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Abstract
In this paper, we present our system developed by the team
from the New Technologies for the Information Society (NTIS)
research center of the University of West Bohemia in Pilsen,
for the Second DIHARD Speech Diarization Challenge. The
base of our system follows the currently-standard approach of
segmentation, i/x-vector extraction, clustering, and resegmen-
tation. The hyperparameters for each of the subsystems were
selected according to the domain classifier trained on the de-
velopment set of DIHARD II. We compared our system with
results from the Kaldi diarization (with i/x-vectors) and com-
bined these systems. At the time of writing of this abstract,
our best submission achieved a DER of 23.47% and a JER of
48.99% on the evaluation set (in Track 1 using reference SAD).
Index Terms: speaker diarization, i-vector, x-vector, agglomer-
ative hierarchical clustering, neural network classifier, speaker
change detection.

1. Introduction
In recent years, we have developed our Speaker Diarization
(SD) system [1, 2, 3]. Last year, we also tailored an off-line
system for the First DIHARD Speech Diarization Challenge [4],
where we participated in Track 1 as well as Track 2 of the chal-
lenge.

The Second DIHARD Challenge [5] brought us an opportu-
nity to extend our system and to try combining results from dif-
ferent sources. Besides i-vector [6, 7] extraction, we have also
extracted x-vectors [8]. The main novelty in our system is an
early-fusion of i-vectors and x-vectors into xi-vectors and mod-
ified segmentation. We also use the Kaldi system1 with a recipe
for diarization as an additional system for comparison and for
a domain-specific combination of results. This year we have
decided to participate only in the Track 1 part of the challenge,
where a reference speech labeling is available and no speech
activity detection (SAD) step is needed.

Our main advantage in the First DIHARD Challenge was
the application of a Neural Network (NN) based domain classi-
fier that allows the system to automatically identify the domain
of each recording and to set the system’s configuration accord-
ingly. The same applies for the Second DIHARD Challenge.

2. Speaker Diarization System
Our system follows x-vector- and i-vector-based approaches [9,
10, 8]. A diagram of our diarization system is shown in Fig-
ure 1. The general structure is the same as in our previous sys-
tem for the First DIHARD Challenge [4].

1http://kaldi-asr.org/

Figure 1: Diagram of the diarization process.

This section provides a description of the main steps of the
diarization process. The domain classifier and related domain-
dependent settings are described in section 3.

2.1. Segmentation

First, the entire conversation is split into multiple individual
speech regions by breaking it on any non-speech events; these
non-speech regions are excluded from subsequent processing.
As a second step, the speech regions are further segmented
according to the probability of speaker change given by our
Speaker Change Detector, which is based on a Convolutional
Neural Network (SCD-CNN) [2].

The SCD-CNN was trained as a regressor on spectrograms
of the acoustic signal. The process is described in our previous
paper for the First DIHARD Challenge [4]. The signal between
two detected speaker changes is considered to be one segment.

To ensure that each segment contains sufficient information
about the speaker, we set the minimum duration of each seg-
ment to 0.5 s. Shorter segments are discarded from the clus-
tering stage and the decision about the speaker is left for the
resegmentation step (see section 2.5).

2.2. Feature Extraction

We use the same signal processing pipeline as for the First DI-
HARD challenge [4] – Linear Frequency Cepstral Coefficients
(LFCCs). As a newly added step, Cepstral Mean Normalization



(CMN) is applied to compensate for channel variations.

2.3. Segment Description

Each segment is represented by a concatenation of the x-vector
and i-vector for the same segment. We call this an xi-vector.
The i- and x-vectors were obtained using a Kaldi recipe2 [11].
To exploit the ability of x/i-vectors to represent small amounts
of data and to minimize the presence of more than one speaker
in a segment, longer segments are split into intervals of max.
2 s, with 1 s overlaps.

For generating i-vectors, we trained a UBM with 2048 com-
ponents and a transformation matrix with a latent dimension of
128. A Time Delay Neural Network is used as an x-vector ex-
tractor, and x-vectors are extracted from the affine component
of the second-to-last layer with dimension 128.

For whitening the xi-vectors, we subtract the mean of de-
velopment set’s xi-vectors. During the diarization process, we
use a conversation-dependent Principal Component Analysis
(PCA) [12] computed on the data in the current conversation
to reduce the dimension of the xi-vectors into 3, 6, 9 or 12 (de-
pending on the identified corpus – see Tab. 1).

The following corpora were used as training data: Lib-
riSpeech3, VoxCeleb2 [13], TedLium3 [14], and the following
ELRA corpora: Speecon database UK English (ELRA-S0215)
and US English (ELRA-S0233). Additional data augmentation
(additive noise, music, babble and reverberation) was used on
the LibriSpeech and TedLium3 corpora.

2.4. Clustering

The general clustering approach remains mostly unchanged
from what we used in the First DIHARD Challenge.

As in the previous year’s challenge, the number of speakers
in each recording is unknown in advance: the DIHARD corpus
consists of several distinct domains where the number of speak-
ers ranges from 1 to 10. Thus, we have chosen to primarily use
the agglomerative hierarchical clustering (AHC) algorithm.

The clustering process is based on the average cosine dis-
tance between xi-vectors. We use a fixed distance threshold as
the stopping condition. Additionally, we leverage our knowl-
edge from the development set by also specifying a minimum
and maximum number of clusters for each conversation, based
on the number of speakers typically observed for the domain.
So, we force the final number of clusters to be within this set
range. The range and the clustering stopping condition – the
distance threshold – were both established on a per-corpus ba-
sis using the development data (see Section 6).

In the Second DIHARD Challenge, there are three corpora
in the development set with an overwhelming majority of two-
speakers conversations. For these domains, we use a Proba-
bilistic Linear Discriminant Analysis (PLDA) model [15] to
evaluate the distance between the xi-vectors. Then, we apply
k-medoids clustering into a constant number of clusters across
the whole domain. For training the PLDA model, we used the
same datasets as listed in Subsection 2.3. The between-class
dimension is equal to the feature dimension.

2.5. Resegmentation

Finally, we refine the diarization results via resegmentation.
The previous results are based on relatively long signal windows

2https://github.com/kaldi-asr/kaldi/tree/master/egs/
callhome diarization/v1 and /v2

3http://www.openslr.org/12/

and the boundaries between speaker segments are not precise.
Therefore, we compute a GMM for each speaker cluster from
all feature vectors assigned to the speaker. Then, likelihoods for
all speaker GMMs are evaluated and filtered by a Gaussian win-
dow (length 75 ms with shift 50 ms) to smooth peaks. The num-
ber of GMM components ranges between 1 and 64 depending
on the speaker data size. Then, the entire conversation is reclas-
sified according to the GMM likelihoods on a frame-by-frame
basis.

3. Domain Classification
The DIHARD II corpus [16] consists of data taken from several
different domains, with very diverse characteristics – including
the number of speakers, the level of noise, and audio quality
in general. To improve the results of the diarization system,
we decided to use the supervised information about each do-
main given by the organizers (the possible number of speakers
in the domain) and to tune specific settings on development data
(mainly the threshold for AHC).

We have proposed the domain classifier as a hierarchical
two-stage classifier. The first level is a special classifier to dis-
tinguish recordings with one speaker from multi-speaker data.
The second stage classifier is applied when the first level class
is considered to be the multiple speaker case. It evaluates the
posterior probability that the input conversation belongs to one
of the 11 corpora in the DIHARD II development set.

The same NN architecture is used for both classifiers. They
differ only in the last layer, where the first level NN uses one
neuron for the binary classification, and the second stage NN
uses a softmax layer with 11 classes.

The NNs receive a single i-vector calculated over the en-
tire conversation as the input. A special i-vector extractor was
trained for the domain classifiers. The LFCC features are the
same but also include frames marked as non-speech by SAD.
The UBM has 512 diagonal components, and the final i-vector
dimension is 100.

The NNs have one hidden layer with 2048 neurons and
tanh activation function. Dropout with coefficient 0.9 was used
during training. The network was implemented in TensorFlow,
where the “adam” optimizer was used with 10 epochs and batch
size of 32. The remaining hyper-parameters were left at default
values.

Both NNs were trained on the development data + 10 ran-
domly chosen recordings from the LibriSpeech corpus (cut to
10min length).

Because the evaluation dataset contains two unknown cor-
pora with very different characteristics, we apply a threshold
on the classifier result. The positive detection threshold was set
to 0.6 for both stage classifiers. If there is no positive detec-
tion in the second-stage NN, the conversation is treated as “un-
known domain”. The accuracy of the first-stage NN was 100%
on a held-out part of the development data. The accuracy of the
second-stage NN was 82%.

3.1. Domain-specific settings

Because of our domain classifier, we were able to use different
system configuration for each of the 11 development set corpora
and for unknown data. Here we describe the general approaches
we selected for each domain. Specific experimentally-chosen
parameters are listed in Table 1.

The descriptions of the individual DIHARD II corpora can
be found in the challenge evaluation plan [5] as well as in the



main challenge paper [17]. As such, we do not replicate them
here.

LibriVox: All recordings contain only 1 speaker. Thus, we
did not need to perform diarization but simply used the infor-
mation given by reference SAD. We rely on the first stage of
the domain specific classifier.

SEEDLingS, SCOTUS, RT-04S, SLX, VAST and YouthPoint:
For these corpora, we used the AHC approach with cosine dis-
tance, as described in section 2.4.

ADOS, DCIEM and MIXER6: These corpora have almost
exclusively exactly 2 speakers in each conversation. For this
reason, we could simply use k-medoids clustering into 2 clus-
ters with PLDA scores.

CIR: For this corpus, our system gives the best results on
development data for k-medoids clustering into 4 clusters with
PLDA scores.

Unknown: For unrecognized evaluation data, we’ve chosen
to use AHC with 2-6 target clusters.

Table 1: Experimentally chosen parameters (Thr. = threshold,
k-m = k-medoids) for each corpus.

Corpus Clustering No.
spk

Thr
AHC

PCA
dim

LibriVox - 1 - -
SEEDL. AHC 2-3 0.62 6
CIR k-m 4 - -
ADOS k-m 2 - -
SCOTUS AHC 5-10 0.46 12
DCIEM k-m 2 - -
RT-04S AHC 3-10 0.46 6
SLX AHC 2-6 0.762 6
MIXER6 k-m 2 - -
VAST AHC 1-9 0.58 3
YouthP. AHC 3-5 0.54 9
other AHC 2-6 0.1 -

4. Kaldi Diarization System
As an additional system, we have decided to use a Kaldi recipe
for diarization [11]. The input features are the same LFCCs as
in our system (details in Section 2.2).

The segmentation provides chunks of speech between im-
portant non-speech events (Kaldi SAD segmentation) and sub-
sequently divides these segments into sub-segments with con-
stant length 1.5 s and overlap 0.75 s (the minimum length of a
segment is 0.5 s).

X-vectors or i-vectors are computed on segmented data and
handled by a PLDA model to compute the similarity between
these segments. X/i-vectors are whitened before the PLDA es-
timation by subtracting the mean and transforming by an LDA
matrix.

The vectors of segments are then clustered according to the
AHC, with the stopping threshold set on development data. This
threshold was found for the entire development set – this sys-
tem does not treat different domains of the DIHARD II corpus
differently.

Additionally, we create xi-vectors by concatenating the x-
vector and i-vector for the same segment. The whitening trans-
formation is also obtained by concatenating the means and PCA
transformation matrices belonging to the x/i-vectors (this inde-

pendent treatment works better than computing the whitening
transformation on the whole xi-vectors).

5. Late system combination
The Kaldi diarization system does not use the information from
the domain classifier, and its setting is very general. There-
fore, we have used the Kaldi system instead of our speaker di-
arization system (SD) in the cases where the domain classifier
marked the conversation as “unknown domain”.

For the two most problematic corpora (Seedlings, VAST),
we have also used the Kaldi system. On average, our system
slightly outperforms the Kaldi system on the development data
for these corpora. However, the DERs of individual conversa-
tions have a higher variance than the ones from Kaldi. We refer
to this per-domain system selection as late system combination.

6. Experiments
This section describes our experiments on the development set
of the Second DIHARD Challenge, as well as our final results
on the evaluation set. The experiments mainly served for find-
ing the optimal system configuration for each of the individual
corpora. For details of the DIHARD II corpus [16, 18], see the
evaluation plan [5].

6.1. Evaluation

The system performance was evaluated in terms of Diarization
Error Rate (DER), as defined by NIST [19]. On the devel-
opment set, we calculated this on a per-recording basis using
NIST’s md-eval.pl script4.

DER and Jaccard Error Rate (JER) on the evaluation set
were given by the official scoring system [17].

Unlike usual practice, DIHARD Challenge submissions
were scored with no forgiveness collar around speaker bound-
aries, and overlapping speech was included in the evaluation.

6.2. Results

Table 2 presents a comparison between i/x/xi-vectors contribu-
tion with an earlier version of our system. Based on these pre-
liminary results, the rest of our work was with xi-vectors only.

Table 3 shows results on the development set for each of
the eleven corpora. Table 4 then presents the final results on the
evaluation data for Track 1 – diarization using reference SAD.

Table 2: Average DER [%] on DIHARD II development set for
an earlier version of our system and for Kaldi with different
segment descriptors (x/i/xi-vector).

system DER

SD i-vec 24.31
SD x-vec 23.81
SD xi-vec 22.51
Kaldi i-vec 25.83
Kaldi x-vec 25.32
Kaldi xi-vec 24.13

4https://github.com/usnistgov/SCTK/blob/master/src/md-eval



Table 3: Average DER [%] on individual corpora of the DI-
HARD II development set, for our system (SD), Kaldi system,
and the combination system, all using xi-vectors.

Corpus SD Kaldi Comb.

LibriVox 0.00 14.52 0.0
SEEDLingS 31.32 33.90 33.90
CIR 45.83 52.25 45.83
ADOS 14.06 16.01 14.06
SCOTUS 6.92 18.03 6.92
DCIEM 8.88 9.65 8.88
RT-04S 33.14 36.30 33.14
SLX 17.56 16.90 17.56
MIXER6 9.42 9.72 9.42
VAST 38.00 39.65 39.65
YouthPoint 4.55 6.33 4.55

All 20.78 24.13 21.29

Table 4: Official results (DER [%] and JER [%]) on the DI-
HARD II evaluation data for our system (SD), Kaldi, and Comb.

SD Kaldi Comb.

DER[%]
JER[%]

24.59
49.63

25.17
54.94

23.47
48.99

7. Discussion
For this challenge, we decided to extend our previous system for
diarization with various enhancements; this chapter discusses
their benefits. Table 5 presents the results for our SD sys-
tem with comparison with several alterations: a system with-
out SCD-CNN (only Kaldi SAD segmentation), with de-noised
test data (using speech enhancement5 [20], no de-noising for
training data), and a system with reference information about
overlapping speech. The latter information is used in the re-
segmentation step – for such parts of the data, the second most
likely speaker is also detected.

Table 6 shows the segmentation coverage and purity [21]
achieved on the development set for SCD-CNN and Kaldi SAD
segmentation. Our SCD-CNN method outperforms the Kaldi
SAD segmentation in both coverage and purity, except two
cases. This result is expected, as SAD segmentation does not
take into account the speaker changes in one speech activity
segment. The purity measure is more important in the diariza-
tion task, as it tells us how pure the segments are – that they
contain only one speaker.

Based on these results, we chose to apply the SCD-CNN in
our final system, and we omitted the de-noising. Unfortunately,
despite the clear benefits of detecting overlapping speech, we
were not able to train a real overlap detector with reasonable
accuracy on the DIHARD II data.

8. Conclusion
In this paper, we presented a new version of our diarization sys-
tem and its results for the Second DIHARD Diarization Chal-
lenge. Compared to our previous system, we applied xi-vectors
and modified the SCD-based segmentation step to take advan-
tage of x/i-vectors’ ability to represent short segments. Using

5https://github.com/staplesinLA/denoising DIHARD18

Table 5: Average DER [%] on individual corpora of the DI-
HARD II development set, for our system (SD) with different
setting – with Kaldi SAD segmentation instead of SCD-CNN,
test data de-noise and with reference overlap labels.

Corpus SD without
SCD

with
de-noise

with ref.
overlap

LibriVox 0.00 0.0 0.0 0.0
SEEDLingS 31.32 31.22 32.30 24.56
CIR 45.83 47.88 46.70 37.71
ADOS 14.06 13.26 14.25 10.73
SCOTUS 6.92 10.67 8.01 5.99
DCIEM 8.88 8.66 8.74 6.24
RT-04S 33.14 36.38 34.53 25.69
SLX 17.56 19.14 17.36 13.64
MIXER6 9.42 9.29 9.93 5.02
VAST 38.00 38.91 38.61 30.09
YouthPoint 4.55 5.26 5.49 3.89

All 20.78 21.52 21.31 16.16

Table 6: Overall Coverage and Purity for segments provided by
Kaldi (SAD) and by SCD-CNN

(a) SAD segments

Corpus Cov Pur

VAST 0.945 0.454
YP 0.950 0.445
LIBRIVOX 0.948 0.466
SEEDLINGS 0.917 0.600
CIR 0.963 0.345
ADOS 0.896 0.669
SCOTUS 0.980 0.375
DCIEM 0.901 0.563
RT04 0.969 0.421
SLX 0.916 0.507
MIXER6 0.933 0.440

(b) SCD-CNN

Cov Pur

0.926 0.820
0.991 0.971
0.987 0.991
0.937 0.868
0.979 0.588
0.992 0.875
0.990 0.936
0.987 0.862
0.889 0.670
0.988 0.871
0.958 0.868

a domain classifier as in the previous challenge, we were able
to use a different system configuration for each subset of data.
For comparison, we applied a Kaldi recipe for diarization and
combined the results into a single system. Additionally, we have
investigated the potential gains of detecting overlapping speech,
de-noising, and various segmentation methods. Our best Track
1 submission achieved a DER of 23.47% and JER of 48.99%.
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