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Department of Cybernetics, Faculty of Applied Sciences

University of West Bohemia, Plzeň, Czech Republic
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Abstract—In this work we deal with the problem of small
amount of data when estimating a feature transformation for
the speaker adaptation of an acoustic model. Our goal is to com-
pensate for the lack of adaptation data by a proper initialization
of transformation matrices. Methods used in such situations are
described, they are based on collecting additional accumulated
statistics from nearest speakers. The proposed initialization ap-
proach is based on accumulated statistics too, but it incorporates
also phonetic information when selecting the “nearest” statistics.
Initialization methods compensating for the absence of actual
speaker’s data are tested on telephone recordings with different
amounts of adaptation data. In worst situation with extremely
small amount of adaptation data relative improvement of 5% is
obtained.
Keywords: speech recognition, adaptation, initialization,

phonetic tree

I. INTRODUCTION

Nowadays, a speaker adaptation of an acoustic model is a
standard approach used to improve the accuracy of Automatic
Speech Recognition (ASR) systems. In this work focus will be
given on feature Maximum Likelihood Linear Regression (fM-
LLR) adaptation (1). fMLLR, like other adaptation techniques,
utilizes only some statistics of adaptation data referred in
Section II. In cases where small amount of adaptation data
is available the number of free parameters to be estimated
becomes easily too high to estimate these parameters reliably.
Thus, fMLLR transformation matrix becomes ill-conditioned,
what can lead to poor recognition rates. Various solutions
to avoid this problem have been proposed, e.g. lowering the
number of free parameters by using diagonal or block diagonal
transformation matrices (2) or finding transformation matrices
as a linear combination of basis matrices (3). Another solution
is performing a proper initialization of transformation matrices
(4), (5).

Initialization methods compensate for the absence of actual
speaker’s data, however the initialization suppresses the influ-
ence of actual adaptation data for the benefit of initialization
data. Usually a compromise has to be made between stability
and accuracy of the adaptation. The problem how to choose
suitable initialization data is addressed in Section III. One
of the solutions is to use initialization derived directly from
a SI model (4). A better alternative is to use data from
the development set that are acoustically close to the actual

speaker. This method was introduced in (5), it collects addi-
tional statistics from “nearest” speakers from the development
set, and subsequently these statistics are added to the statistics
from the actual speaker.

In this work we will go further, we will distinguish not
only similarities between speakers but also the dissimilarities
between phonetic units of this speaker. Thus, speech of each
speaker will be divided to phonetic classes, for each class
of each speaker initialization statistics will be accumulated,
and the “nearest” statistics for initialization will be composed
only of parts of the speech from development speakers (not
of the whole speech as was done before), details are given
in Section III-B). Such statistics proved to be more suitable
to compensate for the absence of adaptation data. Results for
different initialization types and classic (basic/uninitialized)
fMLLR for different amounts of adaptation data can be found
in Section IV. Contribution of proposed methods was demon-
strated on spontaneous telephone speech.

II. ADAPTATION

The difference between adaptation and ordinary training
methods stands in the prior knowledge about the distribution
of model parameters, usually derived from the SI model. The
adaptation adjusts the SI model so that the probability of the
adaptation data would be maximized. Adaptation techniques
do not access the data directly, but only through accumulated
statistics, which is the first step preceding the adaptation
process.

A. Adaptation Statistics

Instead of storing a huge amount of data adaptation methods
need only following statistics:

γ jm(t) =
ω jmp(ot | jm)

∑Mm=1 ω jmp(ot | jm)
(1)

standing for the m-th mixtures’ posterior of the j-th state of
the HMM for feature vector ot ,

c jm =
T

∑
t=1

γ jm(t) (2)
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representing the soft count of mixture m,

ε jm =
T

∑
t=1

γ jm(t)ot , ε2
jm =

T

∑
t=1

γ jm(t)otoT
t , (3)

denoting the sum of the first and the second moment of features
aligned to mixture m in the j-th state of the HMM.

B. Feature Maximum Likelihood Linear Regression
fMLLR try to find a linear transformation in order to match

adaptation data with an acoustics model. This technique can
adapt more model components at once using the same transfor-
mation (e.g. only one matrix for all the model means). Similar
model components are clustered into clusters Kn,n = 1, . . . ,N
in order to lower the number of adapted parameters (6). fMLLR
transforms features ot according to

ōt =A(n)ot +b(n) =W(n)ξ(t) , (4)

where
W(n) = [A(n),b(n)], (5)

W(n) represents the transformation matrix corresponding to
the n-th cluster Kn and ξ(t) = [oT

t ,1]T stands for the extended
feature vector.

The estimation formulas of rows of W(n) are given as

w(n)i =G−1
(n)i

(
v(n)i

α(n)
+k(n)i

)
, (6)

where v(n)i is the i-th row vector of cofactors of matrix A(n),
α(n) can be found as a solution of a quadratic function

β(n)α2
(n)−α(n)v

T
(n)iG

−1
(n)ik(n)i−vT

(n)iG
−1
(n)iv(n)i = 0 (7)

and
k(n)i = ∑

m∈Kn

µmiεm(ξ)
σ2
mi

, (8)

G(n)i = ∑
m∈Kn

εm(ξξ
T)

σ2
mi

, (9)

G(n)i, k(n)i are accumulation matrices of statistics (3) of all
mixtures m contained in a given cluster Kn, and

εm(ξ) =
[
εT
m,cm

]T
, (10)

εm(ξξ
T) =

[
ε2
m εm

εT
m cm

]
. (11)

Equation (6) is a solution of the minimization problem with
auxiliary function given in (7).

Note that the new estimate of w(n)i given in (6) depends
on the previous estimate of W(n) through v(n)i and α(n).
Thus, several iterations have to be run to acquire convergence
of parameters of the matrix W(n) = [A(n),b(n)]. The starting
matrices A(n), b(n) of the iteration process have to be chosen
(e.g. random matrices).

III. INITIALIZATION

The matrices of accumulated statistics G(n)i, k(n)i are dense
and if only low amount of data is available they can lead
to ill-conditioned transformation matrices Wn. To avoid the
degradation of system’s performance matrices G(n)i, k(n)i have
to be suitably initialized. One of the possibilities proposed in
(4) is restrict the influence of the adaptation data and reduce
the influence of the adaptation – resulting model is closer to
the SI model (when none new adaptation data are available,
the estimated transformation matrix should equal the identity
matrix). This method utilizes directly the SI model parameters.

Rather than to restrict the influence of adaptation we replace
the absence of test data with statistics collected from similar
speakers. Note that the term test data (speaker) denotes the
data (speaker), which are to be adapted.

A. Sufficient Statistics from N-best Speakers
To collect statistics from speakers similar to the given test

speaker a development set containing a lot of speakers with
different voices is used, and their statistics are utilized for
initialization (5), see Fig.1.

Fig. 1. Three steps in the process of fMLLR model adaptation based on
additional statistics. SI stands for Speaker Independent model, SD for Speaker
Dependent model.

The algorithm can be divided to three steps:
• Accumulation of statistics – for each speaker s from

the development set matrices ks(n)i and Gs
(n)i given in (8),

(9) are accumulated and stored off-line. Also a Gaussian
Mixture Model (GMM) is trained for each development
speaker.

• Selecting a cohort of speakers – N-best speakers are
selected from the development database according to their
closeness to the test speaker. The “nearest” speakers are
determined according to methods of speaker recognition
(8), the utterance of the test speaker is verified against
each GMM of the speaker in the development set, and N
speakers with best scores are selected.
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• Summation of cohort statistic – matrices of accumulated
statistics (8), (9) are initialized as the sum of all statistics
from speakers in the cohort:

k(n)i = ∑Ns=1k
s
(n)i, G(n)i = ∑Ns=1G

s
(n)i, (12)

for each cluster n and each row i of W(n). At the end of
initialization, statistics of the actual test speaker are added
to these initialization statistics.

B. Sufficient Statistics using Phonetic Tree

An improvement of the selection of accumulated statistics
from “nearest” speakers described in the previous section is to
consider also the acoustic variability within a speaker. One
cannot expect to find a speaker with a voice identical to
the voice of another speaker, especially if the development
database is of limited size. It is more likely that the style of the
pronunciation of some small part of his utterance, e.g. of a few
phonemes, is same as another speaker’s pronunciation of same
phonemes. Hence, the motivation is to collect additional accu-
mulated statistics not only from “nearest” speakers according
to the whole test utterance, but to split up the test utterance
according to its phonetic content, and find the “nearest” sound
from the development set for every part (e.g. phoneme) of the
test utterance. For this purpose all utterances from development
speakers have to be split up too, and the statistics have to be
collected beforehand.

Due to the small amount of given test data only limited
amount of phonetic events will be present in the test utterance
(only a few phonemes). Nevertheless, we would like to initial-
ize also transforms related to phonemes that are not observed in
the test utterance. Thus, it is useful to incorporate regression
trees. Since we are dealing with phonetic events it is more
appropriate to replace regression trees based on proximities
in the acoustic space (6) by phonetic trees used e.g. in (9),
however we will consider only three phonetic classes – vowels,
consonants and non-speech events – depicted in Figure 2.

Fig. 2. An example of a phonetic tree.

The modified algorithm given in Section III-A can be now:

• Accumulation of statistics – for each speaker s from the
development set matrices ks(n)i and Gs

(n)i are accumulated,
but clusters Kn,n = 1, . . . ,N are based on the Phonetic
Regression Tree (PRT) from Figure 2. Thus, the phonetic
transcription of the development utterances is performed,
and feature vectors are divided to clusters in relation to
the phonetic class in PRT. One GMM is trained for each
speaker s and each class in PRT.

• Selecting a cohort of phonetic events – data from the
test speaker are divided into classes in PRT according to
the phonetic transcription of the test utterance. For test
data in each phonetic class the N “nearest” initialization
statistics are found in relation to the likelihood obtained
from development GMMs. For classes with insufficient
amount of test data the parent class in the regression tree
is used instead, and “nearest” statistics are collected from
the parent class. However, such situation is quite rare since
only three phonetic classes are used – non-speech events,
vowels and consonants.

• Summation of cohort statistic – matrices of accumulated
statistics (8), (9) are initialized as the sum of all statistics
from corresponding cohort of phonetic events. And at
the end, statistics of the test speaker are added to these
initialization statistics.

Thus, voice of each speaker is now represented not only by
an average voice of “nearest” speakers, but it is in advantage
piecewise composed of average phonetic events spread across
many voices.

IV. EXPERIMENTS

A. SpeechDat-East (SD-E) Corpus
We used the Czech part of SpeechDat-East corpus (10). Ex-

tract features are based on Mel-Frequency Cepstral Coefficients
(MFCCs), 11 dimensional feature vectors were extracted each
10 ms utilizing a 32 ms hamming window, Cepstral Mean
Normalization (CMN) was applied, and Δ, Δ2 coefficients were
added.

A 3 state HMM based on triphones with 2105 states in
total and 8 GMM mixture components with diagonal covari-
ances in each of the states was trained on 700 speakers with
50 sentences for each speaker (cca 5 sec. on a sentence). UBM
containing 256 mixture components was trained on the same
dataset, and subsequently all GMMs of individual development
speakers were MAP adapted.

To test the systems performance different 200 speakers from
SD-E were used with 50 sentences for each speaker, however
maximum of 12 sentences was used for the adaptation. A
language model based on trigrams was used in the recognition
(11). The vocabulary consisted of 7000 words.

B. Adaptation Setup
In our experiments the fMLLR adaptation was utilized.

Before the adaptation statistics (9) and (8) for all development
speakers were precomputed (see Section III-A).
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Fig. 3. Accuracy (Acc)[%] of the recognition utilizing described methods in
dependence on the number of adaptation sentences.

In the case of uninitialized fMLLR only one global trans-
formation matrix was used (all the mixture components shared
the same cluster). When additional accumulated statistics from
closest speaker were used for initialization multiple clusters
were utilized – the clustering of model components (GMM
means) was performed via a regression tree (6). In all the
experiments only one iteration of fMLLR was carried out.

C. Results
All methods were tested on varying number of adaptation

sentences. The graph in Figure 3 depicts results of ASR
with fMLLR adaptation. Initializations are denoted as Init-
Nbest (init. based on additional accumulated statistics from N-
best speakers) and Init-Nbest-phon (init. based on additional
accumulated statistics from N-best phonetic events). In the
graph the adition information about the accuracy (68.75%) of
the recognition system with the unadapted SI acoustics model
is depicted. All results of adaptation are shown in the Table I.

No. of Sent. fMLLR-global Init-Nbest Init-Nbest-phon
1 14.04 68.30 69.85
2 56.36 68.16 69.99
3 66.74 68.96 70.00
4 69.58 69.05 70.21
5 70.23 69.30 70.29
6 70.74 69.53 71.02
8 72.30 70.52 71.44

10 72.30 70.50 71.65
12 72.33 70.89 71.76

TABLE I
ACCURACY (ACC)[%] OF THE SYSTEM PERFORMANCE FOR FMLLR

ADAPTATION AND EACH TYPE OF INITIALIZATION.

As expected, classic fMLLR (fMLLR without any initializa-
tion) performs poor on small amount of adaptation data. Init-
Nbest-ph initialization outperforms the Init-Nbest initialization

most for only a few sentences. After 6 sentences the contribu-
tion of initialization becomes inferior, and in real applications
it would be suitable to switch the initialization off.

V. CONCLUSIONS

Presented experiments proved the contribution of the pro-
posed initialization of fMLLR adaptation with extremely small
input data sets. The initialization based on phonetic events from
closest speakers turned out to be of importance. An relative
improvement up to 5% was achieved in relation to the N-best
method from Section III-A. Because the use of initialization
data lowers the influence of given adaptation data, it could
be suitable to weight initialization data in dependce on the
amount of adatpation data. When enough data for adaptation
are available, the initialization statistics are not needed.
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