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Abstract
The aim of this paper is to investigate the benefit of information
from a speaker change detection system based on Convolutional
Neural Network (CNN) when applied to the process of accumu-
lation of statistics for an i-vector generation. The investigation
is carried out on the problem of diarization. In our system, the
output of the CNN is a probability value of a speaker change
in a conversation for a given time segment. According to this
probability, we cut the conversation into short segments that are
then represented by the i-vector (to describe a speaker in it). We
propose a technique to utilize the information from the CNN
for the weighting of the acoustic data in a segment to refine
the statistics accumulation process. This technique enables us
to represent the speaker better in the final i-vector. The experi-
ments on the English part of the CallHome corpus show that our
proposed refinement of the statistics accumulation is beneficial
with the relative improvement of Diarization Error Rate almost
by 16 % when compared to the speaker diarization system with-
out statistics refinement.
Index Terms: convolutional neural network, speaker change
detection, speaker diarization, i-vector, statistics accumulation

1. Introduction
The problem of Speaker Diarization (SD) is crucial for many
speech applications dealing with real data, where only one
speaker occurrence in a recording cannot be ensured. The SD
problem is defined as a task of categorizing speakers in an un-
labeled conversation, without any prior information regarding
the number and identities of the speakers. Different approaches
were proposed to solve this task [1]. The most common ap-
proach to the SD consists of the segmentation of an input sig-
nal, followed by the merging of the segments into clusters cor-
responding to individual speakers [2, 3]. Alternatively, the seg-
mentation and the clustering step can be combined into a single
iterative process [4]. In this paper, we investigate the state-of-
the-art off-line SD system based on the i-vector representation
of the speech segments [3, 5] (other approaches utilize e.g. Hid-
den Markov Models [6, 7]).

The speaker change detection (SCD) is often applied to the
audio signal to obtain segments which ideally contain a speech
of a single speaker [2]. Commonly used approaches to the SCD
include the Bayesian Information Criterion (BIC), Generalized
Likelihood Ratio (GLR), Kullback-Leibler divergence [8, 9],
Support Vector Machine (SVM) [10] and Deep Neural Net-
works (DNNs) [11, 12]. However, in a spontaneous telephone
conversation containing very short speaker turns and frequent
overlapping speech, diarization systems often omit the SCD

process and use a simple constant length window segmentation
of speech [3, 5].

The success of DNNs in the speech recognition task [13]
leads in recent times to their exploitation in SD systems. DNNs
are utilized in the task of the segmentation [11, 14] or in the
clustering process [15, 16]. In [17] DNNs are used to replace
unsupervised Universal Background Model (UBM) for the ac-
cumulation of statistics in the i-vector generation. DNN was
also applied to the representation of the speaker in [18, 19] or
very recently in [20] and in [21], where the triplet loss paradigm
was used for training the DNN descriptor with extremely short
speech turn.

In our previous papers [14, 22] we applied a CNN to the
problem of SCD. The main difference between our approach
and the one in others works lies in the fact that we introduce a
spectrogram to a CNN and let the net compute its own features.

CNNs were introduced in [23] to cope with the prob-
lem of image classification. They were popularized by
Krizhevsky et al. [24] with updated design blocks such as Rec-
tified Linear Units (ReLU) or max pooling instead of average
pooling. When a CNN is trained on large scale datasets one
can observe its capability to learn discriminative features on its
own. Furthermore, the net is able to learn a semantic represen-
tation of the data. Our experiments with the CNN in the task
of SCD exhibited better results than classical approaches based
on BIC. The input of the network is a spectrogram of a segment
of the original waveform and the output is a probability that
there is a speaker change in the middle of the segment. When
the CNN is applied to the whole recording in a sliding window
fashion a probability signal of the speaker change is obtained.
Further processing of this signal is needed to determine where
a change occurs. In our previous work, we detected peaks using
non-maximum suppression.

In this paper, our goal is to determine whether the CNN
also offers any useful information about the homogeneity of a
speaker in a segment. For this purpose, we propose a refinement
of accumulation of statistics for i-vector generation and apply it
to our SD system [14].

2. Speaker Diarization System
Our SD system [14] is based on the i-vectors [25] that repre-
sent speech segments, as introduced in [26]. These segments
are obtained from the previous step using SCD based on CNN.
The resulting i-vectors are clustered in order to determine which
parts of the signal were produced by the same speaker. A dia-
gram of our diarization system can be seen in Figure 1.
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Figure 1: Diagram of the diarization process.

2.1. Segmentation

For the segmentation step, we use the SCD approach based on
CNN [14]. The CNN as a regressor is trained supervised on
spectrograms of the acoustic signal with a reference information
L about the existing speaker changes. The value of the function
L in time t is computed via the formula in Equation 1. We call
this labeling a fuzzy labeling. It has a shape of a triangle and
the main idea behind it is to model the uncertainty of human
labeling.

L(t) = max

(
0, 1− mini (|t− si|)

τ

)
, (1)

where si is the time of ith speaker change and τ = 0.6 is the
tolerance which models the level of uncertainty of the man-
ual labeling. Figure 2 depicts an example of a spectrogram,
the values of the labeling and the CNN output as a probability
of speaker change P (a number between zero and one). The
speaker changes are identified as peaks in the signal P using
non-maximum suppression with a suitable window size. The
detected peaks are then thresholded to remove insignificant lo-
cal maxima. The signal between two detected speaker changes
is considered as one segment. The minimum duration of one
segment is limited to one second, smaller segments are joined to
the adjacent one in order to obtain sufficient information about
the speaker.

2.2. Segment description

To describe a segment we first construct a supervector of accu-
mulated statistics. Supervectors have been used in the process
of speaker adaptation [27] where they serve as a descriptor of
a new speaker. They contain the zeroth and first statistical mo-
ments of speakers’ data related to a UBM. The UBM is mod-
eled as a Gaussian Mixture Model (GMM) from a huge amount
of speech data form different speakers. The parameters of the
model are λUBM = {ωm,µm,Cm}Mm=1, where M is the num-
ber of mixtures in the UBM, ωm,µm,Cm are the weight, mean
and covariance of the mth mixture, respectively. We consider
only diagonal covariance matrices.

Let O = {ot}Tt=1 be the set of T feature vectors ot of a
dimension D of one segment of conversation, and

γm(ot) =
ωmN (ot;µm,Cm)∑M

m=1 ωmN (ot;µm,Cm)
(2)

be the posterior probability of mth mixture given a feature vec-
tor ot. The soft count of the mth mixture (zeroth statistical mo-
ment of feature vectors) is

nm =

T∑
t=1

γm(ot) (3)

and the sum of the first statistical moments of feature vectors
with respect to the mth mixture is

bm =

T∑
t=1

γm(ot)ot. (4)

The speaker’s supervector ψ [28] for given data O is a con-
catenation of the zeroth and first statistical moments of O. Our
proposed refinement of this process of statistics accumulation is
described in Section 3.

Next, we extract the i-vectors from the supervectors. Su-
pervectors have usually a high dimension D = M ∗ (Df + 1)
that is given by the number of mixtures M in the UBM and
the Df dimensionality of the feature vectors ot. The i-vectors
are a compact representation of the information encoded in the
supervectors, mostly the information about the identity of the
speaker. Factor Analysis (FA) [29] (or extended Joint Factor
Analysis (JFA) [30] to handle more sessions of each speaker) is
used for dimensionality reduction of the supervector of statis-
tics. The generative i-vector model has the form

ψ =m0 + Tw + ε, w ∼ N (0, I), ε ∼ N (0,Σ), (5)

where T (of size D × Dw) is called the total variability space
matrix, w is the segment’s i-vector of dimension Dw having
standard Gaussian distribution, m0 is the mean vector of ψ,
however often approximated by the UBM’s mean supervector,
and ε is residual noise with a diagonal covariance matrix Σ with
covariance matrices C1, . . . ,CM of the UBM ordered on the
diagonal. The i-vectors are also length-normalized [31]. De-
tails about the training of total variability space matrix T can
be found in [32, 33].

Because of the differences between each conversation (and
the similarity in one conversation), we also compute a conver-
sation dependent Principal Component Analysis (PCA) trans-
formation [26], which further reduces the dimensionality of the
i-vector. The benefit of using PCA instead of FA approach is
the additional information about the importance of each compo-
nent given by the eigenvalue of the corresponding eigenvector.
The reduced dimension in the PCA latent space can be found
for each conversation separately depending only on the ratio of
eigenvalue mass.

2.3. Clustering and Resegmentation

Given i-vector representations of the extracted segments, we
perform a clustering into sets of i-vectors describing different
speakers. This is a coarse clustering on the level of the segmen-
tation given by SCD. To make the final diarization more pre-
cise we refine it by resegmentation. We compute GMMs over
the feature vectors ot, one GMM per speaker cluster. Then the
whole conversation is redistributed frame by frame according to
the likelihoods of the GMMs.

3. Statistics Refinement
Because of the uncertainty about the assumption that there is
a speech of only one speaker in a segment, not all data from
the segment can contribute to the supervector equally. In a tele-
phone conversation, crosstalk is frequent around the place of
speaker change and also rapid changes of the speakers are com-
mon.

In Subsection 2.2, all statistics are accumulated into the su-
pervector with the weight ωm obtained only from the UBM.
This weight ωm in Equation (2) informs about the relevance of
the acoustic data to ”the universal speaker”, in other words, how
likely it is to be a part of a speech. This weight tells us nothing
about the homogeneity of the speaker in the segment. Super-
vector accumulation, originally used in the speaker adaptation
task, does not have to consider the homogeneity of the speaker
in data.
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Figure 2: The input speech as spectrogram is processed by the CNN into the output function P (a probability of change in time). The
L-function (the reference speaker change) for the CNN training is depicted on top. Note: the output of CNN in time t is only a number.

For this purpose, we are exploring the output of the CNN-
based SCD as a probability of the speaker change in the signal.
Although the audio signal is cut into segments according to the
maxima peaks in the function P (the CNN output), the shape of
the function can also indicate a suspicious part of the segment.
The part of the audio segment in time t with a high probabil-
ity of a speaker change Pt is less appropriate to represent the
speaker than a part with a small probability Pt. Thus, we use
the value of 1 − Pt as a weighting factor of the signal in the
accumulation process. The refinement of Equation (2) is repre-
sented by the formula

γm(ot) =
(1− Pt)ωmN (ot;µm,Cm)∑M

m=1 ωmN (ot;µm,Cm)
. (6)

The equations (3) and (4) stay the same because they both de-
pend on the refined γm(ot) from the Equation (6). The amount
of data for the statistics accumulation stay the same only the
importance of each data is changed.

4. Discussion
The limitation of the segmentation step in the SD system is
a minimal length of the segment from which the identity of
the speaker can be extracted. In telephone conversations, the
speaker change can occur arbitrarily often in time. In these
conditions, the segments should be long enough to allow the
extraction of speaker identifying information while limiting the
risk of a speaker change being present within the segment. Still,
only one speaker in the whole segment can not be always gua-
ranteed. A high probability value of a speaker change from the
CNN represents the instability of homogeneity of a speaker in
the segment. This instability leads to the propagation of faulty
features into the supervector accumulation process. Such faulty
features usually occur on the boundaries of the segment, where
a high risk of crosstalk is common or anywhere in the segment if
some disturbance in the acoustic signal is present, see Figure 3.
When using the CNN output for the refinement of the statistics
accumulation we suppress the effect of these faulty features by
weighting them down.

Nevertheless, there are still known limitations of our pro-
posed approach. In rare situations, when the speaker change
is missed by the SCD as seen in Figure 4, we will only penal-
ize the features corresponding to boundaries and to the missed
speaker change. Thus the segment will be described by features
from two different speakers, resulting into inaccurate i-vector
representation.

Figure 3: Two speech segments with the probability of speaker
change P , the first one with crosstalk on the end of the segment
and the second one with noise disturbance in the middle of the
segment.

Figure 4: Short speech segment with the probability of speaker
change P containing two speakers. In this example, the SCD
system fails and the P weight of statistics does not help to refine
the accumulation process.

The other SCD approaches (e.g. GLR used in [14]) have
analogical output as the likelihood function of a speaker change.
But for the purpose of weighting, the information from other
SCD systems is inappropriate because usually the value of the
change is not in the interval 〈0, 1〉 and the interval is changed
for every conversation.

5. Experiments
The experiment was designed to investigate our proposed ap-
proach to refinement of the accumulation of statistics represent-
ing the speaker in the segment of conversation.

5.1. Corpus

The experiment was carried out on telephone conversations
from the English part of CallHome corpus [34]. The original
two channels have been mixed into one. Only two speaker con-
versations were selected so that the clustering can be limited to
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two clusters. This is 109 conversations in total each with about
10 min duration in a single telephone channel sampled at 8 kHz.
For training of the CNN, only 35 conversations were used, the
rest was used for testing the SD system.

5.2. System

The SD system presented in our papers [14, 35] uses the fea-
ture extraction based on Linear Frequency Cepstral Coefficients
(LFCCs), Hamming window of length 25 ms with 10 ms shift
of the window. There are 25 triangular filter banks which are
spread linearly across the frequency spectrum, and 20 LFCCs
are extracted. Delta coefficients were added leading to a 40-
dimensional feature vector (Df = 40). Instead of the voice
activity detector, the reference annotation about missed speech
was used.

For segmentation, CNN described in [14] was used. The
input of the net is a spectrogram of speech of length 1.4 sec-
onds and the shift is 0.1 seconds. The CNN consists of three
convolutional layers with ReLU activation functions. There is
a max-pooling layer after each convolutional layer. Batch nor-
malization [36] is used for layer output normalization. There
are two fully connected layers with sigmoid activation func-
tion at the end. In the first convolutional layer, there are filters
with rectangular shapes that serve as feature extractors. The
two intermediate convolutional layers learn a higher level rep-
resentation of these features. The output layer consists of just
one neuron with sigmoid activation function. Thus the output is
limited between zero and one. It represents the probability of a
speaker change in the middle of the observed spectrogram. For
the training of the CNN, we use a Binary Cross Entropy loss
function. It is optimized by Stochastic Gradient Descent with
a batch size of 64. The learning rate is changed after a fixed
number of iterations by a factor of 0.1. When the loss function
is stabilized we use RMSProp algorithm for fine tuning of the
network’s weights.

For the purpose of training the i-vector we have used the
following corpora: NIST SRE 2004, NIST SRE 2005, NIST
SRE 2006 speaker recognition evaluations [37, 38, 39] and the
Switchboard 1 Release 2 and Switchboard 2 Phase 3 [40, 41].
We model the UBM as a GMM with M = 1024 components.
We have set the dimension of the i-vector to Dw = 400 and
we have used the conversational dependent PCA to reduce the
dimension further. We use eigenvectors with the ratio of their
eigenvalue mass p = 0.5. We have used K-means clustering
with cosine distance to obtain the speaker clusters.

5.3. Results

We use the Diarization Error Rate (DER) for the evaluation
of our approach. It has been described and used by NIST in
the RT evaluations [42]. We use the standard 250 ms tolerance
around the reference boundaries. DER is a combination of sev-
eral types of errors (missed speech, mislabeled non-speech, in-
correct speaker cluster). We assume the information about the
silence in all testing audios is available and correct. That means
that our results represent only the error of incorrect speaker
clusters. The results of the examined systems are shown in Ta-
ble 1. For comparison, the result of segmentation using only
constant length window is also shown. Using this approach a
conversation is divided into short segments and the system then
relies on the clustering and further resegmentation to refine the
boundaries.

The difference in the results of the system using CNN-SCD
without refinement and system using only the constant length

Table 1: DER [%] of the SD systems with the i-vector speaker
representation with constant length window segegmentation
and SCD based on CNN (with and without refined statistics ac-
cumulation).

system DER [%]
Constant length window seg. 9.23

CNN-SCD without refinement 9.31
CNN-SCD with refinement 7.84

window segmentation is small because of the resegmentation
step, which repairs the inaccurate segmentation produced by
the constant length window [14]. The effect of resegmentation
is strong because there is sufficient amount of data available in
each conversation for efficient training of GMM. However, our
proposed approach to refined statistics accumulation using the
output from the CNN-based SCD brings a more precise infor-
mation to the speaker description. This improvement can be
seen on the final DER of the system even after resegmentation
step.

6. Conclusions
Most of the DNN based SD systems introduced in Section 1
use DNN to describe a speaker in a relatively short segment
of conversation and then compare two representations of adja-
cent segments (e.g. so called d-vectors [12]) to decide if the
speaker change occurred. On the contrary, our approach using
the CNN-based SCD finds the possible speaker changes in spec-
togram and additionally uses the information for the refinement
of accumulation process of statistics. These refined statistics
represent the speaker information in the segment better than the
classical approach to the statistics accumulation, so the com-
puted i-vector is more precise and the final diarization error of
the whole SD system is reduced. Our next goal is to train the
CNN to represent the probability of the speaker homogeneity
in the acoustics signal instead of the probability of the speaker
change. Also, we want to replace the i-vector with a DNN-
based vector and use the CNN probability of the speaker change
as a prior when constructing this vector.
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