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Abstract
In our previous work, we introduced a classification-based
method for the automatic detection of glottal closure instants
(GCIs) from the speech signal and we showed it was able to
perform very well on several test datasets. In this paper, we
investigate whether adding more features (voiced/unvoiced, har-
monic/noise, spectral etc.) and/or using an ensemble of classi-
fiers such as a voting classifier can further improve GCI detection
performance. We show that using additional features leads to a
better detection accuracy; best results were obtained when recur-
sive feature elimination was applied on the whole feature set. In
addition, a voting classifier is shown to outperform other clas-
sifiers and other existing GCI detection algorithms on publicly
available databases.
Index Terms: glottal closure instant (GCI), pitch mark, classifi-
cation, voting classifier, recursive feature elimination

1. Introduction
Glottal closure instants (GCIs) (also called pitch marks or
epochs) refer to peaks in voiced parts of the speech signal that
correspond to the moment of glottal closure, a significant excita-
tion of a vocal tract. The distance between two succeeding GCIs
then corresponds to one vocal fold vibration cycle and can be
represented in the time domain by a local pitch period value (T0)
or in the frequency domain by a local fundamental frequency
value (F0).

Precise detection of GCIs plays a key role in pitch-
synchronous speech processing which is used in many speech-
technology applications [1, 2, 3, 4]. Although GCIs can be
reliably detected from a simultaneously recorded electroglotto-
graph (EGG) signal (which measures glottal activity directly;
thus, it is not burdened by modifications that happen to a flow of
speech in the vocal tract), it is desirable to detect GCIs directly
from the speech signal only.

A number of algorithms have been proposed to detect GCIs
in the speech signal. They principally identify GCI candidates
from local maxima of various speech representations and/or
from discontinuities or changes in signal energy. The former
include linear predictive coding (e.g. DYPSA [5], YAGA [2], or
[6]), wavelet components [7], or multiscale formalism (MMF)
[8]. The latter include Hilbert envelope, Frobenius norm, zero-
frequency resonator, or SEDREAMS [9]. Dynamic program-
ming is often used to refine the GCI candidates [5, 2]. A universal
postprocessing scheme to correct GCI detection errors was also
proposed [10].
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MetaCentrum clusters provided under the programme LM2015042 is
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In our previous work [11], we elaborated a classification-
based method for the automatic detection of GCIs [12, 13, 14]
from the speech signal in which the detection is viewed as a two-
class classification problem: whether or not a peak in a speech
waveform represents a GCI. We showed it was able to perform
very well on several test datasets. The advantage of this method
is that once a training dataset is available, classifier parameters
are set up automatically without manual tuning.

In this paper, we answer other two research questions: (i)
whether adding more features (voiced/unvoiced, harmonic/noise,
spectral etc.) can help the classifier perform better; (ii) whether
using an ensemble of classifiers or a meta-classifier (such as
a voting classifier) can further improve GCI detection perfor-
mance.

2. Experimental data
2.1. Speech material

The development and testing of the proposed classifiers were
performed on clean 16kHz-sampled speech recordings available
at our workplace (hereafter referred to as UWB). The record-
ings were primarily intended for speech synthesis. We used
63 utterances (≈9 minutes of speech) for the development and
20 utterances (≈3 minutes of speech) for testing. The set of
utterances was the same as in [15] – it comprised various Czech
(male and female), Slovak (female), German (male), US English
(male), and French (female) speakers. All speakers were part
of both the development and test datasets. Reference GCIs pro-
duced by a human expert (using both speech and EGG signals)
were available for each utterance and were synchronized with the
corresponding minimum negative sample in the speech signal.

For the purpose of the proposed classification-based GCI
detection, speech waveforms were low-pass filtered by a zero-
phase Equiripple-designed filter with 0.5 dB ripple in the pass
band, 60 dB attenuation in the stop band, and with the cutoff
frequency of 800 Hz to reduce the high-frequency structure in
the speech signal. The signals were then zero-crossed to identify
peaks (both of the negative and positive polarity) that are used
for feature extraction in further processing. Since the polarity of
speech signals was shown to have an important impact on the
performance of a GCI detector [16, 17], all speech signals were
switched to have the negative polarity, and only the negative
peaks were taken as the candidates for the GCI placement. For
the purpose of training and testing, the location of each reference
GCI was mapped to a corresponding negative peak in the filtered
signal. There were 73,205 and 20,338 candidate peaks in the
development and test datasets respectively (marked by both ◦
and • in Figure 1), 39,931 and 10,807 of them corresponded to
true GCIs (marked by • only).

Interspeech 2018
2-6 September 2018, Hyderabad

2112 10.21437/Interspeech.2018-1147

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1147.html


5.980 5.985 5.990 5.995 6.000 6.005
Time (s)

10000

7500

5000

2500

0

2500

5000

7500 speech

filtered speech

~

A

B

C

D

E

Figure 1: Illustration of features extraction: amplitude of a nega-
tive peak (A, negAmp), amplitude of a positive peak (B, posAmp),
difference between two negative peaks (C, timeDiff), width of a
negative peak (D, width), correlation between waveforms of two
negative peaks (E, corr). GCI candidates are marked by ◦, true
GCIs by •.

2.2. GCI detection measures

GCI detection techniques are usually evaluated by comparing
locations of the detected and reference GCIs. The measures typi-
cally concern the reliability and accuracy of the GCI detection
algorithms [5]. The former includes the percentage of glottal
closures for which exactly one GCI is detected (identification
rate, IDR), the percentage of glottal closures for which no GCI
is detected (miss rate, MR), and the percentage of glottal clo-
sures for which more than one GCI is detected (false alarm rate,
FAR). The latter includes the percentage of detections with the
identification error ζ ≤ 0.25 ms (accuracy to ±0.25 ms, A25)
and standard deviation of the identification error ζ (identification
accuracy, IDA).

We also use a more dynamic evaluation measure [18]

E10 =
NR −Nζ>0.1T0 −NM −NFA

NR
(1)

that combines the reliability and accuracy in a single score and re-
flects the local T0 pattern (determined from the reference GCIs).
NR stands for the number of reference GCIs, NM is the number
of missing GCIs (corresponding to MR), NFA is the number of
false GCIs (corresponding to FAR), and Nζ>0.1T0 is the number
of GCIs with the identification error ζ greater than 10% of the
local pitch period T0. For the alignment between the detected
and reference GCIs, dynamic programming was employed [18].

3. Features
3.1. Baseline features

The baseline features used in [11] are illustrated in Figure 1. In-
spired by [14], the features were associated with negative peaks
in the low-pass filtered speech waveforms. Each peak is de-
scribed by a set of local descriptors reflecting the position and
shape of other 3 neighboring peaks [11]. Thus, only 32 features
were used in total: the amplitudes of the given negative peak
and 6 neighboring (3 prior and 3 subsequent) negative peaks
(7 features, denoted as A in Figure 1), amplitudes of 6 neighbor-
ing positive peaks (6, B), the time difference between the given
negative peak and each of the neighboring negative peaks (6, C),
the width of the given negative peak (a distance between two
zero-crossings) and each of the neighboring negative peaks (7,
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Figure 2: Comparison of different feature sets with respect to
GCI detection performance including 95% confidence intervals.

D), the correlation of the waveform around the given negative
peak and the waveforms around each of the neighboring negative
peaks (6, E).

3.2. Feature engineering

To answer the first research question of this paper, we defined
several feature sets and investigated their influence on the GCI
detection performance. We extended the baseline feature set
(32 features) described in Section 3.1 (hereinafter referred to as
FSET0) with acoustic features (zero-crossing rate (ZCR), log
energy, harmonic-to-noise ratio (HNR), voiced/unvoiced, peak
ratio to 6 neighboring peaks – denoted as FSET1, +10 features),
spectral features (spectral centroid, spectral bandwidth, and spec-
tral roll-off – FSET2, +3 features), and mel spectral frequency
coefficients (MFCCs – FSET3, +13 features). All features were
calculated from 10ms-long speech segments extracted around
every peak candidate.

We also experimented with the full feature set consisting of
all 58 features described above (FSET4) and with a feature set
designed automatically by a feature selection algorithm. For the
feature selection, recursive feature elimination (RFE) algorithm
was chosen [19]. Starting from the full feature set, the RFE
algorithm recursively prunes out the least important features
until the desired number of features is reached. The feature
importance was assigned by an external estimator (extremely
randomized trees [20] in our case), and the desired number of
features was selected by 10-fold cross-validation technique. The
optimal feature set selected by RFE consisted of the following
37 features (feat±n means features related to the n-th preceding
and n-th succeeding peak):

• Baseline features (25 features): negAmp, negAmp±1,
negAmp±2, negAmp±3, posAmp±1, posAmp±2,
posAmp±3, timeDif±1, timeDif±2, timeDif±3,
corr±1, corr±2, corr±3;

• Acoustic features (8): voiced/unvoiced, ZCR, logEnergy,
HNR, negPeakRatio±1, negPeakRatio±3;

• Spectral features. (2): specCentroid, specRolloff

• MFCC-based features (2): MFCC0, MFCC1.

The selection suggests that the baseline features [11] gener-
ally perform well except for the width-based features that were
not selected at all. It also seems that especially acoustic features
are an appropriate complement to the original set.

The extremely randomized trees (ERT) classifier [20] with
the default hyper-parameters (according to the Scikit-learn
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Figure 3: Comparison of classifiers’ GCI detection performance
incl. 95% confidence intervals on the validation dataset.

toolkit [21]) used in [11] was trained and evaluated on the de-
velopment data described by the different feature sets using a
leave-one-out cross-validation strategy on the utterance level. It
means that GCIs from each utterance were used once as a vali-
dation set while the GCIs from all remaining utterances formed
the training set. The comparison of the different feature sets in
Figure 2 indicate that the RFE algorithm yields the best results
and thus it outperforms the baseline features (FSET0) used in
[11].

4. Classifiers
The second research question concerned the classifier used to
detect GCIs. We examined a number of “single” classifiers,
both linear and non-linear. Non-linear classifiers clearly out-
performed linear classifiers; support vector machines (SVM)
with a Gaussian radial basis function (RBF) kernel, multilayer
perceptron (MLP), and k-nearest neighbors (KNN) showed the
best performance.

We also investigated another class of classifiers called en-
semble models. This kind of models combines predictions of
several single classifiers built with a given learning algorithm
(decision trees are typically used). The following classifiers
showed the best performance: bagged decision trees (BDT) [22],
random forests (RF) [23], extremely randomized trees (ERT)
[20]), and gradient boosting machines (GBM) [24]). As can be
seen in Figure 3, ensemble classifiers generally outperformed
“single” classifiers.

To design the proposed classifiers, the standard procedure
was applied: (i) feature scaling/normalization was applied (ex-
cept for decision-tree based classifiers); (ii) classifier training
and extensive hyper-parameter tuning using grid search with
10-fold cross validation on the utterance level was conducted on
the development dataset. For the hyper-parameter optimization,
E10 measure (1) was used. The RFE-based feature set described
in Section 3.2 was utilized. Since the detected GCIs correspond
to peaks in the filtered speech signal, they were shifted towards
the minimum negative sample in the original speech signal, see
(a,b,c,d) in Figure 4.

A comparison of the classifiers is shown Figure 3. If the
voting classifier (VC) described further in Section 4.1 is not
counted in, the best classifiers were ERT (achieving E10 =
95.26% and IDR = 96.71%) and SVM (A25 = 99.18%)
which is consistent with the results of an extensive study in which
179 classifiers belonging to a wide collection of 17 families were
evaluated on 121 datasets from various domains [25].

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Illustration of the shift between the detected and final
GCI locations in filtered (a) and original speech (b) signals:
GCIs detected by a classification-based approach in the filtered
signal (c) and shifted to a minimum negative sample in the speech
signal (d), and GCIs detected by the SEDREAMS method (e) in
the speech signal and shifted to the minimum negative sample in
the speech signal (f).

Table 1: Top 5 combinations of different learning algorithms
within a voting classifier on the validation dataset.

Voting classifier Opt. weights E10 (%)
BDT+GDM+KNN+SVM (1, 3, 1, 3) 95.42
RF+GDM+KNN+MLP+SVM (1, 2, 1, 1, 2) 95.42
BDT+GDM+KNN+MLP+SVM (2, 3, 2, 1, 2) 95.42
RF+GDM+SVM (1, 4, 4) 95.39
ERT+RF+GDM+MLP+SVM (2, 1, 3, 2, 3) 95.43

4.1. Voting classifier

A special case is a voting classifier which can be seen as a “meta-
classifier” in that it combines conceptually different machine
learning algorithms and uses a majority of votes to make a final
prediction. Table 1 shows top five combinations (all of them
yielded the same accuracy E10 = 95.39% when weights of
all learning algorithms were set to 1). We further took these
combinations and optimized their performance by weighting the
contribution of each learning algorithm within the range [1, 4].
The best results were achieved for the combination of ERT (with
weight 2), RF (1), GBM (3), MLP (2), and SVM (3). This voting
classifier is further denoted as VC and is also compared to other
classifiers in Figure 3. It can be seen that VC outperforms other
classifiers in terms of IDR and E10 measures. As for the A25
measure, SVM behaved best.

5. Comparison with other methods
We compared the proposed voting classifier with three existing
state-of-the-art GCI detection methods:

• Speech Event Detection using the Residual Excitation
And a Mean-based Signal (SEDREAMS) [9] (available
in the COVAREP repository [26, 27], v1.4.1), shown in
[1] to provide the best of performances compared to other
methods;

• fast GCI detection based on Microcanonical Multiscale
Formalism (MMF) [8] (available in [28]);

• Dynamic Programming Phase Slope Algorithm (DYPSA)

2114



Table 2: Summary of the performance of the GCI detection algorithms for the four datasets.

Dataset Method IDR (%) MR (%) FAR (%) IDA (ms) A25 (%) E10 (%)

UWB

VC 96.66 2.25 1.09 0.22 98.73 95.56
ERT2017 95.45 3.08 1.47 0.23 98.85 94.47
SEDREAMS 93.14 3.99 2.87 0.29 98.09 91.70
MMF 85.09 11.42 3.48 0.47 97.86 83.57
DYPSA 89.62 6.26 4.12 0.37 98.07 88.22

BDL

VC 93.86 2.26 3.89 0.45 95.61 90.17
ERT2017 93.39 2.99 3.62 0.52 95.59 89.72
SEDREAMS 91.82 3.02 5.16 0.44 97.37 89.45
MMF 89.49 4.53 5.98 0.57 96.23 86.67
DYPSA 88.95 4.32 6.73 0.56 96.81 86.29

SLT

VC 96.21 0.58 3.21 0.20 98.57 94.81
ERT2017 96.21 0.71 3.07 0.20 98.59 94.84
SEDREAMS 94.67 1.12 4.21 0.18 99.61 94.34
MMF 92.48 5.24 2.28 0.41 98.89 91.65
DYPSA 93.23 2.88 3.89 0.31 99.39 92.73

KED

VC 95.85 1.42 2.73 0.25 99.57 95.48
ERT2017 95.38 1.93 2.69 0.24 99.61 95.05
SEDREAMS 92.31 6.03 1.66 0.29 99.04 91.77
MMF 90.24 7.04 2.72 0.37 98.79 89.45
DYPSA 90.29 7.05 2.66 0.31 99.16 89.71

[5] available in the VOICEBOX toolbox [29].

We used the implementations available online; no modifications
of the algorithms were made. Since all three algorithms estimate
GCIs also during unvoiced segments, authors recommend filter-
ing the detected GCIs by the output of a separate voiced/unvoiced
detector. Unlike [11], the Robust Epoch And Pitch EstimatoR
(REAPER) [30] was applied in this work. There is no need to
apply such a postprocessing on GCIs detected by the proposed
classification-based approach since the voiced/unvoiced pattern
was included directly in the feature set (see Section 3.2). To be
consistent with the proposed classification-based approach, the
detected GCIs were shifted towards the neighboring minimum
negative sample in the original non-filtered signal1, see (b,e,f) in
Figure 4.

5.1. Test datasets

Firstly, the evaluation was carried out on the UWB test dataset
(≈3 minutes of speech) described in Section 2. GCIs produced
by a human expert were used as reference GCIs.

Secondly, two voices, a US male (BDL) and a US female
(SLT) from the CMU ARCTIC databases intended for unit selec-
tion speech synthesis [31, 32] were used as a test material. Each
voice consists of 1132 phonetically balanced utterances of a to-
tal duration ≈54 minutes per voice. Additionally, KED TIMIT
database [32] comprising 453 phonetically balanced utterances
(≈20 min.) of a US male speaker was also used for testing. All
these datasets comprise clean speech. Since there are no hand-
crafted GCIs available for these datasets, GCIs detected from
contemporaneous EGG recordings by the Multi-Phase Algorithm
(MPA) [18] (again shifted towards the neighboring minimum
negative sample in the speech signal) were used as the reference
GCIs2. Original speech and EGG signals were downsampled to

1Note that the shift was made slightly differently than in [11] where
it was made towards the neighboring negative peak in the corresponded
filtered signal.

2The reference GCIs and other data relevant to the described experi-
ments are available online [33].

16 kHz. It is important to mention that no speaker from these
datasets was part of the training dataset used to train the proposed
classifiers.

5.2. Results

The results in Table 2 confirm that the proposed voting classifier
(VC) working on the feature set designed by the RFE technique
generally outperforms the ERT classifier working on the baseline
feature set (FSET0) [11] (denoted as ERT2017 in Table 2).

It is also evident that the proposed classification-based ap-
proach (and especially the voting classifier) also outperforms
other methods for all datasets with respect to most detection
measures, especially in terms of the identification rate (IDR),
miss rate (MR), and dynamic detection accuracy (E10). Together
with the SEDREAMS algorithm it also yielded the smallest num-
ber of timing errors higher than 0.25 ms (A25) and the smallest
standard deviation of the timing error (IDA).

6. Conclusions
In this paper, two research questions regarding the improvement
of the classification-based method to detect GCIs from the speech
signal proposed in [11] were answered. Firstly, we showed
that the performance of classification-based GCI detection can
be further improved by employing features selected from an
extended set of features using the recursive feature elimination
technique. Secondly, a combination of single classifiers (such as
extremely randomized trees, random forests, gradient boosting
machines, multilayered perceptron, and support vector machines
with RBF kernel) into a voting classifier outperformed each of
the single classifiers. The resulting voting classifier with the
RFE-based feature set performed very well in comparison with
other state-of-the-art methods on several test datasets.

In our future work, we plan to investigate whether a deep
learning algorithm could further increase the performance of the
proposed classification-based GCI detection method. Robustness
of the proposed method to noisy signals and/or to emotional or
expressive speech will also be researched.
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[4] J. Matoušek and J. Romportl, “Automatic pitch-synchronous pho-
netic segmentation,” in INTERSPEECH, Brisbane, Australia, 2008,
pp. 1626–1629.

[5] P. A. Naylor, A. Kounoudes, J. Gudnason, and M. Brookes, “Es-
timation of glottal closure instants in voiced speech using the
DYPSA algorithm,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 15, no. 1, pp. 34–43, 2007.

[6] A. P. Prathosh, T. V. Ananthapadmanabha, and A. G. Ramakr-
ishnan, “Epoch extraction based on integrated linear prediction
residual using plosion index,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 21, no. 12, pp. 2471–2480, 2013.

[7] V. N. Tuan and C. D’Alessandro, “Robust glottal closure detec-
tion using the wavelet transform,” in EUROSPEECH, Budapest,
Hungary, 1999, pp. 2805–2808.

[8] V. Khanagha, K. Daoudi, and H. M. Yahia, “Detection of glottal
closure instants based on the microcanonical multiscale formal-
ism,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 22, no. 12, pp. 1941–1950, 2014.

[9] T. Drugman and T. Dutoit, “Glottal closure and opening instant
detection from speech signals,” in INTERSPEECH, Brighton, Great
Britain, 2009, pp. 2891–2894.

[10] P. Sujith, A. P. Prathosh, R. A. G., and P. K. Ghosh, “An error cor-
rection scheme for GCI detection algorithms using pitch smooth-
ness criterion,” in INTERSPEECH, Dresden, Germany, 2015, pp.
3284–3288.

[11] J. Matoušek and D. Tihelka, “Classification-based detection of
glottal closure instants from speech signals,” in INTERSPEECH,
Stockholm, Sweden, 2017, pp. 3053–3057.

[12] I. S. Howard and M. A. Huckvale, “Speech fundamental period
estimation using a trainable pattern classifier,” in SPEECH’88: 7th
FASE Symposium, Edinburgh, UK, 1988.

[13] J. R. Walliker and I. S. Howard, “Real-time portable multi-layer
perceptron voice fundamental-period extractor for hearing aids
and cochlear implants,” Speech Communication, vol. 9, no. 1, pp.
63–72, 1990.

[14] E. Barnard, R. A. Cole, M. P. Vea, and F. A. Alleva, “Pitch de-
tection with a neural-net classifier,” IEEE Transactions on Signal
Processing, vol. 39, no. 2, pp. 298–307, 1991.
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