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Abstract

We investigate the problem of automatic detection of annota-
tion errors in single-speaker read-speech corpora used for text-
to-speech (TTS) synthesis. Various word-level feature sets were
used, and the performance of several detection methods based
on support vector machines, extremely randomized trees, k-
nearest neighbors, and the performance of novelty and outlier
detection are evaluated. We show that both word- and utterance-
level annotation error detections perform very well with both
high precision and recall scores and with F'1 measure being al-
most 90%, or 97%, respectively.

Index Terms: annotation error detection, classification, novelty
detection, read speech corpora, speech synthesis

1. Introduction

One of the major problems of concatenative speech synthesis
is its sensitivity to phonetic transcription and segmentation er-
rors. As generally known, speech signals (recorded by a sin-
gle speaker) are usually annotated on a word level, or the ac-
tual recordings are labeled by text prompts that were intended
to record, respectively. Then, the annotated texts are automati-
cally converted to phonetic representation, and the correspond-
ing speech signals are segmented to find boundaries between
phone-like units. Any error in this process may inherently result
in audible glitches in synthetic speech.

As the automatic phonetic segmentation accuracy has at-
tracted researchers for many years, a number of HMM-based
force alignment framework refinements were proposed (see,
e.g., [1-5]). On the other hand, the origin of gross segmenta-
tion errors and a way to fix them has not been researched so
much. Instead, erroneous segments, if detected, are usually dis-
carded, and other segments are selected in unit-selection speech
synthesis. As discussed by Taylor [6], the chase for ideal pho-
netic segmentation may not be so important; automatic segmen-
tation tends to have consistency which often cancels out minor
phonetic segmentation errors at synthesis time. However, this
is not the case of gross segmentation errors being often caused
by wrong word-level annotation. When the annotation does not
match the speech signal, serious speech synthesis errors occur—
synthesized speech could be unintelligible, or even other speech
than expected may be synthesized [7].

The problem with manual annotation is that it is a time-
consuming and costly process. Although some attempts were
made to annotate corpora automatically, or semi-automatically
(see, e.g., [8—12]), the automation is still error-prone. However,
despite careful manual annotation, even human annotators do
make errors [13], like missing or extra words, swapped, mispro-
nounced or in other way misannotated words. Their frequency
in Czech speech synthesis corpus, and their impact on the qual-
ity of synthetic speech were already presented in detail [7, 13].
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To deal with it, a procedure for automatic detection of an-
notation errors is proposed in this paper. Unlike other stud-
ies [10, 11, 14-16] which focus rather on revealing bad phone-
like segments, the proposed method aims mainly at revealing
word-level errors, i.e. misannotated words. The disadvantage
of bad phone-like segment detection (often based on acoustic
likelihoods [10, 14], duration-related features [15, 16] or their
combination [11]) is that it usually results in many “false posi-
tive” detections. In other words, due to low precision of these
methods, many good speech segments had to be unnecessarily
checked or removed from speech corpora, or in the case of unit
selection other segments are chosen, respectively. Since in the
case of a misannotated word a sequence of bad segments is of-
ten observed, simple word-level features can thus be collected.
Then, the whole word is a subject of an automatic classification
whether it is good or bad. The aim of this study is to find out
whether such word-level error detection could reveal annotation
errors both with high recall and precision measures. Lessons
learned can also be useful for the automatic error detection in
synthetic speech [17, 18].

2. Experimental data

We used a Czech read speech corpus of a single-speaker
male voice [19], recorded for the purposes of unit-selection
speech synthesis in the state-of-the-art text-to-speech system
ARTIC [20]. The voice talent was instructed to speak in a
“news-broadcasting style” and to avoid any spontaneous ex-
pressions. The full corpus consisted of 12,242 utterances (ap-
prox. 18.5 hours of speech) segmented to phone-like units using
HMM-based forced alignment (carried out by the HTK toolkit
[21]) with acoustic models trained on the speaker’s data [4].
From this corpus we selected 1,335 words in 88 utterances col-
lected during ARTIC system tuning and evaluation, and used
them as data for our experiments; 267 words contained some
annotation error (207 of them being different) and the rest of
1,068 words were annotated correctly. The decision whether
the annotation was correct or not was made by a human expert
who analyzed the phonetic alignment. In order to get more ro-
bust results (in the sense of being less dependent on a concrete
split of data into training/evaluation partitions), 10 random train-
ing/evaluation data splits preserving the ratio of correctly anno-
tated and misannotated words for each class were conducted in
each experiment (see Sec. 5.1, Step 1).

3. Features
3.1. Basic features (BAS)

When selecting a basic set of features, we focused on the
most prevalent and intuitive features a human observer assesses
when he/she confronts a speech signal with forced-aligned pho-
netic segments. The features are based on the outcome of
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HMM forced alignment—within-word phone durations and also
acoustic likelihood of each phone model. The duration-related
features can help in revealing unusually long or unusually short
phone segments that tend to accompany annotation errors. The
acoustic likelihood of a phone segment calculated by the forced
alignment indicates acoustic reliability of the aligned phone.
As aresult, each word was described by the following 7 fea-
tures:
e mean, minimum, and maximum phone duration within
the word;
mean, minimum, and maximum phone acoustic likeli-
hood within the word;
the number of phones in the word.

3.2. Histogram related features (HIST)

In order to emphasize outlying durations and acoustic likeli-
hoods, histogram of durations Hp and histogram of acous-
tic likelihoods H 4 with non-uniform bin widths were used
to extend the basic feature set. The bins for Hp were
defined with edges in msec as [0, 10,20, 50,100, 200, co],
and the bins for H4 with edges in log likelihoods as
[—o0, —200, —150, —100, —70, —40, 0], resulting in 12 fea-
tures.

3.3. Phonetic features (PHON)

Another feature set concerned phonetic properties of each word.

The following 28 features, observed to often accompany errors

caused by misannotations, were taken into account:

‘“voicedness” ratio the ratio between voiced and unvoiced
phones in the word (1 feature)

word boundary “voicedness” match whether the begin-
ning/end of the word matches the end/beginning of
the previous/next word with respect to ‘“voiceness”
(2 features)

sonority ratio the ratio between sonorized and noised phones
in the word (1 feature)

manner of articulation number of phones in manner-of-
articulation related classes (plosives, long vowels, short
vowels, vocalic diphthongs, nasals, affricates, fricatives,
glides, liquids, vibrants, pauses—11 features)

place of articulation number of phones in place-of-
articulation related classes (glottal, rounded/unrounded
vowels and diphthongs, bilabial, labiodental, postalveo-
lar, alveodental, palatals, velars, pauses—12 features)

syllabic consonants whether the word contains a syllabic con-
sonant or not (1 feature)

3.4. Positional features (POS)

Positional features include the position of a word in a phrase,
the position of the phrase in an utterance, both in forward and
reverse order, number of words in the phrase, and number of
phrases in the utterance (6 features in total).

3.5. Deviation from duration model (DEV)

To emphasize duration-related features, the deviation of the
forced-alignment based duration of each phone from the dura-
tion predicted by another duration model was used as an another
feature set. The duration model was based on classification and
regression trees (CART) and trained on the same forced-aligned
speech corpus as used throughout this paper. Various phone-
level features like the phonetic contexts (up to 2 phones to the
left and to the right) and the categorization of the phones into
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phone classes as those described in Sec. 3.3 were used. In ad-
dition, prosody related features like the number of phones in a
word, the number of words in a phrase, the number of phrases in
an utterance, and the position of each phonetic element (phone,
word, phrase) in the parent structure (word, phrase, utterance)
were used as well (172 features in total). Since the training
phone durations were based on automatically segmented speech
corpus, statistically outlying durations were not used—only du-
rations between 5 and 95 percent fractile (computed for each
phone independently) were included into the training data [22].
For each phone an independent CART was trained using EST
tool wagon [23].

Similarly as for the basic features in Sec. 3.1, each word
was then assigned 3 features—mean, minimum, and maximum
deviation of forced-aligned phone duration from CART-based
phone duration.

4. Automatic detection
4.1. Classifiers

The problem of annotation errors detection can be viewed as a
two-class classification problem: whether a word is misanno-
tated or not. For the purposes of our work we utilized two pop-
ular classifiers: support vector machine (SVM) classifier [24],
both with linear (further denoted as SVM-LIN) and Gaussian
radial basis function (SVM-RBF) kernels, and extremely ran-
domized trees classifier (EXTREES) [25]. We also used k-
nearest neighbor (KNN) algorithm as an example of a simple
classifier. For training and evaluation of the classifiers scikit-
learn toolkit was employed [26].

As the best set of parameters of the classifiers was not a pri-
ori known, we performed a grid search on various values of the
parameters using a 5-fold cross-validation to find the optimal
set of parameters of each train/evaluation data split. The eval-
uation data was employed only to evaluate the resulting model,
they were not used during the grid search. For both SVM classi-
fiers, the penalty parameter C' of the error term was searched
in an exponentially growing interval [2*5,215] The kernel
parameter v of SVM-RBF was searched in the recommended
range [27'°,2°]. The EXTREES parameter to be searched
was the number of estimators N, ranging in [10,100]. The
maximum number of features to consider when splitting a node
Ny was fixed to the recommended value for classification tasks
N; = /N, where N is the number of features in the data. In
our experiments with KNN classifier we used Ball Tree algo-
rithm to compute the nearest neighbors. The number of neigh-
bors k was searched in [1, 20].

The classification process is summarized in Sec. 5.1.

4.2. Novelty detection

The problem of the automatic detection of misannotated words
could also be viewed as a problem of novelty detection. The aim
of this method is to decide whether a new observation belongs
to the same distribution as existing observations (it is an inlier—
correctly annotated word in our case), or should be considered
as different (it is an outlier—misannotated word in our case).
Unlike the classification task described above, the training data
is not polluted by outliers, and we are interesting in detecting
anomalies in new observations. There is no need to collect mis-
annotated words for the training phase.

One-class SVM (OCSVM) with RBF kernel was employed
for the purposes of novelty detection in our experiments. Basi-
cally, similar steps as those for the classification task described



further in Sec. 5.1 were carried out but the training data con-
tained only correctly annotated words (80% of 1,068 words,
i.e. 854 words). The evaluation data included both 214 cor-
rectly annotated words (20% of 1,068 words) and all misanno-
tated words (i.e. 267 words). Again, the training data was split
into 10 training/evaluation data pairs, and the best parameters,
v € (0.0,1.0], denoting the upper bound on the fraction of the
training errors and a lower bound of the fraction of support vec-
tors, and the kernel parameter v € [2715, 23] , were determined
by grid search using 5-fold cross-validation.

4.3. Outlier detection

In outlier detection we have no information about inliers and
outliers. Hence, unlike novelty detection, the training data con-
tains outliers, and the aim is to fit the “central mode” of the
training data, ignoring the deviant observations. The advantage
over the previous two detection methods is that outlier detection
is a fully unsupervised method.

Again, OCSVM with RBF kernel was employed to detect
outliers. Slightly different training strategy had to be applied in
this case. As there is no information about the correctly anno-
tated and misannotated words during the training phase, and the
outlier detection is about to be carried out for the whole speech
corpus, all available data was used both for training and eval-
uation. Since no cross-validation could be used in this type of
detection, several settings of the parameters (v, ) were tried.
The best results were obtained for very small values of v and
bigger values of ~.

4.4. Detection metrics

Standard metrics like recall (R), interpreted as the ability of a
classifier to find all misannotated words, precision (P), the abil-
ity of a classifier not to label as misannotated a word that is an-
notated correctly, F'1, a combined measure that results in high
value if, and only if, both precision and recall result in high val-
ues, and accuracy (A), a proportion of correct detections in all
detections,

t 2x Px R
R = L Fl=—""—-,
tp+ fn P+R
b s
oty b+ ot fatitn

were used to evaluate the performance of the detection methods.
The symbols stand for: t,,, number of correctly annotated words
(“true negatives”), t,, the number of words correctly detected
as misannotated (“true positives”), fn, the number of misanno-
tated words that were not detected (“false negatives”) and fp,
the number of words falsely detected as misannotated (“false
positives”).

Classifier parameters were optimized with respect to F'1
score during grid search & cross-validation process. Otherwise,
with low recall score the classifier would not be able to detect
the misannotated words reasonably. Low precision score would
then indicate that the classifier falsely detects words that are an-
notated correctly. This means that too many words would be
unnecessarily checked reducing thus the efficiency of annota-
tion error detection and correction.

5. Experiments and results

5.1. Classification procedure

The classification and novelty detection procedure can be sum-
marized in the following steps:
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Table 1: Word-level evaluation using F'1 score.

Features EXTREES KNN SVM-LIN SVM-RBF
BAS 0.824 0.758 0.744 0.826
BAS+HIST 0.807 0.748 0.840 0.846
BAS+HIST+PHON 0.809 0.605 0.838 0.837
BAS+HIST+POS 0.814 0.724 0.822 0.830
BAS+HIST+DEV 0.872 0.811 0.876 0.876
All features 0.865 0.713 0.868 0.869
No likelihoods 0.827 0.621 0.831 0.843
No Iklhd., no dur. 0.182 0.288 0.406 0.406

1. The data was split into 10 stratified train/evaluation data
pairs (preserving the error ratio) with 80% of words be-
ing used for training and 20% of words being used for
evaluation.

2. For each particular training/evaluation pair, the following
steps were carried out:

(a) The training data was standardized to have zero
mean and unity variance.

(b) A classifier was trained on the training data, and
its parameters were optimized by grid search using
5-fold cross-validation.

(c) The same standardization method as for the train-
ing data was applied to the evaluation data.

(d) The performance of the resulting classifier was
evaluated with the metrics described in Sec. 4.4.

3. The overall performance of the classifier was com-
puted as an average over the evaluations for each train-
ing/evaluation data pairs.

5.2. Word-level detection

The aim of word-level annotation error detection is to mark
each word as misannotated or correctly annotated. The eval-
uation of the classifiers for different feature sets in terms of
F'1 score is given in Table 1. Bold results in each row de-
note that the corresponding classifiers performed better than the
other ones according to McNemar’s statistical significance test
at the significance level a = 0.05 [27]. “All features” stands for
BAS+HIST+DEV+PHON+POS. Results for the cases where no
acoustic likelihoods and no duration-related features would be
available in the speech corpus are shown in the rows “no like-
lihoods” or “no lklhd., no dur.”, respectively. More detailed re-
sults for the SVM-RBEF classifier and BAS+HIST+DEYV features
are shown in Table 2.

The results show that SVMs and EXTREES performed
comparably well with differences not being statistical signifi-
cant for most feature sets and that they dominated over KNN. As
for the features, both BAS+HIST+DEV (a small set of 22 du-
ration and acoustic likelihood related features) and the set of
all 53 features achieved better results than the other feature sets
(statistical significant, McNemar’s test, « = 0.05). Reasonably
good performance was also achieved for the feature set without
acoustic likelihoods. On the other hand, duration-related fea-
tures appeared to be essential for a good performance.

To fine-tune the classification performance, SVM-RBF clas-
sifier trained with BAS+HIST+DEV features was picked and
its parameters were set to those which were closest to aver-
age performance over the various training/evaluation data splits
(C = 64,y = 27'?)—see AVG in Table 2. Two-phase clas-
sification was then carried out. In the first phase, the classifier
was used to make a probabilistic decision on each word to be
misannotated. In the second phase, contextual features (with the
context of n preceding and n succeeding words, n = 1,2, 3)
denoting the probability of the previous/next/current word to be
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Figure 1: SVM-RBF (CTX n = 1) precision-recall curve with
area under curve AUC = 0.92.

misannotated were used to train a contextual classifier (CTX).
The results of the classification on the evaluation data for con-
texts of different lengths are shown in Table 2. The detec-
tion improvement manifested largely by higher precision score
was not proved to be statistically significant (McNemar’s test,
a = 0.05). The precision-recall curve is illustrated in Fig. 1.

Table 2: Fine-tuned word-level evaluation of SVM-RBF and
novelty detection with BAS+HIST+DEYV features.

Configuration Acc P R F1

AVG 0948 0.831 0925 0.875
CTX (n=1) 0959 0.889 0906 0.897
CTX (n=2) 0959 0.889 0.906 0.897
CTX (n = 3) 0948 0.831 0925 0.875
NOVELTY 0.889 0.924 0.872 0.897
OUTLIERS 0204 0.199 0985 0.331
Random 0.680 0.200 0.200  0.200
Rules 0.879 0.663 0.801 0.725

The row NOVELTY in Table 2 shows the average results of
novelty detection over the various training/evaluation data splits,
computed for BAS+HIST+DEV feature set. Surprisingly good
results were achieved in this way, considering that only correctly
annotated words were used during the training phase. Being run
on different data, statistical significance test was not performed.
The row OUTLIERS presents the performance of the outlier de-
tection method. As expected, the results were noticeably inferior
to the results of classification and novelty detection methods,
mainly with respect to precision score (outlier detection tends to
make many false positive errors).

For comparison, random detection considering the number
of correctly annotated and misannotated words in our data set,
and detection based on intuitive rules (words containing phone
with duration ¢ [16, 300] msec or with log likelihood less than
—110 were marked as misannotated) are also shown in Ta-
ble 2. As can be seen, the proposed detection methods per-
formed much better.

5.3. Utterance-level detection

Assuming that words detected as misannotated will be checked
and corrected in source utterances, whole utterances can also be
considered as basic units for annotation error detection. In order
to have more utterances for this experiment, other 70 utterances
which did not contain any annotation error were selected from

1514

Table 3: Utterance-level evaluation of annotation errors using
BAS+HIST+DEV features.

Classifier Acc P R F1

EXTREES 0963 0958 0978 0.967
KNN 0.875 0.936 0.839 0.882
SVM-LIN 0.856 0.801 1.000 0.888
SVM-RBF 0909 0.865 1.000 0.926
NOVELTY 0902 0.898 1.000 0.946
EXTREES CTX (n = 1) 0969 0.947 1.000 0.973

the full corpus described in Sec. 2, resulting in the total number
of 158 utterances (88 of them contained some annotation error).
Due to the small number of utterances the detection itself was
carried out again on the word level but the evaluation was per-
formed on the utterance level.

Similar detection procedure as in Sec. 5.1 was carried out.
Here, the training/evaluation data pairs were made for utterances
(preserving the error ratio), and the classifiers were trained on
words from training utterances. The prediction was performed
on the word level and then post-processed with respect to ut-
terances. “One takes all” strategy was adopted—if an utterance
contained at least one misannotated word, it was marked as mis-
annotated; otherwise it was considered as correct. Again, the de-
tection was carried out over 10 random training/evaluation data
pairs, and the average results are shown in Table 3.

The best performance of almost 97% in terms of F'1 mea-
sure was obtained for EXTREES classifier (statistically signif-
icant, McNemar’s test, « = 0.05). The performance could be
even better after applying two-phase classification as described
in Sec. 5.2. Other classifiers also performed well, especially
SVM-RBF and novelty detector. Note that for most of the clas-
sifiers the perfect recall score (R = 1.0) was achieved. Better
performance on the utterance level suggests that multiple word-
level errors tend to occur within a single utterance.

6. Conclusions

We performed a study on the automatic detection of annota-
tion errors in read speech corpora used for TTS. We experi-
mented with various feature sets based on relatively small num-
ber of duration and acoustic likelihood related features. We
also made a robust comparison of several classification, novelty,
and outlier detection methods. We showed that both word- and
utterance-level annotation error detections performed very well
with both high precision and recall scores and with F'1 measure
being almost 90%, or 97%, respectively. Very good results were
achieved also for novelty detection in which the classifier was
trained only on correctly annotated words.

As the results are very encouraging, we plan to find out how
the described detection method will cope with more data from
more speakers, with spontaneous speech data, or with other lan-
guages. If successful, the annotation process accompanying the
development of a new TTS voice could be reduced only to the
correction of misannotated words. The proposed method could
also be useful to detect errors in other speech processing tasks,
for instance in multi-speaker corpora for ASR systems [28], in
multimedia archives for fast information retrieval or keyword
spotting [29], etc.
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