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Abstract 

Currently, the old feature extraction method, which was used early for speech 
recognition, is used in speaker recognition in our speaker recognition group. Standard 
Mell Frequency Cepstral Coefficients (MFCC) features are used. They can be 
extended by delta and acceleration coefficients eventually. Whereas features for 
speech recognition has been evolved and optimized until now, features for speaker 
recognition remains same. These outdated features suffer from various deficiencies, 
regarding low robustness in particular. It can be said that these features are unsuitable 
in practical application. This study is aimed to examine possibilities of improving of 
the features. In conclusion then came up with suggestion of appropriate features 
extraction technique, which have been combined from examined method on the basis 
of the before explored methods. Main emphasis is placed on the robustness, i.e. noisy 
test data and/or channel disturbances (e.g. microphone mismatch). The study can be 
divided into several parts. At first, standard MFCC and Perceptual Linear Prediction 
(PLP) feature sets were optimized, i.e. the optimal numbers of the band filters and of 
the cepstral coefficients were examined. Next, the influence of delta and acceleration 
coefficients was discussed. Then, the channel normalization techniques were 
employed. Next, the possibilities of the linear transformations Linear Discriminant 
Analysis (LDA) and Principal Component Analysis (PCA) were investigated. Then, 
the smoothing of spectrum or cepstrum in time was examined. Finally, several 
proposed combinations of above described approaches were tested. The new proposed 
features allow us to decrease the recognition error rate by 35-50%. 
 

1. INTRODUCTION 

All kinds of recognition work with some features. The quality and robustness of the 
features considerable affect the recognition. Speaker recognition task used the 
acoustic features extracted from the speech signal. Commonly used acoustic features 
are the same as the acoustic features used for speech recognition, but the characteristic 
of speech is different from the characteristic of speaker. Thus it is necessary to find 
acoustic features which are suitable for speaker recognition. This task is examined in 
this paper. 

Next important thing is the robustness of acoustic features to the signal distortion. The 
performance of the state-of-art systems for speaker verification is acceptable for high 
quality signal, but the performance of the system drops much when any distortion is 
present in the signal. Thus the examination of the robustness of acoustic features is 
the second goal of this paper. 
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The paper is organized as follows: The performed experiments are described in 
Section 2. Next, in Section 3, the experimental results are presented. Finally, a 
conclusion is given. 
 
2. DESCRIPTION OF THE EXPERIMENT 

2.1. Speech data 

Utterances from 100 speakers (64 male and 36 female) were used in our experiments. 
They were recorded in the same way as in the [1]. Each speaker read 24 sentences that 
were divided into three parts: 21 sentences of each speaker were used for training of 
the GMM of the speaker, 2 sentences were used for the construction of the 
background model, and 1 sentence was used for the tests. 

Six test sets were prepared for testing of the robustness of the features. They were 
denoted as A to F. Each test set represents one typical distortion of the signal. These 
distortions were as follows: 
 

A – Original data from the close talk microphone were used. 
B – The noise with SNR from 15 to 20dB was added to the original data.  
C – Channel distortion is applied on the original data. 
D – Both noise and channel distortion like B and C were added. 
E – Original data from the desktop microphone. 
F – Out-of-database telephone data were used  

 
2.2. Acoustic modeling 

Several types of acoustic features were tested. All of them are based on MFCC and 
PLP. All utterances were resampled to 8~kHz and parametrized using a 32 ms-long 
Hamming window with a 10 ms overlap.  

The models of the speakers and the background model were represented by Gaussian 
mixture models created using the HTK toolkit [2]. The model of each speaker consists 
of 5 Gaussian and the background model consists of 9 Gaussian. All models are 
trained from original data (data set A). 

Six test sets were created, each represents one type of distortion and are denoted in 
the same way as the appropriate distortion (i.e. A, B, C, D, E, F). 
 
2.3. Description of test 

In order to find the best setting of MFCC and PLP according to the speaker 
verification task, series of the tests was performed.  

Each test consisted of a set of verification trials. In each trial, a test utterance was 
verified against each speaker model. Since we had 100 test utterances and 100 models 
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of speakers, there were 100 × 100 = 10,000 verification trials in one test. 100 of the 
trials were the trials of the true speaker, the remaining 9,900 trials were impostor 
trials.  
The performance of the tests can be measured by the detection error trade-off (DET) 
curve, which shows the value of false acceptance and the value of false rejection for 
various operating points of the verification system.  At the point of the DET curve 
where the false rejection rate and the false acceptance rate are equal so-called equal 
error rate (EER) is defined. The EER values are used for evaluation of our tests, 
because EER is more suitable for the comparison of high amount of tests. In order to 
suitable comparison of used acoustic features, the overall criterion J was defined 
according to the formula 
 

 
 
 
 
where A, B, C, D, E, F are the values of EER for appropriate test data set, the weights 
of individual EERs are derived from the baseline test results. The base acoustic 
features were the MFCC with 15 band-filters and 13 cepstral coefficients (include 
0

th
coefficient). Results of the baseline test are shown in Table 1. 

 
Method A B C D E F 
Baseline 2.00% 28.26% 24.26% 32.00% 17.96% 46.12% 

Table1: Results of the baseline test 
In Table 1, you can see that any mismatch of the testing data highly increases errors. 
These features have very low robustness and are practically unusable. 
 
3. EXPERIMENTAL RESULTS 

3.1. Optimizing standard MFCC and PLP coefficients 

Standard acoustic features for speech recognition used 9-20 band filters and 7-15 
cepstral coefficients. The differences between speakers are rather in detail of spectrum 
instead of differences between phonemes. Thus we need greater numbers of filters and 
coefficients to capture all this details [3]. In following experiments, we used number 
of filters 15, 17, 20, 25, 35 and number of coefficients 13, 15, 17, 20, 25 and 35 . 
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Figure 1: The dependence of the criterion J on the numbers of the filters and the 
coefficients for MFCC features. 

The results for specified numbers of the band filters and the numbers of cepstral 
coefficients are depicted in Figure 1. You can see that higher number of cepstral 
coefficients reduces the error rate. The trends are similar for all number of filters. If 
we increase only numbers of filters then errors doesn’ t reduce, rather increase. Best 
result is observed for 25 filters and 25 coefficients. For PLP were the results very 
similar.  

Table 2: The EERs for all test sets and overall criterion J for several numbers of band 
filters and cepstral coefficients for MFCC and PLP features. 

 
In Table 2, there are depicted the representative results for MFCC and PLP. The mark 
“25f”  means 25 band filters and mark “25c”  means 25 cepstral coefficients. “MFCC 
15f 13c”  are the baseline acoustic features. It is clear, that it is necessary to use higher 
numbers of cepstral coefficients and therefore higher number of band filters.  
 

Method A B C D E F J 
MFCC 15f 13c 2.00% 28.26% 24.26% 32.00% 17.96% 46.12% 9.06% 
MFCC 25f 25c 2.00% 22.22% 17.55% 24.55% 11.00% 39.73% 7.14% 
MFCC 35f 35c 3.00% 17.92% 15.68% 20.00% 11.78% 41.32% 7.46% 
PLP     15f 13c 3.00% 36.00% 29.36% 38.48% 14.38% 34.25% 9.98% 
PLP     25f 25c 1.55% 26.00% 20.00% 29.02% 9.95% 40.70% 7.29% 
PLP     35f 35c 2.09% 21.78% 15.91% 23.39% 10.00% 43.84% 7.09% 
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3.2. Delta and acceleration coefficients 
Delta and acceleration coefficients are often used to acquire the dynamics of the 
speech. Thus our next experiment was focused on utilization of delta (Δ) and 
acceleration (ΔΔ) coefficients for MFCC and PLP. 

Table 3: The EERs for using delta and acceleration coefficients 
 
The results are depicted in Table 3. You can see, that the delta coefficients lower ERR 
in most test sets, thus using of them is recommended. On the other side, the 
contribution of acceleration coefficients is various for individual test. 
 
3.3. Channel normalization 

Now, the channel normalization techniques were examined. At first, we focused on 
energy normalization. We tried three energy normalization techniques. At first, 
normalization of the input wave to maximum amplitude (denoted as NORM). Second, 
is well known Cepstral Mean Subtraction (CMS) [4], which was applied only on the 
0th cepstral coefficient, which represents the logarithm of the energy. Third is very 
simply - the zero-th cepstral coefficient is ignored (denoted as W.0c).  
 

Method A B C D E F J 
Without norm 2.00% 28.26% 24.26% 32.00% 17.96% 46.12% 9.06% 
NORM 2.74% 30.00% 16.00% 31.00% 17.30% 43.84% 9.05% 
CMS on 0.coef. 2.00% 27.00% 14.82% 34.18% 14.10% 44.21% 8.13% 
W.0c 2.20% 25.00% 14.00% 29.83% 12.45% 41.43% 7.67% 

Table 4: The EERs for several energy normalization methods 
 

As you can see in Table 4, the third method gives the best results. Thus, it is better to 
ignore the zero-th coefficient. 

Table 5: The EERs for CMS applied to different numbers of first cepstral coefficients.  

Method A B C D E F J 
MFCC 2.00% 28.26% 24.26% 32.00% 17.96% 46.12% 9.06% 
MFCC +Δ  3.00% 24.07% 18.58% 28.64% 13.32% 45.21% 8.62% 
MFCC +Δ+ΔΔ  2.54% 25.00% 15.53% 25.00% 14.00% 45.21% 8.05% 
PLP 3.00% 36.00% 29.36% 38.48% 14.38% 34.25% 9.98% 
PLP +Δ  2.98% 32.00% 23.00% 36.00% 14.00% 32.07% 9.18% 
PLP +Δ  +ΔΔ  4.00% 28.06% 18.52% 32.00% 16.29% 29.91% 9.42% 

Method A B C D E F J 
MFCC W.0c 2.20% 25.00% 14.00% 29.83% 12.45% 41.43% 7.67% 
MFCC W.0c CMS 1c 2.32% 26.00% 10.91% 30.00% 12.46% 41.96% 7.65% 
MFCC W.0c CMS 1-2c 3.06% 22.84% 9.00% 27.54% 12.00% 39.73% 7.68% 
MFCC W.0c CMS 1-3c 4.09% 23.49% 5.61% 26.45% 13.01% 38.36% 8.25% 
MFCC W.0c CMS All 4.00% 29.87% 4.82% 31.00% 14.00% 30.17% 8.46% 
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Next, we applied CMS on next cepstral coefficients. The results are depicted in Table 
5. (Note: CMS 1-2c means that cepstral mean is subtracted from the first to the second 
coefficient). 

If the low mismatch between channels is expected then normalizing of the first several 
coefficients is preferable. If the high mismatch between channels is expected 
normalization to all coefficients has to be used. 
 
3.4. Linear transformation 

The linear transformation is used often in the speech or speaker recognition for 
greater discrimination of the recognized classes [5]. We used linear discriminant 
analysis (LDA) and principal component analysis (PCA). Both assume normal 
distribution of each class and equal covariance matrix for all classes. The assumptions 
are not completely satisfied, regardless this methods can improve the recognition 
rates. In our case, the transformation matrix was computed with using training data 
and no dimension reduction has been used. 

Table 6: The EERs for LDA and PCA 
 

Note that experiment in Table 6 has been set up differently and these results cannot be 
compared with other results out of this table.The training data match to set A and 
therefore the transformations have the greatest effect in the test set A. The results in 
Table 6 shows that suitable linear transformation can lower the error rate of 
recognition. Using of the PCA is unsuitable for our task.  
 
3.5. Smoothing spectra or cepstra in time 

It is well known that the vocal tract has a specific mass therefore it can move only 
with limited velocity. Environmental noise does not have any limitations therefore 
smoothing of the spectra, log-spectra or cepstra can suppress part of the noise [6]. We 
used the first-order Butterworth low-pass filter. The best results were achieved with 
the cut-off frequency equal 10Hz.  

Table 7: The EERs for smoothing spectra or cepstra. 
 

Method A B C D E F J 
Without transformation 4.07% 14.06% 13.12% 23.00% 7.5% 42.62% 7.68% 
LDA 3.00% 14.00% 10.00% 23.55% 8.10% 42.47% 6.81% 
PCA 3.49% 17.00% 16.98% 28.80% 11.43% 43.47% 8.30% 

Method A B C D E F J 
Baseline 2.00% 28.26% 24.26% 32.00% 17.96% 46.12% 9.06% 
Spectrum 10Hz 2.04% 27.80% 19.14% 29.00% 13.63% 43.84% 8.14% 
Cepstrum 10Hz 1.98% 31.00% 19.28% 34.53% 15.00% 43.84% 8.65% 
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In Table 7, you can see that the smoothing spectra increase the robustness, has 
positive effect on all test sets and do not worse the results of set A. Smoothing log-
spectra has identical results as smoothing cepstra, therefore is not depicted in Table 7.  

3.6. New proposed features 

And finally, we proposed the new features with using presented methods. We 
proposed four new features and these are denoted as F1 to F4. All features have some 
identical attributes. These are same numbers of band filters (28) and cepstral 
coefficients (25). Spectral smoothing with 10Hz cut off frequency is applied and delta 
and acceleration coefficients are added to the all features. The F1 and the F2 were 
based on the MFCC, the F1 included LDA. The F3 and the F4 was based on the PLP. 
In the F4 was applied CMS to all static cepstral coefficients.  

Table 8: The EERs for new proposed features. 
 
In Table 8, you can see that new proposed features can considerable lower EER. Each 
of proposed features is suitable for specific test set (i.e. type of distortion). Thus ideal 
features for all circumstances do not exist.  
 
CONCLUSION 

We tested several different acoustic features in order to increase its robustness. Main 
conclusions follow: Speaker recognition task requires higher numbers of band filters 
and higher number of cepstral coefficients. Zero-th cepstral coefficient is not suitable 
for speaker recognition. Static coefficient should be augmented by delta coefficients. 
Smoothing spectra in time is positive. 

Regardless, the proposal of the universal acoustic features for all types of signal 
distortion is not recommended. Specialized acoustic features outperform the universal 
acoustic features for specific distortion. It means that it would be better to detect the 
type of distortion and then apply the appropriate specialized acoustic features.  
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Method A B C D E F J 
Baseline 2.00% 28.26% 24.26% 32.00% 17.96% 46.12% 9.06% 
F1 1.24% 11.28% 5.68% 13.13% 6.47% 39.85% 4.42% 
F2 2.25% 9.00% 6.12% 11.00% 5.66% 38.96% 4.85% 
F3 3.00% 10.00% 7.87% 16.36% 4.51% 34.25% 5.51% 
F4 3.92% 12.98% 5.32% 13.88% 6.00% 15.07% 5.51% 
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