory storage of feature vectors, model means and Gaussian posteriors are depicted
in Fig. 8.2, Fig. 8.3 and Fig. 8.4, respectively. Storage of GMM diagonal variances is the same as
the storage of model means depicted in Fig. 8.3. The reason why model parameters and Gaussian
posteriors are stored in group of 4 is that CUDA supports X4 data types (e.g. short4, int4, �oat4,
etc.) � one can read data from the memory in quaternions.

Rather than to store only weights of Gaussians we store the precomputed normalization coe�cient
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Figure 8.2: Organization of feature vectors O = {o1, . . . ,oT } in the GPU's global memory, where dim(ot) = D. Data are
stored column-wise � 1st dimension of �rst 8 feature vectors then 2nd dimension of �rst 8 samples, etc. In each warp a block of
memory is read sequentially enabling optimal speed performance.

Figure 8.3: Organization of model means µi in the GPU's global memory. Storage of GMM diagonal variances σ2
i is the same.

Data are stored column-wise � 1st four dimensions of µ1 then 1st four dimensions of µ2, etc.

of each Gaussian, its logarithm is given as

gm = log(ωm)− 0.5Dlog(2π)− 0.5log |Σm| . (8.7)

Memory management of gm, soft counts (8.4) and �rst and second moments (8.5) is trivial (recall that
only the diagonal of second moments is stored), they are all stored sequentially in ascending order ac-
cording to the number of Gaussian they belong to (e.g. a vector of �rst moments [εT1 , ε

T
2 , . . . , ε

T
M ] rep-

resents one memory block). Also data log-likelihoods L(ot,λ) are stored sequentially in ascending or-
der according to the position of a vector ot in the setO, thus forming a vector [L(o1,λ), . . . ,L(oT ,λ)].

It should be stated that all the GPU's memory management of feature vectors, model parameters,
temporary data (once computed) is assigned to the cached TM (all data are visible to all thread
blocks and their threads). However, feature vectors are copied to the faster SM in some kernels, see
next section.

8.3.2 CUDA Kernels

Kernels specify what should threads in a thread block do (number of threads is speci�ed by the
user) assuming additional information about the position of a thread block in a grid, grid dimension
and given input data. The position information along with the grid dimension is utilized to properly
divide input data into smaller independent portions. Each of the data portions is then handled by a
separate thread block according to the speci�ed kernel function.

Not all the tasks can be parallelized using only one kernel function since a problem can not always
be divided into several fully independent parallel subtasks. More often a result of one subtask depends
on a result of a di�erent subtask. However, such tasks may have only a few points where they need
to exchange their outcomes. Thus, to parallelize the task one has to employ more kernels. We have
proposed 4 kernels
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Figure 8.4: Organization of unnormalized posteriors γ̂m(ot) = L(ot,λm) given in (8.2) of a Gaussian in the GPU's global
memory. Data are stored column-wise � 1st four posteriors of 1st Gaussian given �rst four feature vectors {o1, . . . ,o4}, 1st four
posteriors of 2nd Gaussian, etc.

• γ̂-kernel � computes γ̂m,t = L(ot,λm) for each t,m,

• L-kernel � computes overall log-likelihood L(ot,λ) for each t,

• γ-kernel � normalizes each γ̂m,t by L(ot,λ) to get a proper Gaussian posterior (8.3),

• ε-kernel � estimates �rst and second moments εm, ε2
m for each m.

In order to describe the data portions handled by distinct kernels described in the next sec-
tion assume a set Γ = {{1, . . . , QT }, . . . , {T − QT , . . . , T}} = {Γi}S1

i=1 containing equally large
disjoint subsets of feature vector indexes, a set Ω = {{1, . . . , QM}, . . . , {M − QM , . . . ,M}} =
{Ωj}S2

j=1 containing equally large disjoint subsets of indexes of GMM Gaussians, and a set ∆ =

{{1, . . . , QD}, . . . , {D − QD, . . . , D}} = {∆d}S3
d=1 formed by equally large disjoint subsets of dimen-

sion indexes of feature vectors. QT , QM and QD are user de�ned scalars, where QT ≤ T , QM ≤ M
and QD ≤ D. Loosely speaking, Γi,j = (i− 1) ·QT + j, Ωi,j = (i− 1) ·QM + j, ∆i,j = (i− 1) ·QD + j.
Memory management depicted in Figs. 8.2 and 8.3 is well suited for QT = 8, QM = 32, QD = 4.
In order to preserve the robustness of calculations all intermediate results are kept in logarithms (as
long as possible).

γ̂-kernel operates on a two-dimensional S1 × S2 grid, which rows indicate the portion of feature
vectors and the columns of the grid indicate the portion of Gaussians to be processed. Hence,
the (i, j)th thread block operates with sets Γi and Ωj , and the output of the thread block are the
corresponding weighted log-likelihoods γ̂m,t = L(ot,λm) of a Gaussian written to given positions in
GM as illustrated in Fig. 8.4. At the very beginning of the kernel execution, the complete input
portion of feature vectors {ot}t∈Γi (in Fig. 8.2 are these all the dimensions of 8 feature vectors)
handled by one thread block is read sequentially from GM and written to SM. Each thread estimates
one Gaussian's weighted log-likelihood of QT di�erent feature vectors, thus a set {γ̂m,t}t∈Γi for one
speci�c m. Particular steps of the kernel algorithm are described in Alg. 5. The sum

∑
x∈∆d

(. . .)
across a subset of dimensions of a feature vector and across a subset of dimensions of GMM parameters
in the for-loop is caused by the fact that the model parameters are read from TM as �oat4, thus
∆d = {(d−1) ·4+j}4j=1 consists of 4 indexes of 4 dimensions (see Fig. 8.3). The relationship between
the storage of model parameters and feature vectors should be now clearer � mainly the reason why
the vectors are divided to dimension blocks of 4. Also note that rather than using the for-loop through
indexes in Γi = {Γi,1, . . . ,Γi,QT } we unroll the loop in order to boost the performance.

L-kernel is a sum kernel, it computes the overall log-likelihood of each feature vector given a
GMM. Hence, the input to the kernel is the output of the γ̂-kernel. The output of L-kernel is a
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Algorithm 5 γ̂-kernel function → blocks Γi,Ωj

Require: Thread block position (i, j) in the grid

1: SM
{ot}t∈Γi←− GM

2: m := Ωj,thread_index

3: γ̂m,Γi,1 := gm; . . . ; γ̂m,Γi,QT := gm
4: for d = 1 to S3 do
5: for t ∈ Γi do
6: γ̂m,t := γ̂m,t +

∑
x∈∆d

(ot,x − µm,x)2/σ2
m,x

7: end for
8: end for
9: GM ←− {γ̂m,Γi,k}

QT
k=1

Algorithm 6 ε-kernel function → blocks Ωi,∆j

Require: Thread block position (i, j) in the grid
1: m := Ωi,thread_index

2: cm := 0
3: εm,∆j,1 := 0; . . . ; εm,∆j,QD

:= 0

4: ε2
m,∆j,1

:= 0; . . . ; ε2
m,∆j,QD

:= 0

5: for q = 1 to S1 do

6: SM
{ot,d}t∈Γq,d∈∆j←− GM

7: for all t ∈ Γq do
8: cm := cm + γm(ot)
9: for all d ∈∆j do

10: εm,d := εm,d + γm(ot) · ot,d
11: ε2

m,d := ε2
m,d + γm(ot) · o2

t,d

12: end for
13: end for
14: end for
15: GM ←− {εm,∆j,k

, ε2
m,∆j,k

}QDk=1

16: GM ←− cm

set {L(ot,λ)}Tt=1 written to the GM as described in Section 8.3.1. Several e�cient algorithms for a
parallel sum have already been proposed, we use the implementation described in [107].

γ-kernel performs the normalization of each γ̂m,t with L(ot,λ) and produces true posteriors of
GMM Gaussians, thus γm(ot) = exp (γ̂m,t − L(ot,λ)). These are written to the same positions as
their unnormalized counterparts. One thread block processes QT feature vectors from a set Γi and
all the Gaussians, and outputs {γm(ot)}t∈Γi,m∈Ω.

ε-kernel operates on a two-dimensional S2× S3 grid, which rows indicate the portion of Gaussians
and the columns of the grid indicate the portion of feature dimensions to be processed. Hence, the
(i, j)th thread block operates with sets Ωi and ∆j , and the output of a thread block are the dimension
blocks of �rst and (diagonal) second moments (8.5) of features aligned to a given Gaussian along with
the soft counts (8.4). The output is written to GM on positions described in Section 8.3.1. Thus,
each thread block processes the whole set of feature vectors, however only values for a speci�c subset
of dimensions of �rst and second moments are estimated. The ε-kernel operates with all the data �
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feature vectors, model parameters and temporary data obtained as the output of the γ-kernel. The
kernel algorithm is described in Alg. 6. Note that {ot,d}t∈Γq ,d∈∆j

is one block depicted in Fig. 8.2
containing 8 feature vectors (QT = 8) and their 4 dimensions (QD = 4), thus 32 elements in common.
Again, to boost the performance instead of using the most inner for-loops through indexes in Γq,∆j

we unroll the loops. Also note that posteriors γm(ot) are read from TM as �oat4 data types. Such
set up is e�cient mainly in cases when the number of Gaussians in the GMM or dimension of feature
vectors are high, otherwise only a few thread blocks have to be executed what decreases the speed
performance. In these cases the input portion of feature vectors is divided into QN blocks and each
thread block accumulates statistics for one of these blocks. Hence, now the ε-kernel processes T/QN
feature vectors, QM Gaussians and QD dimensions. After all the statistics for disjoint feature sets
have been accumulated an additional kernel is utilized in order to sum up the resulting QN distinct
statistics.

In summary, one has to prepare the data on CPU and upload them to GPU's GM, where further
management is needed in order to represent the data in TM. Next, γ̂-kernel is launched, which
computes the unnormalized Gaussian posteriors. These serve as input into the likelihood L-kernel.
Subsequently, Gaussian posteriors are normalized running the γ-kernel. At last, all the data are
utilized in the ε-kernel, which estimates �rst and second moments and soft counts of each Gaussian.
Results are written in the GM, thus they have to be copied back to CPU's memory and reorganized
according to the user's needs.

8.4 Estimation Utilizing SSE

We have tried to speed-up also the estimation on CPU utilizing Streaming SIMD Extensions (SSE),
where SIMD stands for Single Instruction, Multiple Data. The power of SSE is that it can perform
several instructions (addition, subtraction, multiplication, etc.) at once using 128-bit registers. Thus,
assuming 32-bit single-precision �oating point (SPFP) numbers one can perform 4 operations at a
time.

We have incorporated the SSE instructions into the estimation of L(ot,λm) given in (8.2), which is
the most frequent, thus most time consuming operation. More precisely, SSE is used when computing
the exponential part of the normal distribution

∑D
d=1 (od − µd)2/σ2

d. Using SSE and SPFP such sum
can be added up in D/4 steps. In situations where D is not a multiple of 4 one has to correctly align
the memory (pad ends with zeros) where GMM parameters (means and variances) and feature vectors
are stored. Additional less signi�cant speed bursts may be acquired extending the SSE instructions
into the accumulation process of moments given in (8.5).

8.5 Experiments

Experiments were performed on a single EM iteration. Data were taken from NIST SRE 2008,
only training data were used for adaptation. More precisely, it was the short2 training condition and
only male telephone speech of approximately �ve minutes total duration was used (non-speech events
were discarded during feature extraction). In common 648 speakers were involved, approximately 54
hours of speech were used. In summary, the training data consisted of 3,125,506 (3125.6k) feature
vectors of dimension 40.

In our implementation we used only �oating point arithmetic. The user de�ned constants used
in Section 8.3.2 were set to QT = 8, QM = 32, QD = 4 (such settings correspond with Figs 8.2-8.4),
and QN = 8. The number of threads in each thread block was set to 32.

CPU and SSE implementations were tested on 2.39 GHz Intel 4 GB RAM PC, the GPU imple-
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mentation was tested on low-end NVIDIA GeForce GTX 280 video card and the algorithms were
developed in CUDA toolkit 3.1. All the GPU time consumptions were computed as the sum of times
of all the executed kernels.

8.5.1 Analysis of the Implementation Performance

Comparison of time consumptions of the proposed implementation can be found in Tab. 8.1.
Only the time needed to accumulate statistics was measured, and just one thread was used in all
CPU implementations. Results are given in seconds, the data set consists of 3125.6k feature vectors
of dimension 40. GPU is approximately 150 times faster than the CPU-SSE implementation and
more than 400 times faster than the naive CPU implementation. The relative GPU execution times
of particular kernels can be found in Fig. 8.5.

The comparison of GPU and CPU version strongly depends on the implementation of the CPU
version. In order to express only the performance of the GPU implementation one can evaluate the
number of �oating point operations per second (FLOPS). Counts of operations executed in each kernel
are

• γ̂-kernel � 4×D × T ×M operations,

• L-kernel � T ×M of logarithmic addition functions (which we rated as 13 operations), thus
T ×M × 13 operations,

• γ-kernel � T ×M of 5 simple operations + one exponential operation (equal to 4 simple oper-
ations), thus T ×M × 9

• ε-kernel � 4×D × T ×M + T ×M operations.

We distinguish simple operations as addition, subtraction, and multiplication from operations as
logarithms and exponentials, which are on GPUs calculated using special function unit that have
four times lower throughput. Therefore we rate logarithms and exponentials as 4 simple operations.
Hence, when number of Gaussians M , number of feature vectors T , and dimension of feature vectors
D are known, the overall number of operations of the estimation can be computed. In our case this
is the sum of operations of all 4 kernels. Tab. 8.2 contains the number of operations per second (Giga
FLOPS = GFLOPS), which are computed as the number of operations needed to estimate GMM
statistics for various number of Gaussians divided by the estimation times from Tab. 8.1. GFLOPS
range from 163.4 to 242.1 because larger models utilize GPU cores better, and the overhead of kernel
executions is relatively lower in cases of larger models. The theoretical peak of the GTX 280 GPU
is 933 GFLOPS (according to speci�cations of the manufacturer), which is in comparison to the
performance on real tasks signi�cantly overstated. In a benchmark task performed in [108], where
a well optimized task of multiplication of two large matrices on GTX 280 GPU is carried out, the
achieved performance varies between 190 � 375 GFLOPS in dependence on matrix sizes. Hence,
GFLOPS of our implementation are in the range of such a well optimized task. Nevertheless, matrix-
matrix multiplications consist only of fused multiplication/addition instructions, which are evaluated
in a single GPU clock (doubles the GFLOPS performance). However, our task consists also from
other instructions, which are not as e�cient.

8.5.2 Comparison with Previous Works

We have tried to compare the time consumptions also with other implementations. We have
tested several freely available implementations, but all of them failed (lack of numerical stability) on
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Figure 8.5: Relative GPU execution times for all of the kernels described in Section 8.3.2.

Table 8.1: The amount of time in seconds needed to estimate statistics of 3125.6k feature vectors of dimension 40 for various
number of GMM Gaussians.

#Gauss. 32 64 128 256 512 1024 2048
CPU 78 150 287 559 1094 2174 4289
SSE 32 54 95 171 325 619 1199
GPU 0.21 0.32 0.63 1.18 2.34 4.57 9.07

Table 8.2: Performance of the algorithm running on NVIDIA GeForce GTX 280 in GFLOPS when processing 3125.6k feature
vectors of dimension 40 for various number of GMM Gaussians.

#Gauss. 32 64 128 256 512 1024 2048
GFLOPS 163.4 214.4 217.8 232.6 234.6 240.2 242.1

Table 8.3: Comparison given in milliseconds of di�erent implementations for di�erent amounts of training data assuming feature
vectors of dimension 32 and GMM with 32 Gaussians.

#samples Kumar et al. A.Pangborn UWB MATLAB R©

153.6k 215.0 51.1 9.25 10936.0
230.4k 264.9 71.1 13.99 16461.0

our large dataset of high dimensional real data. We have found two recent publications (worth to
be mentioned) interested in the GPU implementation of the EM algorithm focusing on GMMs with
diagonal covariances, namely a publication by Kumar et al. [109] and a master thesis from Andrew
Pangborn [103].

Experiments performed by Kumar et al. used NVIDIA Quadro FX 5800, which is almost identical
to the NVIDIA TESLA C1060 on which the experiments of Andrew Pangborn were performed, and
to NVIDIA GeForce GTX 280 on which our experiments were performed. Time consumptions of both
implementations were taken from Tab. 5.8 from [103]. In order to compare the implementations to
ours we set up same conditions as in [109] and [103]. Hence, we reduced the dimension of our data
to 32 and took only 153.6k and 230.4k feature vectors. Tab. 8.3 is the extended table containing also
our results denoted as UWB and the CPU reference computed in MATLAB R© 7.5.0.342 (R2007b)
utilizing the Statistics Toolbox function gmdistribution.fit() (only the time spent on estimation
of statistics was measured).

As can be seen from Tab. 8.3, the implementation proposed in this chapter outperformed the
others. It is more than 5 times faster than A. Pangborn's implementation and more than 20 times
faster than Kumar's implementation.

The key part of the speed up is the proper memory management of the data adhering to the
rules of coalesced access [106]. In addition, data loaded to the kernels are reused as much as possible
(higher degree of parallelization), e.g. the log-likelihoods are estimated for several feature vectors and
several Gaussians at once in each kernel, the same principle holds for the accumulation kernel (see
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descriptions of γ̂- and ε-kernel in Section 8.3.2). Another important performance related technique
lays in the use of the Texture Memory (TM) with �oat4 data types for read-only data. Data shared
across a thread block or data that are accessed repeatedly should be copied into the Shared Memory
(SM) in advance. The mentioned advices are of course well known, but it is quite di�cult to integrate
them to a speci�c task.

Another drawback of Kumar et al. implementation is that the GPU memory requirements are
very high, this holds particularly also for A. Pangborn. The most of the memory is occupied by the
intermediate results. Since the statistics are additive, the computation can be divided into smaller
parts that require signi�cantly lower amount of memory. In our case the most of the memory is
occupied only by the input data, thus we are able to �t up to 6 millions of 40 dimensional feature
vectors into the GPU memory of size 1 GB. However, even in cases where a huge data set containing
several hundreds of millions of feature vectors needs to be processed, the memory problem can be
solved e�ciently. Most of GPUs dispose of concurrent copy and execution feature, thus additional
data can be uploaded to the GPU memory while already uploaded data are processed.

8.6 Conclusion and Remarks

Since the EM algorithm does converge only locally it is often convenient to run EM several times
with di�erent initializations. Hence, in order to train a reliable GMM via EM one has to perform a
lot of reestimations. With increasing amount of training data and increasing complexity of models,
the training of GMMs becomes very time consuming. As has been shown (see Tab. 8.1), the GPU
implementation o�ers a huge increase in the speed of GMM training. However, the �nal speed up
strongly depends not only on the GPU hardware, but also on a proper implementation itself (see
Tab. 8.3). The estimation process can be easily parallelized also on the CPU (e.g. dividing feature
vectors to smaller disjoint sets, estimating statistics for each set, and at the end adding the statistics
up), but the resources spent on the hardware are much higher than in the case of GPU, which is
parallel inherently.

We have focused on the estimation of GMM statistics with diagonal covariances since often full
covariance GMMs can be accurately replaced by diagonal covariance GMMs with higher number of
Gaussians. The estimation of diagonal covariances is more robust mainly with increasing dimension
of feature vectors. This is often the case in tasks of speech and speaker recognition, where frequently
only the diagonal covariances are used. Finally, note that one of the outputs of the algorithm produced
by the L-kernel is also the log-likelihood of feature vectors given a GMM.
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Conclusion and Future Work

Techniques of automatic speaker recognition developed in the last decade were presented. The
main emphasize was laid on the modelling of feature vectors once extracted. Feature vectors are of
relatively small dimension (in our case the dimension was 40) and are based on the power spectrum
of the speech signal. Feature vectors are mapped to a high dimensional space with the use of a
generative model. The task of the generative model is to segment the feature space according to the
concentration of feature vectors from the development set localized in speci�c areas of the feature
space. The high dimensional vectors denoted Supervectors (SVs) are composed of various statistics
related to feature sets of a speaker, and they can be thought of as a higher level features. For each
recording of a speaker only one SV is extracted. Since nowadays large corpora containing hundreds
of speakers recorded on several channels (we say that several sessions of a speaker are at hand) are
available, information on channel distortions is utilized in order to identify directions in the SV space
most responsible for channel and speaker changes. Moreover, since SVs are of substantially high
dimension these techniques incorporate also the dimensionality reduction.

In order to give a general overview of the topics investigated in the last decade also less e�cient
techniques were presented and analysed. Even if these techniques do not contribute to the performance
of a speaker recognition system in speci�c environment conditions (telephone speech), what can be
caused e.g. by the use of some normalization techniques in the extraction process as discussed in
Section 7.6.1, they can be applied with a success to another classi�cation problem.

The thesis was devoted to a thorough description of methods used in the experiments in a logical
sequence. Following problems were solved:

1. An e�cient implementation of the EM estimation algorithm on a Graphics Processing Unit

(GPU). More precisely, the evaluation of EM related statistics was transfered to GPU. Since
several thousand hours of speech had to be processed yielding over 104 millions of 40 dimensional
feature vectors, and since these statistics are required not only when estimating the Universal
Background Model (UBM), but are needed also when extracting SVs used with Support Vector
Machines (SVMs) and in the i-vector extraction, the speed up was of great importance. More-
over, the EM algorithm and GMM estimation are frequently used also in other �elds than the
speaker recognition [103, 101].

2. The in�uence of normalizations of SVs on the performance of the SVM system. Surprisingly, the
lowest error rates were acquired without any normalizations of SVs. The result was attributed
to the pre-normalization of low dimensional feature vectors using the Feature Warping (FW)
technique.

3. An e�cient implementation of the PLDA estimation algorithm. In order to investigate the
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impact of development data sets on the PLDA modelling analysed in Section 7.7 and perfor-
mance of the speaker veri�cation system more than 4000 PLDA models were trained for 800
dimensional i-vectors (each training consisted from 50 iterations).

4. Relation of Nuisance Attribute Projection (NAP) to Factor Analysis (FA) based channel com-

pensation. Since NAP used with SVM does a channel compensation and so does the FA model
used in JFA/PLDA, the similarities and working principles of both approaches were examined.
Both problems were converted to the formulation of Least Squares (LS) and reviewed in the
new light of LS yielding interesting conclusions on handling the noise. In simple terms, both do
the eigenvector decomposition of a within-speaker covariance matrix, but FA based approach
does in addition scale the directions according to the estimated noise level.

5. The in�uence of the size of development sets and fusion of PLDA decompositions of several total

variability spaces (composed from i-vectors from individual development corpora) on the perfor-

mance of the speaker veri�cation. It was shown that if enough data to train a reliable PLDA
model are available then it is more convenient to train one PLDA model for each development
corpus, and let a fusion algorithm assign a weight to each veri�cation score related to such a
model. If variations in one corpus would be much higher than in other corpora, and in addition
data from such a corpus would be inappropriate for given recognition conditions (e.g. telephone
speech), the PLDA model trained from pooled corpora could notably spoil the recognition.

6. Information redundancy in SVM models. In addition to the dimensionality reduction of SVs
via i-vector extraction, also the dimensionality reduction of SVM model was investigated. Ob-
viously, SVM model does contain a lot of redundancies yielding a SVM decision hyperplane of
much lower dimension. Such an observation may be of help when proposing a kernel function,
which could instead of mapping to higher dimensions utilize some (e.g. non-linear) mapping to
a lower dimensional space.

7. Complementarity of discussed methods. It was shown that methods used in the experiments do
possess a complementary information since the fused system outperformed all systems based on
particular methods.

9.1 Future Work

Experiments in [6] have shown the contribution of full covariance matrices used in GMMs in
comparison to diagonal ones when dealing with i-vectors. Computation costs associated with full
covariances are huge, therefore the GPU implementation should be extended to handle also full
covariance GMMs.

As can be noticed, by now linear methods dominate the task of speaker recognition. However, re-
cently non-linear methods based on Gaussian Processes (GPs) [111] such as Gaussian Process Latent
Variable Model (GPLVM) [112], or Neural Networks for speech recognition [113, 114] are developed
and widely expanded. Hence, it would be of interest to investigate the possibilities of these methods
also in the task of speaker recognition. E.g. the PLDA model in the i-vector space could be replaced
by a non-linear model: the total variability space could be chosen of higher dimension and the �nal
reduction could be obtained utilizing a non-linear method. Also a non-linear SVM kernel could be
used, but instead of transforming to a higher dimension, it would transform the SVs to much lower
dimension utilizing non-linearities � idea follows experiments given in Section 7.6 on dimensionality
reduction of SVM models. Even the UBM step could be replaced by a well chosen non-linear transfor-
mation of feature vectors to some other space yielding again one vector of higher �xed dimension for
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each recording. A lot of possibilities are available and have to be examined concerning the non-linear
mappings.

Finally, lot of development sets of spoken speech are available, but there is none method, which
would be able to pick suitable data for a speci�c task. The question whether more development data
irrelevant on their source are always better is still unanswered. Therefore, more experiments aimed
to reveal the in�uence of distinct corpora in di�erent acoustic environments on the task of speaker
recognition would be of signi�cance. Also an analysis of the in�uence of development data on the
performance of individual methods, in order to guarantee robustness of these methods under varying
conditions, would be of interest.
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Appendix A

First Appendix

We are going to prove that for two matrices A and B both of size D×Dp and both of full column
rank, which columns span the same subspace, the projection matrices

PA = A(ATA)−1AT,

PB = B(BTB)−1BT (A.1)

equal. Denote Q a matrix of size D ×Dp spanning the same subspace as A and B, but in addition
QTQ = I (columns of Q are orthonormal). Now, we can express both matrices A and B in terms of
Q as

A = QGA, B = QGB, (A.2)

where GA,GB are of size Dp × Dp and have full rank. Hence, we expressed A, B as some linear
combination of the columns of Q. Therefore

PA = QGA(GT
AGA)−1GT

AQ
T,

PB = QGB(GT
BGB)−1GT

BQ
T, (A.3)

and since GA, GB are of full rank GA(GT
AGA)−1GT

A = GB(GT
BGB)−1GT

B = I. Hence, PA = PB =
QQT.
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Appendix B

Second Appendix

Given a set of N feature vectors xi stored column-wise in a matrix X = [x1, . . . ,xN ] we wish to
minimize the criterion

J(F ) =
N∑
i=1

||xi − Fzi||2 +Ntr(FHFT), (B.1)

where

zi = (FTF + σ2I)−1FTxi,

H = σ2(FTF + σ2I)−1, (B.2)

σ2 ≥ 0, F is a D×Dp transformation matrix of full column rank Dp. Let decompose FTF = QTDQ
by Singular Value Decomposition (SVD) so that QTQ = QQT = I, and since FTF is positive semi-
de�nite D = [dii] is a diagonal matrix with dii ≥ 0. For F̃ = FQTD−1/2 we get F̃TF̃ = I, hence
columns of F̃ are orthonormal.

Now, the criterion (B.1) can be written as

J(F ) = Ntr(C)−Ntr(K1CF −K2), (B.3)

C =
1

N

N∑
i=1

xix
T
i , CF =

1

N

N∑
i=1

(F̃Txi)(F̃
Txi)

T, (B.4)

K1 =

[
d2
ii + 2diiσ

2

(dii + σ2)2

]
, K2 =

[
diiσ

2

dii + σ2

]
, (B.5)

and since (dii + σ2)2 = d2
ii + 2diiσ

2 + σ4 ≥ d2
ii + 2diiσ

2, recall that dii ≥ 0, σ2 ≥ 0, the matrix K1 is
positive semi-de�nite, and additionally the diagonal entries of K1 are less than one and equal to one
if and only if σ2 = 0. Note that F̃ y = F̃ F̃Txi is an orthogonal projection of xi onto the subspace
spanned by columns of F , while Fy is not.

Proof: Firstly, let focus on the second term in (B.1)

tr(FHFT) = tr(σ2(QTDQ+ σ2I)−1QTDQ) = tr(σ2QT(D + σ2I)−1QQTDQ) =

= tr(σ2(D + σ2I)−1D) = tr(K2). (B.6)
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Before the rearrangement of the �rst term in (B.1) note that

(I − F (FTF + σ2I)−1FT)2 =

= I + FQT(D + σ2I)−1D(D + σ2I)−1QFT − 2FQT(D + σ2I)−1QFT =

= I − FQTD−
1
2

[
D

1
2 (−(D + σ2I)−2D + 2(D + σ2I)−1)D

1
2

]
D−

1
2QFT =

= I − F̃K1F̃
T.

Back to the �rst term in (B.1), we get

N∑
i=1

||xi − Fzi||2 =

N∑
i=1

||xi − F (FTF + σ2I)−1FTxi||2 =

=
N∑
i=1

tr
(
xi(I − F (FTF + σ2I)−1FT)2xTi

)
= tr(

N∑
i=1

xix
T
i )− tr(K1

N∑
i=1

F̃Txix
T
i F̃ ) =

= Ntr(C)−Ntr(K1CF ). (B.7)

And �nally, after combining (B.6) with (B.7) we obtain (B.3). �
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Third Appendix

Let Σ be a D ×D square symmetric matrix of full-rank, let G be a D ×Dr rectangular matrix
and D ≥ Dr, and let Ψ be a Dr × Dr square symmetric matrix of full-rank. Some useful matrix
inverse identities are

Σ−1 −Σ−1G(GTΣ−1G+ Ψ)−1GTΣ−1 = (Σ +GΨ−1GT)−1, (C.1)

Σ−1G(GTΣ−1G+ Ψ)−1 = (Σ +GΨ−1GT)−1GΨ−1. (C.2)

Combining these two identities we get

Σ−1 − (Σ +GΨ−1GT)−1GΨ−1GTΣ−1 = (Σ +GΨ−1GT)−1. (C.3)
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Fourth Appendix

The terminology concerning the speaker evaluation process can be summarized as1:

1. Test � a collection of trials constituting an evaluation component.

2. Trial � the individual evaluation unit involving a test segment and a hypothesized speaker.

3. Target (model) speaker � the hypothesized speaker of a test segment, one for whom a model
has been created from training data.

4. Non-target (impostor) speaker � a hypothesized speaker of a test segment who is in fact not the
actual speaker.

5. Segment speaker � the actual speaker in a test segment.

6. Target (true speaker) trial � a trial in which the actual speaker of the test segment is in fact
the target (hypothesized) speaker of the test segment.

7. Non-target (impostor) trial � a trial in which the actual speaker of the test segment is in fact
not the target (hypothesized) speaker of the test segment.

8. Turn � the interval in a conversation during which one participant speaks while the other remains
silent.

1the terminology is taken from the glossary in http://www.itl.nist.gov/iad/mig/tests/spk/2008/sre08_

evalplan_release4.pdf

110

http://www.itl.nist.gov/iad/mig/tests/spk/2008/sre08_evalplan_release4.pdf
http://www.itl.nist.gov/iad/mig/tests/spk/2008/sre08_evalplan_release4.pdf


Appendix E

Fifth Appendix

The Equal Error Rates (EERs) obtained for PLDA models trained on di�erent development
corpora (NIST040506, SW1, SW2 and SWC � for details on corpora see Section 7.1). The performance
of PLDA based systems was tested on trials from NIST Speaker Recognition Evaluation (SRE) 2008
and on trials from NIST SRE 2010. EERs are depicted in dependence on the dimension Dh, Dw

of latent variables hi, wij described in Section 6.2, respectively. Results are shown in Figure E.1
� Figure E.8. Graph in the �rst column is for females and in the second column for males. Above
each graph the maximal, minimal and median value of EER are given along with dimension of latent
variables for which they occur (given in brackets).
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Figure E.1: One PLDA model trained on i-vectors extracted from corpus NIST040506 and tested on NIST08.
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Figure E.2: One PLDA model trained on i-vectors extracted from corpus NIST040506 and tested on NIST10.
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Figure E.3: One PLDA model trained on i-vectors extracted from corpus SW1 and tested on NIST08.
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Figure E.4: One PLDA model trained on i-vectors extracted from corpus SW1 and tested on NIST10.
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Figure E.5: One PLDA model trained on i-vectors extracted from corpus SW2 and tested on NIST08.
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Figure E.6: One PLDA model trained on i-vectors extracted from corpus SW2 and tested on NIST10.
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Figure E.7: One PLDA model trained on i-vectors extracted from corpus SWC and tested on NIST08.
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Figure E.8: One PLDA model trained on i-vectors extracted from corpus SWC and tested on NIST10.
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Sixth Appendix

Examples of Feature Warping (FW) described in Section 5.3 for di�erent types of datasets are
shown in Figure F.1 � Figure F.6. First plot depicts the original dataset, in the second one data are
rank normalized independently along each dimension, and in the third plot the inverse of the normal
cumulative distribution function is computed for each dimension of each feature vector. For each plot
the histograms in each dimension are drawn below and next to respective axis. Note that the shape of
the dataset and the "direction/rotation" of the covariance of the dataset are preserved. The features
in each dimension are pulled towards the zero. Moreover, also the variances in each local area of the
feature space are partially preserved.

Figure F.1

Figure F.2
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Figure F.3

Figure F.4

Figure F.5

Figure F.6
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