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Abstract
This paper deals with an HMM-based automatic phonetic seg-
mentation (APS) system and proposes to increase its perfor-
mance by employing a pitch-synchronous (PS) coding scheme.
Such a coding scheme uses different frames of speech through-
out voiced and unvoiced speech regions and enables thus
better modelling of each individual phone. The PS coding
scheme is shown to outperform the traditionally utilised pitch-
asynchronous (PA) coding scheme for two corpora of Czech
speech (one female and one male) both in the case of a base
(not-refined) APS and in the case of a CART-refined APS. Bet-
ter results were observed for each of the voicing-dependent
boundary types (unvoiced-unvoiced, unvoiced-voiced, voiced-
unvoiced and voiced-voiced).
Index Terms: automatic phonetic segmentation, pitch-
synchronous coding, hidden Markov models, speech synthesis,
unit selection

1. Introduction
Automatic phonetic segmentation(APS) is a process of detect-
ing boundaries between phones in speech signals. Since man-
ual segmentation is labour-intensive and time-consuming,the
automation of the process is very important especially when
many speech signals are to be segmented. This is exactly the
case ofunit selection, a very popular and still the most preva-
lent text-to-speech (TTS) synthesis technique. Being a corpus-
based concatenative speech synthesis method, the principle of
unit selection is to concatenate pre-recorded speech segments
(extracted from natural utterances using the automatically seg-
mented boundaries) carefully selected from a large speech cor-
pus according to phonetic and prosodic criteria imposed by the
synthesised utterance. It is evident that automatic phonetic seg-
mentation affects the quality of synthetic speech producedby a
unit-selection-based TTS system.

The most often used approaches to automatic phonetic seg-
mentation are based onhidden Markov models(HMMs), a sta-
tistical framework widely used in the area of automatic speech
recognition. The idea in APS is to apply similar procedures
as for speech recognition. However, instead of the recognition,
so-calledforced-alignmentis performed to find the best align-
ment between HMMs and the corresponding speech data, pro-
ducing a set of boundaries which delimit speech segments be-
longing to each HMM. Briefly, each phone unit is modelled by
a context-dependent HMM (CD-HMM) or context-independent
HMM (CI-HMM). Firstly, the model parameters are trained
on the basis of a collection of speech data (described byfea-
ture vectors) with the corresponding phonetic transcripts. Typi-
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Figure 1:Simplified scheme of HMM-based automatic phonetic
segmentation.

cally, theembedded trainingstrategy is employed in which a se-
quence of models associated with the given phonetic transcript
are concatenated and all model parameters are simultaneously
updated through the Baum-Welch algorithm [1, 2]. When some
manually segmented data are available, the so-calledisolated-
unit training utilising the Baum-Welch algorithm with model
boundaries fixed to manually segmented ones can be also em-
ployed. Secondly, the trained HMMs are employed to align a
speech signal along the associated phonetic transcript by means
of Viterbi decoding. A simplified scheme of an HMM-based
APS system is given in Fig. 1.

As the performance of an HMM-based APS system (de-
noted asbase APShenceforth) is usually not accurate enough
to be directly applied to TTS, various modifications and post-
processing techniques have been developed. These techniques
usually increase the segmentation accuracy by refining the ini-
tial segmentations from a base APS system. Various meth-
ods are utilised for the refinement. Some of them try to fix
boundary-specific discrepancies between automatic and manual
segmentations by means of statistically motivated approaches
like classification and regression trees (CART), neural networks
or support vector machines [3, 4, 5, 6, 7]. Other studies propose
to refine the boundaries by employing an explicit (local) bound-
ary model with the use of various acoustic features [4, 8, 9, 10].
Some authors also propose to modify the underlying Baum-
Welch algorithm [11] or to employ minimum boundary er-
ror (MBE) criterion instead of traditionally used maximum-
likelihood (ML) criterion [7]. Recently, multiple APS system
framework was proposed where several parallel APS systems
(base APS systems with different configurations and/or various
post-processing techniques) are employed to segment the same
data and the final segmentation results are then obtained as a
combination of the results from each APS [12, 2, 13].

Although much work has been done, there are still some
shortcomings in the HMM-based APS. As feature vectors used
to train HMMs are usually extracted with a given step (typi-
cally 5-10 ms), the accuracy of boundary detection is therefore
limited. Since there is an effort to concatenate units in a consis-
tent way in TTS systems, the automatically detected boundaries
are often moved to some distinctive points in speech signals
(usually points of the most/least rapid spectral change or points



of the principal excitation of vocal tract, so-calledpitch-marks)
which could possibly introduce certain bias to the APS results.
This paper focuses on the base APS system and proposes to in-
crease its performance by employing apitch-synchronous cod-
ing scheme. As the boundaries detected by such an automatic
pitch-synchronous phonetic segmentation system are implicitly
placed on pitch-marks, there is no need to move the boundaries
any more.

The paper is organised as follows. The concept of a pitch-
synchronous coding scheme is introduced in Section 2. In Sec-
tion 3, corpora used in our experiments are presented. Experi-
ments with different coding schemes and the results of the per-
formance evaluation and their discussion are provided in Sec-
tions 4 and 5. Finally, conclusions are drawn in Section 6.

2. Pitch-synchronous coding scheme
Traditionally, thepitch-asynchronous(PA) coding scheme is
employed for modelling speech. In this scheme, a uniform anal-
ysis frame of a given lengthlu is defined and slid along the
whole speech signal of an utterance with a fixed shiftsu. The
length is usually set to comprise frequency characteristics of
the speaker (lu ≈ 2T0 whereT0 is a maximum pitch period of
the speaker). The shift is usually set to 5-10 ms which roughly
corresponds toT0. The accuracy of such a scheme is question-
able mainly in unvoiced speech regions where both frequency
and time resolutions are not accurate, especially for dynamic
sounds like plosives. Even in voiced speech regions, the PA
scheme due to the changes in fundamental frequency (F0) does
not extract frames in a consistent way.

In order to extract the frames for coding in apitch-
synchronousway, our pitch-mark detection algorithm described
in [14] was employed. By the termpitch-markswe mean the
locations of principal excitation of vocal tract (corresponding
to glottal closure instants) in speech signals. The idea here is
that, knowing these locations, approx. two-pitch-period-sized
frames of speech centred on each pitch-mark can be efficiently
and consistently extracted from voiced speech. The pitch-mark
detection algorithm works in multiple phases and utilises both
glottal and speech signals. In the 1st phase, the glottal signal is
used for the precise estimation ofF0 contour of the utterance.
Next, pitch-mark candidates are generated on the basis of both
glottal and speech signals. In the 3rd phase, the best sequence
of pitch-marks is found in the set of the candidates by means
of dynamic programming. Finally, the selected pitch-mark se-
quence can be a subject of post-processing in which errors with
“doubling” and “halving”F0 are fixed. The overall accuracy of
the pitch-mark detection algorithm is approx. 98% [14].

In a generalpitch-synchronous(PS) coding scheme, each
frame to be extracted for coding is defined both by its position
in a speech signal and its length. So, in general, a sequence
of different frames must be given in order to perform pitch-
synchronous coding. In voiced speech, let us denote the posi-
tion of the framef (i) asp(i)

v and its length asl(i)v (i = 1, . . . , N ,
whereN is the number of all frames in the utterance). In our
case, the positions are given by the detected pitch-marks and
taken as the central positions of the frames, i.e. each “voiced

frame” f (i) is defined as〈p(i)
v − l
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v
2
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of the particular frames generally vary according to the instan-
taneous pitch periodT (i)

0 (a reasonable value is2T
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be also fixed to a given value. In unvoiced speech, no pitch-
marks are defined because there is no activity of vocal cords
during unvoiced speech regions. Therefore, standard PA cod-
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Figure 2:Illustration of a pitch-synchronous coding scheme.

ing scheme with a fixed frame lengthlu and a fixed frame shift
su is employed here. To be compatible with the voiced re-
gions of speech, each “unvoiced frame”f (i) can be defined as
〈p

(i)
u − lu

2
, p

(i)
u + lu

2
〉 wherep

(i)
u are the central positions of

the unvoiced frames with the distancesu between them. At the
boundaries between the unvoiced and voiced speech regions,
the unvoiced frames are placed in pitch-asynchronous manner
until the beginning of an unvoiced frame oversteps the begin-
ning of the first voiced frame. At the boundaries between the
voiced and unvoiced regions, the first unvoiced frame is centred
on the end of the last voiced frame. As a result, a sequence of
framesf (i) (i = 1, . . . , N ) consisting of the subsequences of
both voiced and unvoiced frames is available for coding. The
illustration of the pitch-synchronous coding scheme is given in
Fig. 2.

3. Description of data

For our experiments we used two Czech phonetically and
prosodically rich speech corpora, one of a female voice (FC)
and one of a male voice (MC). The utterances included in
the corpora were carefully selected, spoken by a professional
speaker in an anechoic chamber, recorded at 16-bit precision
with 48 kHz sampling frequency (later down-sampled to 16
kHz) and carefully annotated both on the orthographic and pho-
netic level [15]. Phonetic transcripts for all utterances plus some
manual segmentations from a phonetic expert were available.
In order to train the APS systems, a feature vector was com-
puted for each frame according to the pitch-synchronous coding
scheme described in Section 2 using 12 mel-frequency cepstral
coefficients (MFCCs), log energy and their delta and delta-delta
coefficients (39 coefficients for each frame in total).

The FC speech corpus consists of 5,139 utterances (6.70
hours of speech excluding the leading and trailing pauses,
300,969 phone boundaries in total). 58 utterances were seg-
mented manually (9.94 minutes, 7,618 phone boundaries in to-
tal), 46 manually segmented utterances were used to initialise
APS systems and 12 were used for testing. The MC corpus
consists of 12,242 utterances (17.69 hours of speech exclud-
ing the pauses, 675,809 phone boundaries in total), 90 of them
were segmented manually (11.71 minutes, 7,789 phone bound-
aries in total). 70 manually segmented utterances were usedto
initialise APS systems and 20 manually segmented utterances
were used for testing. In order to reduce the labour-intensive
and time-consuming manual segmentation, the amount of the
manually segmented data was intentionally kept to minimum
for both corpora.



4. Experiments & Results
All experiments with the automatic phonetic segmentation were
carried out following the scheme shown in Fig. 1 and using
the HTK software [1]. Only experiments with different pitch-
synchronous coding schemes were conducted – all other com-
ponents of the APS system were fixed according to our previ-
ous experiments: each HMM topology was fixed as 3-state left-
to-right without any state skipping (with the exception of the
pause models) with each state modelled using a single Gaussian
mixture, the usage of both CI-HMMs and CD-HMMs, the em-
ploy of both isolated (for initialization) and embedded (for re-
estimation) unit training procedures. Such a setting was found
to yield the best segmentation results in our research [3, 16],
although some other studies (e.g. [4, 2]) reported that other
configurations (and especially the use of CI-HMMs with more
mixture components per state) could lead to better results.The
reason for using the aforementioned configuration in our ex-
periments could be seen in having a relatively small number
of manually segmented utterances available. This was partially
confirmed in [2], where, on the other hand, an enormous num-
ber of 2,000 manually segmented utterances were available.

Basically, three different configurations of the PS coding
scheme described in Section 2 were researched (for the sake of
simplification, PS{l/s} denotes here PS coding scheme withl

being the frame length ands frame shift in voiced regions; the
symbol ’•’ stands for pitch-synchronous frame length, or shift
respectively):

PS{•/•} In this pure PS coding scheme, each voiced frame
f (i) is centred around the corresponding pitch-markp
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exactly as mentioned in Section 2. To ensure symmet-
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The length of the first frame in a voiced speech region is
computed as2 · (p(i+1)
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of the last frame is computed as2 · (p
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PS{lv/•} Again, each voiced frame is centred around the
corresponding pitch-mark, but the length of all voiced
frames was set to a fixed value (lv = 20 ms for FC cor-
pus andlv = 25 ms for MC, respectively).

PS{lv/sv} Here, a PA coding scheme was employed in voiced
speech regions (different from the scheme in unvoiced
speech regions), independently on pitch-marks. The idea
for this configuration was that no pitch-mark detection
(and possibly also no glottal signal recording) would be
required, and only information about voicing would be
needed. The same frame lengths as in PS{lv/•} and shift
sv = 10 ms were used for both speech corpora.

In the unvoiced speech regions, the identical setting of thePA
coding scheme (lu = 6 ms andsu = 3 ms) for all three con-
figurations described above and for both corpora was employed
based on our previous experiments.

The results of our experiments are shown in Table 1. The
standard PA coding scheme PA{lu/su} was used as the baseline
(su = 10 ms for both corpora, because forsu < 10 short cross-
word pauses tended to be missed during the alignment which
resulted in gross segmentation errors). For performance evalua-
tion, the mean absolute error (MAE) and percentage of bound-
aries deviating less than the given tolerance time region from

Table 1:Segmentation results for base APS systems.

coding MAE 10ms 20ms 50ms MT cor-
scheme (ms) (%) (%) (%) (%) pus

PA{20/10} 9.32 68.89 89.47 98.43 78.16

FC
PS{20/10} 8.41 73.12 90.12 99.39 80.73
PS{20/•} 8.16 75.75 91.56 99.28 81.95
PS{•/•} 6.94 77.59 92.05 99.40 83.83
PA{25/10} 8.86 70.42 90.10 99.35 78.30

MC
PS{25/10} 9.63 59.72 91.45 99.42 76.20
PS{25/•} 10.25 63.82 88.09 99.48 75.86
PS{•/•} 8.11 73.38 92.42 99.61 80.44

the manually determined boundaries are often utilised. As the
manual segmentation is an error-prone process, relativelyhigh
tolerance regions like 20 ms or the mean value over more toler-
ance regions (MT) are often used to get more robust results. In
our experiments, MAE, tolerance regions of 10, 20 and 50 ms
and MT computed from tolerance regions of 5, 10, 20, 30 and
50 ms are shown.

5. Discussion
As can be seen in Table 1, the pure pitch-synchronous scheme
PS{•/•} yields the best results for both corpora. For the female
speech corpus (FC), all PS coding schemes outperform the base-
line PA scheme in terms of all performance indexes. This is also
true for the scheme PS{25/10}, in which no pitch-marking was
performed and the different coding was applied based on the
voicing detection only.

The analysis of the segmentation results for the male speech
corpus (MC) is a bit complicated. Again, the best results were
obtained for the pure PS coding scheme in all performance in-
dexes, but the other PS schemes outperform the baseline PA
scheme rather when higher tolerance regions (20 and 50 ms)
are considered. The absolute results for FC and MC also dif-
fer. Substantially better results in terms of MAE and 10-ms
tolerance region were obtained for FC. On the other hand, the
better performance in terms of the higher tolerance regionswas
reached for MC. The explanation of these findings is still un-
der consideration. Preliminary, we believe that the ambiguous
results could root in the manually segmented data. Following
the performance evaluation, there are more segmentation errors
of lower relevance in the MC corpus which could indicate that
there are some inconsistencies in the manually segmented data.

In Table 2, segmentation results for particular boundaries
with respect to the voicing nature of both boundary phones
are shown. Baseline PA schemes (PA{20/10} for FC and
PA{25/10} for MC – both denoted here as PA) and the PS
schemes with the best results from Table 1 (denoted here as
PS) are compared. As can be seen, PS coding schemes yielded
better results for all boundary types.

As CD-HMMs are generally known to introduce boundary-
dependent biases in the segmentation results [3, 12, 2] (probably
caused by training the same CD-HMM with phones of the same
specific context [4]), we also applied a post-processing tech-
nique to remove the biases. Unlike [3], a more generalclassi-
fication and regression tree(CART) technique was utilised to
compute the biases [5, 2]. In our approach, robust bias esti-
mates are obtained by traversing the tree with respect to the
phonetic features of phones adjacent to the boundary. The tree
is built by clustering the deviation between manually and auto-
matically segmented boundaries respecting the “phonetic type”



Table 2: Segmentation results for unvoiced-unvoiced (U-U),
unvoiced-voiced (U-V), voiced-unvoiced (V-U) and voiced-
voiced (V-V) boundaries.

bound. MAE <20ms coding
type (ms) (%) scheme

U-U
12.17 15.11 85.71 83.44 PA
9.43 13.89 87.50 85.62 PS

U-V
6.62 9.52 95.17 90.99 PA
4.11 8.14 95.24 96.39 PS

V-U
9.49 8.37 91.61 90.72 PA
6.42 7.88 94.84 92.81 PS

V-V
10.16 9.18 88.73 89.35 PA
7.75 8.73 88.91 90.15 PS

corpus FC MC FC MC

Table 3:Comparison of segmentation results of base APS sys-
tems (the 1st row in each box) and CART-refined APS systems
(the 2nd row in each box).

coding MAE 10ms 20ms 50ms MT cor-
scheme (ms) (%) (%) (%) (%) pus

PA{20/10}
9.32 68.89 89.47 98.43 78.16

FC
6.65 80.15 95.64 99.39 84.14

PS{•/•}
6.94 77.59 92.05 99.40 83.83
5.55 83.73 96.39 99.64 86.96

PA{25/10}
8.86 70.42 90.10 99.35 78.30

MC
5.75 83.95 96.38 99.87 85.76

PS{•/•}
8.11 73.38 92.42 99.61 80.44
5.53 85.17 96.63 99.61 86.96

of the boundaries. In order to reduce the possibility of mis-
leading the clustering procedure by a small number of gross
errors (e.g. caused by imperfect manual segmentation or in-
correct phonetic transcripts of the training data), the deviation
x was confined within the region[−1, 1] applying the sigmoid
function

f(x) =
2

1 + exp(−βx)
− 1 (2)

where the slope parameterβ = 0.08 ms−1 as proposed in [2].
To refine the automatic segmentation by removing the biases
b, the clustered sigmoid-transformed biasbcl had to be trans-
formed to the original domain by applying the inverse transform

b =
1

β
log

1 + bcl

1 − bcl
. (3)

EST tool wagon [17] was used in these experiments. The
segmentation results after the CART-based post-processing are
shown in Table 3. As can be seen, CART-based refinement con-
siderably improved the segmentation results, especially for MC
corpus. Moreover, the refinement did not affect the superiority
of the PS coding scheme over the PA scheme. Hence, utilis-
ing the proposed PS segmentation scheme together with a post-
processing refinement technique should yield better results than
when refining the standard PA segmentation scheme.

6. Conclusions
In this paper, the use of the pitch-synchronous coding scheme
within the HMM-based APS system was researched. Having
compared the influence of the pitch-synchronous and the stan-
dard pitch-asynchronous schemes on the segmentation results,

the proposed PS scheme was shown to yield better results both
for the base APS system and the CART-refined system. The per-
formance was better for all voicing-dependent boundary types.
This encourages us to claim that the proposed PS APS together
with a post-processing refinement technique should yield better
results than when refining the standard PA APS. Moreover, we
believe that utilising the pitch-synchronicity as anotheraspect in
the multiple APS system framework [2] could further improve
the segmentation accuracy of such a system.
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[15] J. Matoušek, D. Tihelka, and J. Romportl, “Building ofa speech
corpus optimised for unit selection TTS synthesis,” inProc. Int.
Conf. on Lang. Resources and Evaluation, Marrakech, Morocco,
2008.
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