
IMPROVING AUTOMATIC DUBBING WITH SUBTITLE TIMING OPTIMISATION USING
VIDEO CUT DETECTION

Jindřich Matoušek and Jakub Vı́t

University of West Bohemia
Faculty of Applied Sciences, Dept. of Cybernetics

Univerzitnı́ 8, 306 14 Plzeň, Czech Republic

ABSTRACT
This paper presents improvements to an automatic dubbing system
in which text-to-speech technology is used to synthesise speech from
subtitles. Spring-based subtitle timing optimisation was proposed to
reduce the need for speeding up synthetic speech to fit it into cor-
responding subtitle slots. Video cut detection algorithm was also
introduced, and the cuts were then used to prevent stretching subti-
tles across the cuts. Results show that after the optimisation smaller
speeding-up factors are applied on synthetic speech while keeping
optimised subtitle start and end times close to original positions.

Index Terms— text-to-speech, automatic dubbing, video cut de-
tection, subtitle timing optimisation, spring-based model

1. INTRODUCTION

In this paper, improvements to a baseline automatic dubbing system
introduced in [1] are presented. The automatic dubbing system is
developed within the ELJABR1 project and is aimed at TV watchers
with minor hearing impairments like seniors (people over 50 years
of age), people with dyslexia or minor mental retardation and also
for people who simply are not able to follow the complex sound
structure of modern TV programmes—they do mind the lower intel-
ligibility of real dialogues, the alternation of very fast and normal
speech, rapid changes in both voice quality and identity, or pos-
sibly also music or effect component present in the original audio
track. The automatic dubbing system exploits text-to-speech (TTS)
technology as it produces speech from subtitles. The resulting TTS-
generated track contains only (synthetic) speech without background
music, effects, emotions, etc.

The problem of the baseline system was that, employing a gen-
eral unit-selection TTS system (a Czech TTS system ARTIC in our
case [2]), synthesised speech exceeded the corresponding subtitle
slots, resulting thus in significant audio/video synchronisation issues
[1]. A solution can be to speed up (or, time-compress, respectively)
the output speech signal in order to fit it into the given subtitle slot,
e.g. by means of a time-scale modification algorithm like WSOLA
[3]. In this way video and audio tracks are kept synchronised. How-
ever, as shown in Section 5, many subtitles are then speeded up with
high factors. As a result, very fast speech would be synthesised
which is in conflict with our objective to produce a less-dynamic
and more intelligible audio track. In this paper, another solution, to
modify subtitles timing utilising a spring-based model, is proposed.

Support for this work was provided by the Technology Agency of the
Czech Republic, project No. TA01011264, and by the grant of the University
of West Bohemia, project No. SGS-2010-054.

1ELJABR is a Czech acronym for “Elimination of the Language Barriers
Faced by the Handicapped Watchers of the Czech Television”.

A similar project was presented in [4] where the audio track was
created from subtitles using TTS technology in a stand-alone box.
Therefore, the synthetic speech is listened together with the origi-
nal audio track. On the other hand, in our project the TTS-based
dubbing system will be operated in the Czech Television, a public
service broadcaster, and an alternative audio track will be delivered
to ordinary home TV sets. The mixing of the TTS-generated and the
original audio track will be avoided because every TV watcher will
be able to choose the track according to his/her preference.

The paper is organised as follows. Experimental data are pre-
sented in Section 2. The improvements to the baseline automatic
dubbing system are described in the next sections—an algorithm for
automatic video cut detection in Section 3, and a utilisation of the
detected cuts for spring-based subtitle timing optimisation in Sec-
tion 4. Finally, results of the optimisation are shown in Section 5,
and conclusions are drawn in Section 6.

2. EXPERIMENTAL DATA

In TV broadcasting, subtitles (also known as closed captions, or sub-
titles for the hearing impaired) could be viewed as an extra service,
which supplements the standard video and audio tracks with a tran-
script (although not always verbatim) of the audio track. The sub-
titles present the only source of information that could be exploited
when generating the supplementary audio track for TV broadcasting
(Czech Television currently broadcasts the subtitles using a teletext
page 888).

At present, the EBU Subtitling data exchange format is used
for storing subtitles of particular programmes in binary data files.
A subtitle file consists of a sequence of subtitles; each subtitle is
described by its text, start and end times, position on the screen, etc.

Ten different TV programmes with manually detected video cuts
(both for the purposes of setting-up the parameters of video cut de-
tection algorithm and its evaluation in Section 3) shown in Tab. 1
were used in our experiments.

3. VIDEO CUT DETECTION

In the baseline system, only audio track and subtitles were exploited
for automatic dubbing. Information from another medium, the video
track, was not utilised. To optimise subtitle timing, knowledge of
cuts, positions in a video where the video content changes, will be
utilised to prevent subtitles from stretching across the cuts.

Let video be described as a sequence of N (f) frames fk, k =
1, . . . , N (f). Each frame fk is an N (r) × N (c) matrix of pixels, in
which N (r) is a number of rows and N (c) is a number of columns.
Using the RGB colour model, each pixel px,y can be represented as a



Table 1. List of TV programmes (movies in our case) used in our
experiments. The superscripts stand for genres (according to IMDb):
action (1), adventure (2), animation (3), documentary (4), drama (5),
fantasy (6), history (7), sci-fi (8), thriller (9), western (10). The
columns denote title, ID, number of subtitles, subtitle time in min-
utes, and number of cuts.

Title ID # stl. Stl. time # cuts

12 Angry Men5 P01 1304 75 357
3001,6,7 P02 938 35 1502
The Fifth Element1,8,9 P03 1022 41 2388
Frona5 P04 903 42 651
Futurama: Bender’s Game3,2,1 P05 1148 53 1181
Gran Torino5 P06 1360 55 1357
Once Upon a Time in the West10 P07 749 27 1364
Pirates of the Caribbean I1,2,6 P08 1174 50 2697
Planet Earth (Episode 2)4 P09 333 15 369
X-Men: First Class1,2 P10 1250 49 2315

Total 10181 442 14181

combination of the RGB components. In our experiments, different
weights were used to compensate for the different effect of the RGB
components on the human eye [5]

px,y = 0.3Rx,y + 0.59Gx,y + 0.11Bx,y, (1)

where Rx,y , Gx,y , and Bx,y are the values of each component for
pixel px,y , i.e. for pixel with (x, y) coordinates. To indicate a pixel
of a concrete frame fk, the notation p

(k)
x,y will be used hereafter.

Two-phase cut detection algorithm was utilised. Firstly, in the
scoring phase, each pair of consecutive video frames is given a score
that represents the similarity/dissimilarity between these two frames.
Then, in a decision phase, all previously calculated scores are eval-
uated and a cut is detected if the score is considered high.

3.1. Scoring Phase

Two scoring methods were used in our experiments:
Sum of absolute differences (SAD). Consecutive frames fk and

fk−1 are compared pixel by pixel, summing up the absolute values
of the differences of each two corresponding pixels

SADk =

N(r)∑
x=1

N(c)∑
y=1

∣∣∣p(k)x,y − p(k−1)
x,y

∣∣∣ , k = 2, . . . , N (f). (2)

Histogram differences (HD). A colour histogram is a represen-
tation of the distribution of colours in a frame, i.e. a colour histogram
represents the number of pixels that have colours in each of a fixed
list of colour ranges, that span the frame’s colour space. In our case,
a histogram can be viewed as a function, or a table, h(i) that counts
the number of pixels that have colour in each of the fixed colour
ranges (known as bins). Thus, if we let N (b) be the total number of
bins, the histogram h(i) meets the following conditions:

N (r) ·N (c) =

N(b)∑
i=1

h(i), (3)

where N (r) · N (c) is the number of pixels in each frame. The
HD scoring method detects how much the distribution of colours

changed from frame to frame as it computes the difference between
the histograms h(i)

k of two consecutive frames fk and fk−1

HD
(i)
k = h

(i)
k − h

(i)
k−1, i = 1, . . . , N (b), k = 2, . . . , N (f).

(4)
A single value

HDk =

N(b)∑
i=1

|h(i)
k − h

(i)
k−1| (5)

can then represent a rate of colour distribution change between two
consecutive frames.

3.2. Decision Phase

In the decision phase, a threshold-based method, in which the scores
between each consecutive frames are compared to a threshold, was
employed. If the score is higher than the threshold, a cut is declared.
In order to adapt the threshold to the properties of the current frames
fk and fk−1 and their neighbours in a video, the context of 2N (n)

frames with scores sk (SAD or HD)

Ck = sk−N(n) , . . . , sk−1, sk+1, . . . , sk+N(n) (6)

was used.
Now, the cut detection algorithm can be introduced:
1. For each frame fk, k = N (n) + 1, . . . , N (f)−N (n), a vector

Ck of scores for the neighbouring frames is computed.
2. The following rules are applied to the score sk of the current

frame fk and to the neighbouring scores in Ck:

sk > T1 (7)
max{Ck} < T2 · sk (8)
avg{Ck} < T3 · sk, (9)

where max{Ck} and avg{Ck} are maximum and average
scores, respectively.

3. If all rules are satisfied, a cut is declared to be between frames
fk and fk−1.

T1, T2, and T3 are thresholds. They must be determined for each
score sk (i.e. SAD and HD) separately. Thresholds values used in
our experiments were determined by a grid-search algorithm within
5-fold cross-validation using 80 % of all frames from each movie in
Table 1. As shown in Tab. 2, the values are relatively stable over the
runs of cross-validation. The best results were achieved for context
size N (n) = 7 or 8.

Table 2. Thresholds values for SAD score.
Score min max avg. std.
T1 12.500 12.688 12.538 0.084
T2 0.669 0.686 0.675 0.007
T3 0.548 0.514 0.529 0.016

3.3. Cut Detection Results

The following three measures can be used to measure the quality of
a cut detection algorithm (see e.g. [6]):
• Recall is the probability that an existing cut will be detected:

V =
C

C + M
(10)



• Precision is the probability that an assumed cut is in fact a
cut:

P =
C

C + F
(11)

• F1 is a combined measure that results in high value if, and
only if, both precision and recall result in high values:

F1 =
2 ∗ P ∗ V
P + V

(12)

The symbols stand for: C, the number of correctly detected cuts
(“correct hits”), M , the number of not detected cuts (“missed hits”)
and F , the number of falsely detected cuts (“false hits”). Five-fold
cross-validation was performed using different partitions of cuts into
training (80 %) and testing (20 %) data, and the validation results
averaged over the rounds are shown in the upper part of Table 3.
Cut detection results for each movie are given in the lower part of
Table 3.

Table 3. Overall cut detection results averaged over the runs of 5-
fold cross-validation (upper table) and results for each movie using
SAD|HD combination (lower table).

Score C M F V P F1

HD 2747 157 103 0.946 0.964 0.955
SAD 2788 107 42 0.963 0.985 0.974
SAD&HD 2765 148 41 0.949 0.985 0.967
SAD|HD 2825 85 47 0.971 0.984 0.977

V P F1 V P F1

P01 0.997 0.994 0.996 P06 0.988 0.996 0.992
P02 0.975 0.982 0.979 P07 0.985 0.992 0.989
P03 0.941 0.976 0.958 P08 0.961 0.989 0.975
P04 0.969 0.983 0.976 P09 0.978 1.000 0.989
P05 0.987 0.942 0.964 P10 0.969 0.991 0.980

As expected, different results were achieved for individual
scores. Better results were obtained for the SAD score in all
aspects—only a minimum number of false hits, and a relatively
small number of missed hits (approx. 4 % of all hits) were achieved
with this score. As for the combinations of both scores, slightly
better results were obtained for the combination SAD|HD which
means that a cut is detected if it is detected at least by one of the
scores.

4. OPTIMISATION OF SUBTITLES TIMING

As mentioned in Section 1, to keep synthetic audio track synchro-
nised with video, speech synthesised from a subtitle text has to fit
into the corresponding subtitle slot. This requirement causes syn-
thetic speech to be speeded up, possibly with high speeding-up fac-
tors. After the speedup, otherwise clear and perfectly intelligible
synthetic speech can become less intelligible which is in conflict
with our objective to produce a less-dynamic and more intelligible
audio track.

The idea behind the optimisation of subtitles timing is that a
reasonable change in a position of a subtitle (i.e., in its start and/or
end times) can reduce the speeding-up factor. To keep the synthetic
audio track synchronised with video, the following requirements has
to be respected when changing the timing of a subtitle:

• a subtitle must not overlap with the neighbouring subtitles;

Fig. 1. An illustration of subtitle timing optimisation using a spring-
based model.

• a subtitle must not exceed a cut;

• the changed subtitle timing should be as close to the original
timing as possible;

• the speeding-up factor needed to fit synthetic speech into the
(changed) subtitle slot should be kept at minimum.

Such a formulated problem can be modelled using a physical
simulation of springs (see Fig. 1). For each subtitle i (where i is its
order in a TV programme) with length di (how long it is shown on
screen), the corresponding TTS-generated speech can be viewed as a
spring Ai with a certain rate/constant (i.e. stiffness or stretchability)
kA and with length equal to the length li of the synthesised (not
speeded up) speech. To fit the spring Ai into the given subtitle slot
(i.e. to speed up the speech), the spring has to be compressed to
the length di. After the compression is released, the spring starts,
following Hooke’s law (with spring displacement expressed in terms
of speeding-up factors fi = li

di
and 1), to stretch with a restoring

force
Fi = −kA · (f ′i − 1) (13)

with f ′i = li
d′i

and d′i being the current stretched length of the

spring/subtitle, causing subtitles start x′i and end y′i positions recede
from their original positions xi and yi. At the same time, speeding-
up factor f ′i starts to reduce. To stay synchronised, i.e. to have x′i
and y′i as close to the original positions xi and yi as possible, other
springs, B(x)

i and B
(y)
i , are used at the beginning and end of the

spring Ai, compressing back the spring Ai to its original positions
with forces

F
(x)
i =− kB · (x′i − xi), (14)

F
(y)
i =− kB · (y′i − yi), (15)

where kB is rate of B
(x)
i and B

(y)
i . The ratio kA

kB
allows to con-

trol between preferences either towards synthetic speech with small
speeding-up factors but with start and end positions somewhat re-
ceded from the original positions (kA < kB) or towards synthetic
speech at original positions, but more speeded up (kA > kB). The
ratio could be set up, for instance, according to the genre of a TV
programme. The optimal timing of the subtitle, i.e. x∗i and y∗i , and
the optimal speeding-up factor f∗i are achieved when equilibrium of
forces Fi, F

(x)
i and F

(y)
i is reached.

The iterative algorithm can be summarised in the following steps
(with ∆ being a simulation step; iterations are illustrated in Fig. 2):

1. Set up kA, kB arbitrarily, set x′i = xi, y′i = yi, and li set to
length of not speeded up synthesised speech.



Fig. 2. An illustration of the iterative algorithm. The darker the
colour, the higher speeding-up factor has to be used to fit synthetic
speech into the corresponding subtitle slot (“S” stands for subtitle,
“f” for speeding-up factor).

2. Compute d′i = y′i − x′i, Fi (Eq. 13), F (x)
i (Eq. 14), F (y)

i

(Eq. 15) and total forces at subtitle beginning F
(B)
i = Fi

2
+

F
(x)
i and end F

(E)
i = −Fi

2
+ F

(y)
i .

3. Update x′i = x′i + ∆ · F (B)
i , y′i = y′i + ∆ · F (E)

i . If x′i (or
y′i) exceeds a cut, xi (or y′i, respectively) is set to the position
of the cut. Also ensure that x′i and y′i do not overlap with
neighbouring subtitles.

4. If F (B)
i = F

(E)
i = 0 (equilibrium reached), then x∗i = x′i

and y∗i = y′i are the optimal start and end times of subtitle i
(the optimal length of the corresponding synthesised speech
is d∗i = d′i; thus the optimal speeding-up factor is f∗i = li

d∗i
).

Otherwise continue with step 2.

In reality, the situation is more complex because a sequence of
springs with the number of springs corresponding to the number of
subtitles in a TV programme has to be taken into account. The op-
timisation process starts after all forces Fi begin to compress the
springs Ai en bloc. The optimal timing of all springs/subtitles in
a TV programme is achieved when an equilibrium of all forces is
reached.

To avoid gross synchronisation errors, video cuts detected as de-
scribed in Section 3 are used to prevent from stretching subtitles
(or the corresponding synthetic speech, respectively) across differ-
ent scenes during the update of x′i and y′i which would be otherwise
perceived as very disturbing and unnatural.

5. EVALUATION AND RESULTS

Well-tuned Czech unit-selection TTS system ARTIC [2] was used to
synthesise the audio track, both from original (the baseline system)
and optimised (the optimised system) subtitles. Since the TTS sys-
tem performs very well (and is continuously upgraded) when synthe-
sising with original (not speeded up) speech rate, high quality syn-
thetic audio track can be guaranteed only when speeding-up factors
will be kept minimal. Therefore, the baseline and optimised sys-
tems were evaluated with respect to speeding-up factors used during
synthesis. As can be seen in Fig. 3, the optimised system employs
smaller speeding-up factors; thus, it should yield a less-dynamic,
more intelligible audio track. To speed up synthetic speech, WSOLA
algorithm with non-linear time-scale distribution scheme [7] was ap-
plied.

The utilisation of smaller speeding-up factors was at the expense
of shifting start/end subtitle times from their original positions. The
average shift for our experimental data was 70 ms (with standard
deviation 47 ms and maximum shift 700 ms). Such values mean that
no serious audio/video synchronisation issues should occur.

The proposed method could also be used to fix subtitles posi-
tions. The typical mistakes made by human transcribers when creat-
ing subtitles are those in which subtitles slightly overlap video cuts.
Applying the subtitle timing optimisation algorithm on our experi-
mental data, 836 subtitles (more than 8 % of all subtitles) were fixed.

6516

7942

1051

1151

845

572
611

298

433

147

267

43

177

12

99

9
65

5
37

0
28

0
52

2

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Baseline system

Optimised system

P01 P02 P03 P04 P05

P06 P07 P08 P09 P10

speeding-up factors

nu
m

be
r 

of
 s

ub
ti

tle
s

not speeded up twice as fast

Fig. 3. Results of subtitle timing optimisation in terms of speeding-
up factors: total results (left), results per movie (right).

6. CONCLUSION

Improvements to the automatic dubbing system were presented in
the paper. It was shown that using only one score (SAD) or a com-
bination of two scores (SAD or HD) yields very good video cut de-
tection results. The detected cuts were then used to prevent stretch-
ing subtitles across the cuts during spring-based subtitle timing op-
timisation process. Thanks to the optimisation, smaller speeding-up
factors were applied when fitting synthesised speech into the corre-
sponding subtitle slot. At the same time, optimised subtitle start and
end times were kept close to original positions.

In our future work, genre-dependent experiments will be carried
out to find out whether genre-dependent settings both in cut detec-
tion and spring-based subtitle timing optimisation could further im-
prove system performance. After testing broadcasting is launched
by Czech Television, automatic dubbing will be evaluated by real
users.

7. REFERENCES

[1] Zdeněk Hanzlı́ček, Jindřich Matoušek, and Daniel Tihelka, “To-
wards automatic audio track generation for Czech TV broadcast-
ing: Initial experiments with subtitles-to-speech synthesis,” in
Proc. ICSP, Beijing, China, 2008, vol. 3, pp. 2721–2724.

[2] Daniel Tihelka, Jiřı́ Kala, and Jindřich Matoušek, “Enhance-
ments of Viterbi search for fast unit selection synthesis,” in
Proc. INTERSPEECH, Makuhari, Japan, 2010, pp. 174–177.

[3] Werner Verhelst, “Overlap-add methods for time-scaling of
speech,” Speech Commun., vol. 30, pp. 207–221, 2000.

[4] Sandra Derbring, Peter Ljunglof, and Maria Olsson, “SubTTS:
Light-weight automatic reading of subtitles,” in Proc. NODAL-
IDA, 2009, pp. 272–274.

[5] William K. Pratt, Digital Image Processing: PIKS Scientific
Inside, John Wiley & Sons, 3rd edition, 2001.

[6] John S. Boreczky and Lawrence A. Rowe, “Comparison of
video shot boundary detection techniques,” J. Electron. Imag-
ing, vol. 5, no. 2, pp. 122–128, April 1996.

[7] Daniel Tihelka and Martin Méner, “Generalized non-uniform
time scaling distribution method for natural-sounding speech
rate change,” in Text, Speech and Dialogue, vol. 6836 of Lec-
ture Notes in Computer Science, pp. 147–154. Springer, Berlin,
Heidelberg, 2011.


