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Abstract

The automatic speaker recognition made a significant progress in the last two
decades. Huge speech corpora containing thousands of speakers recorded on sev-
eral channels are at hand, and methods utilizing as much information as possible
were developed. Nowadays state-of-the-art methods are based on Gaussian mixture
models used to estimate relevant statistics from feature vectors extracted from the
speech of a speaker, which are further concatenated into a high dimensional vector –
supervector.
Methods concerning the extraction of high dimensional supervectors along with

techniques capable to build a speaker model in such a high dimensional space are
described in depth and links between these methods are found. The main empha-
size is laid on the analysis of these methods and an efficient implementation in order
to process huge amounts of development data to train the speaker recognition sys-
tem. Also the influence of development corpora on the recognition performance is
experimentally tested.

Keywords: Gaussian mixture models, support vector machine, supervector, factor
analysis, dimensionality reduction, speaker recognition

Abstrakt

Během posledních dvou desetiletí bylo v úloze automatického rozpoznávání řečníka
dosaženo výrazných pokroků. Byly nahrány obrovské řečové databáze obsahující tisíce
řečníků mluvících na různých akustických kanálech. Zároveň byly vyvinuty metody,
které se snaží z těchto dat extrahovat co nejvíce informací. Nejmodernější metody
jsou založeny na modelech Gaussovských směsí. S jejich pomocí jsou z příznakových
vektorů, extrahovaných z řečových dat řečníků, počítány statistiky. Tyto statistiky
jsou následně zřetězeny/pospojovány do vysokorozměrných vektorů – supervektorů.
Práce se zabývá podrobným popisem metod extrakce vysokodimenzionálních super-

vektorů společně s technikami jejich modelování. Hlavní důraz je kladen na analýzu
těchto metod, jejich propojení, a protože je při trénování systému rozpoznávání
řečníka potřeba zpracovat velké množství vstupních dat, i na jejich efektivní imple-
mentaci. Experimentálně je také vyšetřen vliv dat pro trénování na kvalitu rozpoznávání.

Klíčová slova: model Gaussovských směsí, support vector machine, supervektor,
faktorová analýza, redukce dimenze, rozpoznávání mluvčích





Contents

List of Abbreviations i

List of Functions ii

1 Introduction 1
1.1 Aim of the Thesis and the Novelties . . . . . . . . . . . . . . . . . . . 2

2 Classifiers, Mappings and Kernels 5
2.1 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Gaussian Mixture Model (GMM) . . . . . . . . . . . . . . . . . . . . . 5
2.3 Mappings and Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 GMM-mean Supervector (GSV) . . . . . . . . . . . . . . . . . 7
2.3.2 Maximum Likelihood Linear Regression (MLLR) Supervector . 7
2.3.3 Generalized Linear Discriminant Sequence (GLDS) . . . . . . . 8

2.4 Nuisance Attribute Projection (NAP) . . . . . . . . . . . . . . . . . . 8

3 Factor Analysis Based Techniques 11
3.1 Identity vectors (i-vectors) . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 PLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Training revisited I . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Training revisited II . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Relation of Factor Analysis (FA) and Nuisance Attribute Projection
(NAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experiments 19
4.1 Used Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 GMM/UBM: Baseline Experiments . . . . . . . . . . . . . . . . . . . . 22
4.5 SuperVectors (SVs) and SVM . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 PLDA and i-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6.1 Development Corpora: NIST040506, SW1, SW2 . . . . . . . . 25
4.6.2 Development Corpora: NIST040506, SW1, SW2, SWC . . . . . 25

4.7 Complementarity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Estimation of GMM Statistics on GPU 29
5.1 Estimation Utilizing CUDA . . . . . . . . . . . . . . . . . . . . . . . . 29



5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusion 33

Bibliography (selection) 35

Authored and Co-authored Works 37



List of Abbreviations

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

EER Equal Error Rate

EM Expectation Maximization

FA Factor Analysis

FC Fusion Coefficient

FSH Fisher English Training Speech Part 1 and Part 2

FW Feature Warping

GLDS Generalized Linear Discriminant Sequence

GM Global memory

GMM Gaussian Mixture Model

GN Gaussian Normalization

GPU Graphics Processing Unit

GSV Gaussian-mean Supervector

JFA Joint Factor Analysis

LFCC Linear Frequency Cepstral Coefficients

LLR Log-Likelihood Ratio

LR Logistic Regression

LS Least Squares

LVCSR Large-Vocabulary Continuous Speech Recognition system

MAB Memory-Aligned Block

MAP Maximum A-posteriory Probability

ML Maximum Likelihood

MLLR Maximum Likelihood Linear Regression

NAP Nuisance Attribute Projection

OCK One-Class Kernel

PCA Principal Component Analysis

i



PLDA Probabilistic Linear Discriminant Analysis

RN Rank Normalization

SIMD Single Instruction, Multiple Data

SLK Supervector Linear Kernel

SM Shared Memory

SNR Signal-to-Noise Ratio

SR Speaker Recognition

SRE Speaker Recognition Evaluation

SSE Streaming SIMD Extension

SV SuperVector

SVD Singular Value Decomposition

SVM Support Vector Machine

SWC Switchboard Cellular Audio Part 1 and Part 2

TM Texture Memory

UBM Universal Background Model

VAD Voice Activity Detector

List of Functions

diag(X) transforms the matrix X to a vector
taking only the diagonal of the input matrix X

diagz(X) zeros all the non-diagonal elements of the matrix X

DIAG(x) creates a diagonal matrix with entries of x on its diagonal

ii



Lukáš Machlica, High Dimensional Spaces and Modelling

1 Introduction

In the first phase of an automatic Speaker Recognition (SR) feature extraction is
carried out, varying time sequence of samples (amplitudes of recorded speech wave)
is processed and feature vectors are extracted. Next, a model is estimated for each
speaker. For more than a decade Gaussian Mixture Models (GMMs) dominated the
task of SR [1]. GMMs play still an important role in the state-of-the-art speaker
recognition systems, however they are used mainly to delimit and split up the feature
space according to level of interest, and to extract data statistics related to distinct
parts of the feature space. This is done via estimation of an Universal Background
Model (UBM) comprising many GMM components and trained on a huge amount of
development data. All the acoustic conditions in which the system will be used should
be covered. Subsequently, given an UBM, statistics of extracted feature vectors of a
speaker, related to distinct parts of the feature space (i.e. to individual Gaussians
in the UBM), are estimated. And a supervector (SV) is formed by concatenation of
these statistics in accordance with GMM components in the UBM, yielding the SV
of substantially high dimension.
Simultaneously two techniques to handle the high dimensional SVs were proposed.

The first is based on Support Vector Machine (SVM) as a discriminative trainer [2]
discussed in Section 2.1. SVM has very good generalization properties and is well
suited for the task of modelling when only a few (in the case of SVs often only one)
examples/supervectors of a speaker/class are available. The concept of SVs and SVM
was further extended by the Nuisance Attribute Projection (NAP) [3], which is used to
suppress undesirable channel variabilities between sessions (recordings of a speaker
on distinct channels) of one speaker. NAP is based on an orthogonal projection,
where directions most vulnerable to environment/channel changes are projected out,
see Section 2.4.
The latter technique (more precisely, a set of techniques) is based on Factor Analysis

(FA). The idea is that since the dimensionality of SVs is in comparison with the
number of development speakers very high, many dimensions have to be correlated
with each other. Hence, the effective information on the identity of speakers has to
lie in a much lower subspace. Moreover, since several sessions of one speaker are
available, one could determine not only the speaker identity subspace, but also the
channel/session subspace, which should be also of a much lower dimension. These
principles were incorporated into a method called Joint Factor Analysis (JFA) [4],
where the word joint refers to the fact that not only the speaker, but also the channel
variabilities are treated in one JFA model. However, experiments in [5] have shown,
that the channel/session subspace does still contain some substantial information
concerning the identity of a speaker. Therefore, JFA was extended to the concept of
i-vectors, which do not distinguish between the speaker and the channel space. They
work with a total variability space containing simultaneously speaker and channel

1



CHAPTER 1. INTRODUCTION

variabilities.
Independently of JFA a method called Probabilistic Linear Discriminant Analysis

(PLDA) has been developed in the computer vision to tackle the problem of face
recognition [6]. PLDA is very similar to JFA, it decomposes the feature space to
speaker and channel dependent subspaces, but rather than GMM based SVs ordi-
nary feature vectors are utilized. The difference between GMM based SVs treated in
JFA/i-vectors and ordinary vectors is that distinct dimensions of GMM based SVs are
weighted when estimating the subspace decomposition. Since PLDA is a generative
model, it allows to compute the probability that several i-vectors originate from the
same source, and thus it is well suited as a verification tool for a speaker recognition
system [7].
The system examined in this thesis will use SVs, SVMs, i-vectors and PLDA models

along with distinct normalization techniques.

1.1 Aim of the Thesis and the Novelties

Generally, the thesis is devoted to the problem of modelling of feature sets for
classification in situations where lots of data are available, but the work will be
strongly oriented toward the task of open set, text independent speaker identification.
The crucial problem when implementing a state-of-the-art SR system composed

of modules such as JFA, SVM, i-vector extractor or PLDA is that huge amount
of development data from a lot of speakers are required, moreover several sessions
have to be available for each speaker in order to train a reliable model. Therefore
three main problems are faced in this thesis: acceleration of algorithms, influence
of development data on the performance of the SR system, and connections between
presented methods. However, the goal of the work is also to describe, explain and
understand the principles of individual modelling techniques in a wider context.
In relation to the main goals mentioned above following novel approaches are pre-

sented in this work:

1. When preparing a SR system at first UBM has to be trained from a huge
amount of development data (several thousands of hours, see Section 4.1). The
estimation process is based on Expectation Maximization (EM) algorithm based
on maximization of the data likelihood given the model. Moreover, the data
statistics from the EM algorithm are utilized also in adaptation algorithms (e.g.
MAP adaptation), which are used to extract SVs. Hence, it is in great demand
to have a really fast and robust implementation. For this purpose parallel
technologies like supercomputers, clusters, grids, and cloud infrastructures may
be utilized. We have focused on the computing power provided by the Graphics
Processing Unit (GPU), which is easily available and for a reasonable price.
However, in order to fully exploit the potential of the GPU computing power, the
algorithm has to be parallelized in a proper way and the memory management
has to be handled too. For all this reasons in Chapter 5 a highly efficient parallel
implementation on a GPU is proposed leading to a hundreds times faster EM
algorithm and statistics extraction for UBM, GMM and SV estimation.

2
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2. Next novel approach concerns the PLDA model estimation, where each speaker
has to contain several sessions. The one described in [6] is extremely slow
mainly for high dimensional feature vectors containing distinct numbers of ex-
amples for each individual. In addition, the operating principle of the method
stays hidden. Utilizing theorems from linear algebra concerning the inversion
of matrices along with some suitable rearrangements of formulas and noticing
the stand-alone summation terms a much more efficient training algorithm is
proposed in Section 3.2.2 and Section 3.2.3. In addition, the background of the
algorithm is clarified. The revisited algorithm is thousands time faster than a
naive implementation assuming a large dataset to be processed.

3. Two kinds of methods dominate the task of speaker recognition: based on eigen-
vector decomposition such as Principal Component Analysis (PCA) and Nui-
sance Attribute Projection (NAP), and based on Factor Analysis (FA). There-
fore a special section is devoted to the analysis of their similarities and dissim-
ilarities. Formulations of both methods are converted to the problem of Least
Squares (LS), and in the light of LS they are simultaneously analysed. The
details are given in Section 3.3.

4. In Chapter 4 experiments on state-of-the-art SR systems are performed utilizing
data from NIST Speaker Recognition Evaluations (SREs) 2008 and 2010. It is
shown in what extent do additional normalization techniques help to decrease
the error rates, results are analysed, and also the dimensionality reduction of
SVM models is examined in Section 4.5. Since SVM is used to train a speaker
model associated with a speaker dependent SV, kernels (used to map – in a
linear or non-linear way – input vectors to some other favourable feature space)
proposed for SVs related to UBM are tested and the results are inspected.

5. Since huge amounts of development data are available, the question is how
does a system behave when the amount of development data changes. The
focus is laid on the system based on i-vectors and a PLDA model. Several
development subsets are created and one PLDA model is trained for each of
them. Moreover, two alternatives are experimentally tested: pooling all the
development data and training one PLDA model, or training one PLDA model
for each development subset and fusing the verification results. Experiments in
Section 4.6 are provided with analysis of the results.

6. Finally, the complementarity of implemented methods is examined in Sec-
tion 4.7. Since a variety of methods was tested based on generative and discrim-
inative modelling, subspace decomposition, dimensionality reduction, etc. the
combination of these methods/systems should bring additional improvements
to the recognition unless one of the techniques significantly outperforms the rest
of the methods. Experiments are provided with the discussion on the differences
between tested methods.

3
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2 Classifiers, Mappings and Kernels

2.1 Support Vector Machine (SVM)

SVM is a non-parametric binary classifier, where the decision boundary between
two classes is given by a linear hyperplane and the task is to find a separating hyper-
plane so that the margin between the classes is maximized [8]. Whenever a decision
of a classification depends only on a dot product of two vectors, the dot product can
be replaced by a scalar kernel function K(x1,x2), which has to satisfy certain restric-
tions called Mercer’s conditions. These conditions specify requirements under which
the output of the kernel function can be thought of as an output of a dot product of
two vectors. Thus K(x1,x2) = φ(x1)Tφ(x2), where φ(xi) is a vector function that
maps xi to some high dimensional vector (even of infinite dimension). The SVM
decision function can be written as

f(xi) =
L∑

n=1

αnynK(xn,xi) + q, (2.1)

and if the kernel function is linear K(xi,xj) = xT
i xj we get

f(xi) =

(
L∑

n=1

αnynx
T
n

)
xi + q = wTxi + q, (2.2)

where L is the number of support vectors, which combination (not necessary linear)
forms the boundary, q is an offset, αn > 0, L and q are learned during the training
process of SVM, yn ∈ {−1, 1} are the class labels, and xi is the vector which class
pertinence has to be determined, e.g. yi = sign f(xi). SVM is trained iteratively
utilizing some optimization algorithm [9]. Note that if kernel function is linear only
the normal vector w and offset q of the decision boundary have to be stored. If this
is not the case all the support vectors have to be stored, and in the decision process
the kernel function has to be evaluated L times for each new vector in question. An
example of a SVM problem is depicted in Figure 2.1.

2.2 Gaussian Mixture Model (GMM)

GMM is a parametric generative classifier. Given as a sum of weighted Gaussians
N (µm,Cm) with mean µm and covariance Cm. Hence, given a feature vector ot its
probability in a GMM is given as

g(ot) =
M∑

m=1

ωmN (ot;µm,Cm), (2.3)

5
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margin
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H2

w

||w||
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||w||
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class +1

class  -1

(0,0)

Figure 2.1: An example of the non-separable case of the SVM problem. Vectors en-
capsulated in circles denote support vectors.

where M is the count of Gaussians in the GMM, ωm is the weight of mth Gaussian.
The most important statistic related to the mth Gaussian of the GMM and a set of Ts

feature vectors Os = {ost}Ts
t=1 related to the sth speaker is the posterior probability

of mth Gaussian given a feature vector ost:

γm(ost) = ωmN (ost;µm,Cm)∑M

m=1 ωmN (ost;µm,Cm)
. (2.4)

Universal Background Model (UBM) used in the task of speaker recognition is a
GMM trained on a huge amount of development data containing many speakers,
hence UBM is a speaker independent model describing the acoustic environment, in
which the SR system is used. For further use let D = dim(ost) be the dimension of
feature vectors.

2.3 Mappings and Kernels

The term SuperVector (SV) used in SR is related to a high dimensional vector
obtained by the concatenation of several vectors. Once a UBM was trained, super-
vectors

bs =
Ts∑

t=1

[
γ1(ost)oT

st, . . . , γM (ost)oT
st

]T
,

ns =
Ts∑

t=1

(
[γ1(ost), . . . , γM (ost)]T ⊗ 1D

)
, (2.5)

can be extracted, both are of size DM ×1, ⊗ is the Kronecker product, 1D is a D di-
mensional vector of ones, and let m0 = [µT

1 ,µ
T
2 , . . . ,µ

T
M ]T be the SV constructed by

6



Lukáš Machlica, High Dimensional Spaces and Modelling

the concatenation of the UBM means. Thus, SV in the context of this thesis is a map-
ping of a set of low dimensional feature vectors to a high dimensional representation
related to a generative model.

2.3.1 GMM-mean Supervector (GSV)

GSV was proposed in [2], and it is composed of means of an Maximum A-Posteriory
(MAP) adapted UBM. GSV (and also the MAP adaptation of UBM means) can be
expressed as

ψs
GSV = τms + (1− τ)m0, (2.6)
ms = N−1

s bs, (2.7)

wherems is the new Maximum Likelihood (ML) estimate ofm0 given the dataset Os

of speaker s, Ns is a diagonal matrix with ns on its diagonal, and τ is an empirically
set parameter controlling the balance between UBM parametersm0 and the new ML
estimate ms. Note that for each speaker only one SV is extracted no matter how
many feature vectors are available.

Supervector Linear Kernel (SLK) It is a kernel often used in combination with GSVs
and SVM [2, 10]. Assuming a UBM with diagonal covariances, the resulting kernel
can be written in the form

KSLK(ψs
GSV,ψ

q
GSV) =

M∑
m=1

ωm(µs
m)TC−1

m µq
m = (ψs

GSV)T ΩGψq
GSV , (2.8)

G : diag(G) = [diag(C−1
1 ), . . . , diag(C−1

m ), . . . , diag(C−1
M )]T , (2.9)

Ω : diag(Ω) = [ω1, . . . , ωM ]T ⊗ 1D , (2.10)

where {ωm,Cm}M
m=1 are parameters (weight and covariance of a Gaussian) of the

UBM given in Section 2.2, µs
m,µ

q
m are speaker dependent, MAP-adapted means

of speaker s and speaker q, 1D is a D dimensional vector of ones, ⊗ denotes the
Kronecker product, the function diag(X) transforms a matrix X to a vector with its
entries equal to the diagonal of this matrix. Hence, it is a linear kernel, where each
dimension of SVs is weighted according to the covariance and weight of respective
Gaussian in the UBM.

2.3.2 Maximum Likelihood Linear Regression (MLLR) Supervector

The rows of adaptation matrix W s = [As, bs] used to adapt means of a UBM
according to the data of speaker s are concatenated into a supervector ψs

MLLR. The
MLLR adapted mean µs

m of a speaker’s s GMM component is given as

µs
m = Asµm + bs = W sξm, (2.11)

where ξm = [µT
m, 1]T and µm is the mean of the UBM.

7
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One Class Kernel (OCK) The kernel is based on the work [11]. It arises from (2.8),
where means µm of the UBM are transformed according to equation (2.11) yielding

K(ψs
MLLR,ψ

q
MLLR) =

M∑
m=1

ωm(Asµm + bs)TC−1
m (Aqµm + bq) ,

= (ψs
MLLR)TQψq

MLLR, (2.12)

where [As, bs ] and [Aq, bq ] are adaptation matrices for speaker s and q, respectively,
ωm, C−1

m are normalization terms and parameters of the UBM, and Q is a block-
diagonal matrix obtained performing some algebraic manipulations on (2.12).

2.3.3 Generalized Linear Discriminant Sequence (GLDS)

GLDS was proposed in [12]. It is based on a vector function that transforms directly
the feature vectors (UBM is not involved). The SV has the form

ψs
GLDS = 1

Ts

Ts∑
t=1

ϕ(ost; k) , (2.13)

where ϕ(ost; k) represents a monomial expansion of a feature vector ost up to the
kth order, e.g. for a monomial expansion of a D dimensional feature vector o =
[o1, o2, . . . , oD]T up to the second order we get

ϕ(o; k = 2) = [1, o1, . . . , oD, o
2
1, o1o2, . . . , o1oD, (2.14)

o2
2, o2o3, . . . , o2oD, o

2
3, . . . , o

2
D], (2.15)

where dim(ψGLDS) = ((D + k)!)(D! k! ). After substituting (2.15) into (2.13) one
can notice, that the mapping (2.13) comprises first- and second-order moments – the
mean and covariances of dimensions of feature vectors [13].

Covariance kernel In the case of GLDS the kernel often used is K(ψs
GLDS,ψ

q
GLDS) =

(ψs
GLDS)TC−1

GLDSψ
q
GLDS, where CGLDS is the covariance of GLDS SVs computed from

a development set.

2.4 Nuisance Attribute Projection (NAP)

NAP is a normalization technique proposed for SVM/SV based system [3]. In cases
when several recordings of a speaker are available, recorded on distinct channels (we
say that several sessions of a speaker are available), the channel/session information
can be utilized in order to suppress high within-speaker deviations.
The objective function minimized in NAP is given as

JNAP(P ) =
N−1∑
i=1

N∑
j=i+1

wij‖P (xi − xj)‖2, (2.16)

8
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where xi is a SV of dimension Dx, N is the number of SVs in the development set,
wij = 1 if both xi and xj come from the same speaker, and 0 otherwise. P =
I − F⊥FT

⊥ is a projection matrix, F⊥ is a Dx × Dc matrix of low rank Dc, where
Dc � Dx, columns of F⊥ are orthonormal, thus FT

⊥F⊥ = I and they span the
subspace that is going to be projected out. It is easy to see that the properties of P
are: P 2 = P (P is idempotent) and P = PT (P is symmetric). It can be shown [14]
that the objective function (2.16) can be expressed as

JNAP(P ) = tr(PCW) = tr(CW)− tr(FT
⊥CWF⊥), (2.17)

CW =
S∑

s=1

Hs

Hs∑
h=1

(xsh − x̄s)(xsh − x̄s)T, (2.18)

x̄s =
Hs∑

h=1

xsh, (2.19)

where Hs is the number of sessions of speaker s, S is the number of speakers in the
development set, and CW is the weighted within-speaker covariance computed on
the development set of speakers. The objective (2.17) is minimized when columns
of F⊥ are formed by eigenvectors of CW corresponding to the Dc largest eigenvalues
(highest variance is projected out).

9
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3 Factor Analysis Based Techniques

In last years Factor Analysis (FA) based techniques gained on popularity in the
task of speaker recognition when SuperVectors (SVs) were introduced. Progressive
methods as Joint Factor Analysis (JFA) [4], closely related concept of i-vectors [5]
or Probabilistic Linear Discriminant Analysis (PLDA) [6] are all based on FA. In
JFA both within- and between-speaker subspaces are estimated jointly at the same
time. However, since the channel component of a SV does still contain a speaker
information [5] JFA was modified to the concept of i-vectors, where between both
subspaces no distinction is made. All the methods are reviewed in full depth in the
PhD thesis, only a short overview will be given.

3.1 Identity vectors (i-vectors)

The i-vector extractor works with SVs (2.5), hence i-vectors are related to a UBM.
An assumption is met that the variation in SVs (between speakers and between ses-
sions of a speaker) can be explained in a sufficient amount by variations of low di-
mensional hidden variables called identity vectors (i-vectors) [5].
The (generative) model has the form

ψs = m0 + Tws + ε, ws ∼ N (0, I), ε ∼ N (0,Σ), (3.1)

where ψs is a SV of speaker s, ws is the Dw dimensional i-vector following standard
normal distribution, T is the total variability space matrix of size DM ×Dw, m0 is
the mean vector of ψs (often mean supervector of UBM is taken instead as a good
approximation), and ε is a random variable describing the residual noise following
normal distribution with zero mean and diagonal covariance Σ (its diagonal blocks
are often composed from the covariances C1, . . . ,Cm of the UBM).

Training

In order to train the i-vector extractor at first supervectors (2.5) are extracted
for each speaker and each session of a speaker. A crucial assumption is made that
each session of a speaker is in fact another speaker, hence within- and between-
speaker subspace is not distinguished. Now, two steps are iterated in a sequence until
predetermined number of iterations is reached:

1. for each s use previous estimate of T to extract new i-vector

ws = (I + TTΣ−1NsT )−1TTΣ−1b̄s, (3.2)

11
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2. let Z =
(
I + TTΣ−1NsT

)−1; use newly extracted i-vectors to compute block-
wise a new estimate of T

Tm =

(
S∑

s=1

b̄smw
T
s

)(
S∑

s=1

Nsm

(
wsw

T
s +Z

))−1

, (3.3)

where Ns is a diagonal matrix with ns on its diagonal, b̄s = bs − Nsm0 is the
centred version of bs around the mean m0, and the index m in Tm, b̄sm, nsm (and
Nsm) refers to blocks of T , b̄s, ns (and thus to Nsm) of sizes D × Dw, D × 1,
D × 1, respectively. Hence, TT = [TT

1 ,T
T
2 , . . . ,T

T
sM ], b̄T

s = [b̄T
s1, b̄

T
s2, . . . , b̄

T
sM ] and

nT
s = [nT

s1,n
T
s2, . . . ,n

T
sM ]. One can update also Σ, for details see PhD thesis. Note

that for each session of a speaker one i-vector is extracted.
In fact, the training procedure is the same as for parameters of a model of Factor

Analysis (FA) differing only in the presence of Ns in estimation formulas (3.2), (3.3).
If Ns would equal the identity matrix I the training procedure would be identical
to the estimation procedure of parameters of a FA model, which form is identical to
(3.1).

3.2 PLDA

PLDA is a generative statistical model of the form

xij = µ+ Fhi +Gwij + εij (3.4)

whereX = {xi1, . . . ,xiJi}I
i=1 is the set of I individuals represented asDx dimensional

vectors xij , Ji is the count of distinct representations of each individual, N =
∑I

i=1 Ji

is the number of vectors in X, and µ = E[xij ] is the mean value of vectors in X. Let
denote Λi = {xij}Ji

j=1 the set of distinct representations of one individual. Columns
of the matrix F span the between individual subspace, hi is a Dh dimensional latent
vector of coordinates in this space, it is assumed to have standard normal distribu-
tion N (0, I) and represents the mutual information shared between vectors in Λi.
Columns of the matrix G span the within individual subspace of the space formed
by vectors in X, and wij is a Dw dimensional vector of coordinates in this space
following standard normal distribution N (0, I). The term εij represents the resid-
ual noise factor having normal distribution N (0,Σ) with diagonal covariance matrix
Σ. Thus, one can identify the identity component µ + Fhi and the noise/channel
component Gwij + εij of each vector xij . Note that the distribution of xij is normal
N (µ,FFT +GGT + Σ).

3.2.1 Training

In the training phase the parameters θ = {µ,F ,G,Σ} have to be trained. Mean
µ is estimated as the mean of all vectors xij from the development set X, and to
facilitate subsequent formulas let subtract µ from all xij beforehand. In [6] a system

12
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of equations is formed xi1
...

xiJi

 =

 F G . . . 0
...

...
. . .

...
F 0 . . . G



hi

wi1
...

wiJi

+


ε1

ε2
...
εJi

 , Σ̂i =

Σ . . . 0
...

. . .
...

0 . . . Σ

 , (3.5)

what can be written in a compact form as

x̂i = Aiŷi + ε̂, (3.6)

where the distribution of ε̂ follows N (0, Σ̂i). Matrices Ai, Σ̂i depend on i through
the number of their row- and column-blocks, which are given by the number of vectors
in Λi. Note that the joint probability of vectors in Λi given θ equals to

p(Λi|θ) = N (x̂i|0,AiA
T
i + Σ̂i). (3.7)

This formulation is equivalent to the formulation of Factor Analysis (FA) [15] and
can be solved by the same estimation procedure based on maximization of (3.7). At
first hi,wi1, . . . ,wiJi are extracted (in fact only their MAP estimates are obtained)
utilizing matrices Ai, Σ̂i, hence

ŷi =
(
AT

i Σ̂−1
i Ai + I

)−1
AT

i Σ̂−1
i x̂i, (3.8)

and then ŷi is decomposed to zij = [hT
i ,w

T
ij ]T, j = 1, . . . , Ji. Finally, couples (xij , zij)

are used to train B = [F ,G] and Σ. Update formulas are

Z =
(
BTΣ−1B + I

)−1
, (3.9)

B∗ =

(∑
i,j

xijz
T
ij

)(∑
i,j

Z + zijz
T
ij

)−1

, (3.10)

Σ = 1
N

∑
ij

diag
(
xijx

T
ij − B̂zijx

T
ij

)
, (3.11)

where B∗ is the new estimate of B, and the function diag() zeros the non-diagonal
elements. The estimation is iterative, steps (3.8)-(3.11) have to be repeated until the
convergence of (3.7) is reached.

3.2.2 Training revisited I

The problem associated with the training procedure described in the previous sec-
tion is that the matrix Ai has to be reassembled, multiplied and inverted whenever
the number of vectors in Λi changes in order to evaluate (3.8). Now it is going to
be shown how to invert AT

i Σ−1
i Ai + I and adjust (3.8) leading to a much faster and

easier implementation. We have to find a decomposition(
AT

i Σ−1
i Ai + I

)−1 =
[

Ω1 Ω3

ΩT
3 Ω2

]−1

=
[

Ω̃1 Ω̃3

Ω̃T
3 Ω̃2

]
.
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Choosing

Ω1 = JiF
TΣ−1F + I, Dh ×Dh,

Ω2 =

K . . . 0
...

. . .
...

0 . . . K

 , JiDw × JiDw, (3.12)

Ω3 =
[
FTΣ−1G . . . FTΣ−1G

]
, Dh × JiDw,

where K = GTΣ−1G+ I. Using formulas for block inverses

Ω̃1 = (Ω1 −Ω3Ω−1
2 ΩT

3 )−1,

Ω̃3 = −Ω̃1Ω3Ω−1
2 ,

Ω̃2 = Ω−1
2 + Ω−1

2 ΩT
3 Ω̃1Ω3Ω−1

2 ,

(3.13)

and after some manipulations we get formulas directly for hi, wij in the form

hi =
(
FTΣ−1

N F + 1/Ji I
)−1

FTΣ−1
N µi, (3.14)

wij =
(
GTΣ−1G+ I

)−1
GTΣ−1 (xij − Fhi) , (3.15)

where ΣN = Σ + GGT and µi = 1/Ji

∑Ji

j=1 xij . Hence, the latent variable hi,
which represents the mutual information, is the projected mean of all the given rep-
resentations of an individual i assuming full noise covariance ΣN. In addition, the
more representations are given the lesser the influence of the hi’s prior N (0, I) – the
term 1/JiI in (3.14). In cases where the number of representations in Λi is high the
term 1/JiI in (3.14) can be left out, or fixed to an arbitrary small number to handle
ill-conditioned situations. The representation dependent latent variable wij is the
projection of the residual (xij−Fhi) on the space formed by columns of G assuming
only the unexplained variance Σ, however since only one vector is used at a time the
prior is fixed. It is also obvious that hi depends not only on one particular xij ∈ Λi,
but on the whole set Λi, whereas wij depends on xij ∈ Λi and even on hi.

3.2.3 Training revisited II

The goal of the previous section was to facilitate evaluations of latent variables,
now we will focus on the accumulation process in the PLDA training, more precisely
on summation terms∑

i,j

xijz
T
ij =

∑
i,j

xij

[
hT

i ,w
T
ij

]
,
∑
i,j

zijz
T
ij =

∑
i,j

[
hi

wij

] [
hT

i ,w
T
ij

]
. (3.16)

in (3.10) and (3.11). Substituting for hi and for wij from (3.14) and (3.15) and
rearranging the formulas, the algorithm will involve only statistics of the input data,
namely CX = 1/N

∑
i,j
xijx

T
ij (data covariance) and CB = 1/N

∑
i
Jiµiµ

T
i (between

covariance matrix). Therefore, the time to train PLDA does not depend on the size of
the dataset. Once the matrices CX and CB have been estimated, the data set is no
longer needed. Since the estimation process is iterative (data had to be seen/processed
several times) significant computational savings may be acquired for large datasets.
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3.2.4 Verification

In the verification phase two hypotheses are tested [6], namely: hypotheses Hs that
two vectors x1 and x2 share the same identity, and hypotheses Hd that the identity
of two vectors x1 and x2 differs. The Log-Likelihood Ratio (LLR) can be written as

LLR(x1,x2) = log p(x1,x2|Hs)
p(x1|Hd)p(x2|Hd) =

= logN
([

x1

x2

]
;
[
µ

µ

]
,

[
ĈX CF

CF ĈX

])
−

− logN
([

x1

x2

]
;
[
µ

µ

]
,

[
ĈX 0
0 ĈX

])
,

where ĈX = FFT +GGT + Σ and CF = FFT.

3.3 Relation of Factor Analysis (FA) and Nuisance Attribute
Projection (NAP)

To simplify following formulas let have for each speaker s the same number of ses-
sions Nc. Let xsi be a supervector (SV) extracted from each of the N recordings from
the development set, and let us assume that the mean x̄s = 1/Ns

∑
i
xsi was already

subtracted from each SV of respective speaker. Hence, the overall within covari-
ance matrix decomposed in NAP (see Section 2.4) is CW =

∑S

s=1 Ns

∑Ns

i=1 xsix
T
si =

Nc

∑N

i=1 xix
T
i , thus Nc = N1 = . . . = NS , where S is number of available speakers.

To simplify the computations let us drop the scaling term Nc and let us use the
overall within covariance matrix CW = 1/N

∑N

i=1 xix
T
i . The NAP objective can be

rewritten in the Least Square (LS) formulation as

JNAP(F ) = tr (PCW ) = tr(CW )− tr(CF )

= 1
N

N∑
i=1

‖xi − F⊥FT
⊥xi‖2 = 1

N

N∑
i=1

‖xi − F⊥zi‖2, and zi = FT
⊥xi,

(3.17)

where P = I − F⊥FT
⊥ is the projection matrix from (2.16), columns of F⊥ are or-

thonormal, thus F⊥zi is the orthogonal projection of xi onto the subspace formed by
columns of F⊥, and CF = 1/N

∑N

i=1(FT
⊥xi)(FT

⊥xi)T = 1/N FT
⊥CWF

T
⊥ .

In the case of FA, the objective function (written in the form of LS)

2
N
JFA(F ) = 1

N

N∑
i=1

‖xi − Fzi‖2 + tr(FHFT), (3.18)

have to be minimized, where zi = (FTΣ−1F +I)−1FTΣ−1xi, andH = (FTΣ−1F +
I)−1. However, be aware that columns of F in NAP are assumed to be orthogonal,
whereas none assumptions are made in FA.
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Figure 3.1: The dependency of diagonal entries of K1 and K2 on different values of
dii and σ2.

We will come out of conclusions made in [16], assuming isotropic noise Σ = σ2I
we get zi = (FTF + σ2I)−1FTxi, H = σ2(FTF + σ2I)−1. And the criterion (3.18)
can be written in the form (see PhD thesis or [14])

2
N
JFA = tr(CW )− tr(K1CF −K2), (3.19)

where FTF = QTDQ was decomposed via SVD yielding QTQ = I, and since
FTF is positive semi-definite matrix, D = [dii] is a diagonal matrix with dii ≥ 0,
F⊥ = FQTD−1/2, FT

⊥F⊥ = I.
Thus F⊥FT

⊥xi is an orthogonal projection onto the subspace spanned by columns
of F and FT

⊥xi are the coordinates of xi in this space,

K1 =
[
d2

ii + 2diiσ
2

(dii + σ2)2

]
, K2 =

[
diiσ

2

dii + σ2

]
(3.20)

are diagonal matrices, the dependence of their diagonal entries on dii and σ2 is de-
picted in Figure 3.1, and tr(K2) = tr(FHFT). Thus, K1 and K2 depend on the
diagonal matrix D, and CF depends on F⊥. Note that since K2 is a diagonal matrix
consisting of singular values of FTF and diagonal entries of K2 ≥ 0, the second term
in (3.18) is responsible only for the scaling of basis vectors of the subspace formed
by columns of F according to the level of noise. If σ2 >> dii then the corresponding
directions do not contribute to minimize JFA (see Figure 3.1 and the role of K1
in (3.19)), and the task of K2 is to completely eliminate these directions (diagonal
elements of K2 are lower bounded by 0, see Figure 3.1).
Since K1, K2 perform only scaling of directions, in order to minimize (3.19) at

first tr(CF ) has to be maximized. This is done when columns of F⊥ are formed
by eigenvectors of CW corresponding to highest eigenvalues. It can be shown (PhD
thesis) that when minimizing (3.19) according to dii we get dii = 2λi − σ2, where λi

are the eigenvalues of CW. Since dii ≥ 0, a condition dii = 0 if λi ≤ σ2/2 has to be
introduced, which is in accordance with previous discussion on the role of K2.
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Comparing NAP and FA through (3.17) and (3.19) we can see that if the noise
model in FA is isotropic the solutions (more precisely the estimated subspaces) for
NAP and FA become identical if for all eigenvalues λi > σ2/2. Otherwise, the FA
subspace will be a also a subspace of the NAP subspace. However, criteria JNAP and
JFA will still differ in some extent (K1 and K2). If σ2 = 0 then K1 = I, K2 = 0
and both criteria become equivalent. The same is true if we put an orthonormal
restriction on columns of F , hence FTF = QTIQ and dii = 1. Now, both K1 =
(1 + 2σ2)/(1 + σ2)2 and K2 = σ2/(1 + 2σ2) become constants independent of the
choice of F , and JFA = α1JNAP + α2 becomes a scaled version of JNAP for some
constants α1, α2. Generally, the FA criterion does incorporate also the influence of
noise, thus the value of the criterion differs from JNAP even if the resulting subspaces
are identical.
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4 Experiments

In this chapter experiments will be performed utilizing GMM-mean based, GLDS
based and MLLR based supervectors (SVs). Models for SVs will be estimated mainly
utilizing the Support Vector Machines (SVMs). Several distinct kernel types and
their influence on the speaker recognition will be analysed along with distinct nor-
malizations.
Further, system based on i-vectors (see Section 3.1) will be trained and a PLDA

model from Section 3.2 will be used as a generative model (hence as a verification
tool) in the total variability space. Since the PLDA training procedure proposed in
Section 3.2.3 enables a lot of experiments to be performed, the influence of different
values of latent dimensions and the influence of distinct development corpora on the
PLDA estimation will be analysed.
In summary, experiments will be focused on:
1. (baseline) experiments utilizing GMM/UBM based system, where each speaker’s

GMM is MAP adapted and the Log-Likelihood Ratio (LLR) is computed to get
a verification score

2. influence of normalization of SVs on the SVM modelling and speaker recognition
3. dimensionality reduction of SVM models
4. i-vector extraction and PLDA based generative models in the total variability

space
5. influence of development speech corpora on the verification rates utilizing PLDA

models
6. analysis of the complementarity of mentioned techniques
Results will be presented on two NIST Speaker Recognition Evaluation (SRE)

corpora, namely NIST SRE 2008 and NIST SRE 2010, results will be given in terms
of error rates – Equal Error Rate (EER) will be used, for details and other types of
error rates see the full PhD thesis.

4.1 Used Corpora

In order to be able to perform reliable tests following corpora were utilized: NIST
SRE 2004 (NIST04), NIST SRE 2005 (NIST05), NIST SRE 2006 (NIST06), Switch-
board 1 Release 2 (SW1), Switchboard 2 Phase 3 (SW2), Switchboard Cellular Audio
Part 1 and Part 2 (SWC) and Fisher English Training Speech Part 1 and Part 2
(FSH) for development purposes, and NIST SRE 2008 (NIST08), NIST SRE 2010
(NIST10) were used for calibration and/or testing purposes. The summary on cor-
pora is given in Table 4.1 and Table 4.2, note that the development set NIST040506
contains data from NIST04, NIST05, NIST06. Each of the recordings (except those
in FSH) had approximately 5 minutes in duration including the silence, length of
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Table 4.1: Summary of number of recordings (REC), average number of sessions
(SESS) and number of speakers (SPs) in distinct corpora.

female male
corpus ID #REC #SESS #SPs #REC #SESS #SPs

NIST040506 5500 8 690 3787 8 465
SW1 2311 12 197 2342 11 211
SW2 2862 10 285 2183 10 216
SWC 3753 12 311 2707 12 232
FSH 5774 3 1905 4923 3 1612

overall 20200 - 3388 15942 - 2736

Table 4.2: Number of speakers and number of trials in NIST08 and NIST10.
NIST08 NIST10

female male female male
#target speakers 1140 648 1739 1394

#test segment speakers 2498 1535 3267 2474
#trials 28536 16968 103062 74762

#non-target trials 25157 15043 101977 73812
#target trials 3379 1925 1085 950

recordings in FSH was varying from 6 minutes to 12 minutes. The data source of
all the recordings was a telephone conversation, however in NIST040506 also a few
microphone interviews are present. In all trials only speakers of the same gender
were scored against each other. Since the information concerning the gender of the
speakers was known, the presented results will be given separately for each gender.

4.2 Feature Extraction

The sample rate of all the telephone speech recordings was 8000 Hz and the sam-
pling format was µ-law. The feature extraction was based on Linear Frequency Cep-
stral Coefficients (LFCCs), 25 triangular filter banks were spread linearly across the
frequency spectrum, 20 LFCCs were extracted, and delta coefficients were added
leading to D = 40 dimensional feature vectors. Next, Voice Activity Detector (VAD)
was used in order to discard the non-speech frames. The Feature Warping (FW –
see PhD thesis) was applied after the delta coefficients were added, hence variance in
each dimension was 1.

4.3 System Setup

UBM At first, two gender dependent Universal Background Models (UBMs) were
estimated, one for male and one for female speakers. Each UBM (in fact a GMM) had
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M = 1024 Gaussians and was trained on pooled development corpora NIST040506,
SW1, SW2, SWC and FSH from recordings of the respective gender utilizing EM
algorithm and 32 reestimations.

GMMs of Speakers GMMs of individual speakers were MAP adapted, only means
were adapted with a relevance factor τ = 14) using the UBM of respective gender.

Supervector (SV) Extraction Three types of SVs were extracted:
1. ψGSV – mean of each speaker’s GMM were concatenated into one SV of dimen-

sion M × D = 1024× 40 = 40960; the mapping is specified in (2.6)
2. ψGLDS – monomials up to the k = 3rd order were expanded, and a (D+k)!

D!k! =
12341 dimensional SV was extracted; the mapping is specified in (2.13) and the
monomial expansion is given in (2.15)

3. ψMLLR – MLLR adaptation of UBM was performed given each speaker’s feature
vectors, only one (global) MLLR matrix was computed yielding a (D+1)×D =
41× 40 = 1640 dimensional SV; the mapping is specified in Section (2.3.2)

SVM Note that for each speaker’s recording only one SV of each type was ex-
tracted. SVM is a binary classifier, thus to train a SVM for each speaker a SVM
impostor/background set was constructed (one-against-all training) from all SVs ex-
tracted from NIST040506. Since the dimensionality of SVs was high enough to be
separated by a hyperplane, only a linear kernel was used – the verification consisted
only in a scalar multiplication of two vectors – the SV of the hypothesized speaker and
the normal vector of the separating hyperplane. SVM was trained using SVMtorch
[9].

NAP In order to train a NAP matrix from Section 2.4 corpora SW1, SW2 and
SWC were used because of a lot of available sessions (for some speakers more than
20). Details on the corank of the NAP matrix will be given in Section 4.5.

Rank Normalization (RN) Experiments with RN of SVs were also performed. SVs
were rank normalized along each dimension, and the rank was determined according
to a background population of SVs from SW1, SW2 and SWC. For details of RN see
PhD thesis.

i-vectors and PLDA Development data to train the i-vector extractor consisted of
corpora NIST040506, SW1, SW2, SWC and FSH (i.e. all the available development
data were used). Subsequently, i-vectors from all development corpora were extracted,
normalized to unit lengths [17], and used to train a PLDA model (50 iterations were
carried out). Details on values of latent dimensions will be given in upcoming sections.

Score Fusion In order to fuse scores of different systems the linear logistic regression
from the FoCal tool kit [18] was used. Hence, the combined/fused score was a weighted
linear combination of outputs (verification scores) of distinct systems.
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Table 4.3: Error rates acquired on female (F) and male (M) parts of NIST08 and
NIST10 utilizing the GMM/UBM based system.

NIST08 NIST10
F M F M

EER[%] 12.19 11.79 17.70 15.58

4.4 GMM/UBM: Baseline Experiments

GMMs dominated the task of speaker recognition for more than a decade, the
concept was introduced by Reynolds in [1]. Results can be found in Table 4.3.

4.5 SuperVectors (SVs) and SVM

Experiments will be performed on three types of SVs, namely ψGSV, ψMLLR,
ψGLDS, which extraction is described in Section 4.3. Several normalizations will
be tested and also the dimensionality reduction will be examined.

Normalizations Since the dimensionality of SVs is very high, linear kernels are sat-
isfactory and perform well with SVs [2, 12, 10]. The one often used with GSVs is
the Supervector Linear Kernel (SLK) introduced in (2.8). In fact it incorporates the
variance normalization, but moreover distinct dimension blocks are weighted. Since
each dimension block is associated with a Gaussian in the UBM, the weighting re-
lates to the number of feature vectors aligned to particular Gaussian. In the case of
GLDS SVs the diagonal covariance CSV of SVs was computed on development cor-
pora NIST040506, SW1, SW2, SWC, and each SV was then multiplied by C−1/2

SV .
And for MLLR based SVs the One-Class Kernel (OCK) given in (2.12) utilizing a
block-diagonal normalization matrix was used.
Also Rank Normalization (RN – distribution of values in each dimension of SV was

mapped to match uniform distribution) was performed along each dimension of a SV
(as proposed in [19]), the rank normalized dimensions where then transformed with
an inverse normal cumulative distribution function yielding Gauss Normalized (GN)
SVs. Results on NIST08 can be found in Table 4.4.
Interestingly, best performing system is the one with a simple linear kernel (K =

ψTψ – in Table 4.4 denoted as "no-norm"). Hence, no additional normalization
helped. Since all the normalizations are focused on the variance of the SV, obviously
the information on the variance is helpful and does not need to be removed. More
detailed explanation related to the way SV is constructed can be found in the PhD
thesis.

NAP Now the influence of the corank of the NAP matrix will be examined. Several
values were tested, the results can be found in Table 4.5 (corank 0 stands for none
NAP). The increase in the performance of the speaker recognition system for NIST08
is more evident for male speakers, but error rates decreased for all tested values of
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Table 4.4: Equal error rates [%] acquired on female (F) and male (M) parts of NIST08
utilizing SV/SVM system and distinct types of SVs and normalizations.

ψGSV no-norm RN RN-GN SLK
F 9.38 9.50 9.53 10.27
M 8.78 8.94 8.73 10.23

ψGLDS no-norm RN RN-GN COV
F 11.16 11.81 11.75 11.54
M 9.19 9.45 9.77 9.92

ψMLLR no-norm RN RN-GN OCK
F 13.61 14.74 14.74 13.67
M 12.21 12.83 12.78 12.42

Table 4.5: Equal rrror rates [%] acquired on female (F) and male (M) parts of NIST08
and NIST10 utilizing the NAP normalization and SV/SVM based system.

NAP corank
NIST08 NIST10

ψGSV 0 64 128 256 512 0 256
F EER [%] 9.38 8.73 8.94 9.12 9.38 12.17 9.31
M EER [%] 8.78 7.17 7.17 7.27 7.48 10.63 7.68

ψGLDS 0 32 64 128 256 0 64
F EER [%] 11.16 10.09 10.12 10.45 11.25 14.75 11.71
M EER [%] 9.19 8.05 8.21 8.26 8.88 12.21 9.16

ψMLLR 0 8 16 32 64 0 16
F EER [%] 13.61 13.29 13.17 13.55 14.23 16.96 14.38
M EER [%] 12.21 11.84 11.90 12.05 11.84 14.42 11.37

the NAP corank. Note that one value of the corank was taken and tested on NIST10.
Since it is quite hard to predict the behaviour of the system on unseen data higher
values of corank were taken (rather than the best performing one) in order to suppress
possible undesirable (strong) within-speaker deviations in test data. The decrease of
error rates obtained on NIST10 is substantial.

Principal Component Analysis (PCA) We will investigate whether the dimension-
ality of a SVM model can be further reduced without loosing any information. A
SVM model was trained for each recording from corpora SW1, SW2, SWC, FSH and
the background population of SVs (negative examples) for the training were taken
from NIST040506. In order to find a SVM model subspace PCA was performed –
eigenvalue decomposition of the covariance matrix computed from SVM models ob-
tained from the development set. The question whether the dimensionality reduction
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Table 4.6: Equal error rates [%] acquired on female (F) and male (M) parts of NIST08
and NIST10 after the dimensionality reduction of SVM models.

SVM dim
ψGSV full-dim 7000 5000 3000 1000 500

F NIST08 9.12 9.77 9.53 9.85 10.09 10.48
NIST10 9.31 9.68 9.49 9.59 9.86 9.95

M NIST08 7.27 8.05 7.79 7.84 8.10 8.52
NIST10 7.68 7.79 7.79 7.68 8.21 8.11

ψGLDS full-dim 7000 5000 3000 1000 500
F NIST08 10.12 10.33 10.30 10.42 11.07 11.75

NIST10 11.71 11.89 11.80 11.98 12.53 13.46
M NIST08 8.21 8.31 8.31 8.62 9.25 10.03

NIST10 9.16 9.26 9.26 9.37 10.11 10.63

ψMLLR full-dim 1400 1200 1000 600 500
F NIST08 13.17 13.17 13.20 13.23 13.32 13.61

NIST10 14.38 14.38 14.38 14.65 14.38 14.47
M NIST08 11.90 11.84 11.84 11.90 11.90 12.10

NIST10 11.37 11.37 11.37 11.47 11.79 12.11

preserves the recognition rates is answered in Table 4.6.
Error rates increased a little, but the performance is still very high even if SVM

models and SVs were projected to a much lower dimensional subspace. It is obvious
that the dimensionality of the SVM model space contains a lot of redundant infor-
mation, and it would be interesting to utilize a SVM kernel that maps into a lower
dimensional space instead to higher in cases when such high dimensional SVs are
used.
Note that the contribution of MLLR SVs to the recognition is lower than the

contribution of GSVs and GLDS SVs, the causes are: the low dimensionality of MLLR
SVs, the fact that only one MLLR transformation matrix was used, and that the UBM
was adapted instead of adaptation of an complex HMM based system. Much lower
error rates can be acquired when LVCSR system is in use [20, 19].

4.6 PLDA and i-vectors

The crucial problem when proposing a speaker verification system composed of
modules (e.g. JFA, PLDA) is that data from a lot of speakers are required, moreover
several sessions have to be available for each speaker in order to train a reliable i-
vector extractor and a PLDA model. The problem faced in this section will address
the question whether distinct speech corpora (SW1, SW2, NIST040506, SWC) should
be pooled together and used to train one PLDA model, or if each corpus should be
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Figure 4.1: Plots depict the comparison of situations when development corpora
(NIST040506, SW1, SW2) are pooled and fused for NIST08 and NIST10.

used individually to train a separate PLDA model. In the latter scenario the results
are fused at the end. Since often the verification conditions are unknown in advance
(e.g. in the Speaker Recognition Evaluations (SREs) organized by NIST and other
institutions) we cannot count on the use of one specific speech corpus performing best
on the development set. It is more convenient to utilize several corpora, and evaluate
the contribution of a PLDA model, trained for each corpora, in the fusion phase.

4.6.1 Development Corpora: NIST040506, SW1, SW2

At first all the development data are pooled together and one PLDA model is
trained. Next, one PLDA model is trained for each corpus (hence, three models are
trained in total), each system based on one PLDA model is then scored against trials
in NIST08. Given true identities of each pair of speakers scored in the trials the
logistic linear regression is used to estimate the Fusion Coefficients (FCs) related to
each PLDA model. Finally, to prove the validity of learned FCs trials from NIST10
are scored.
The question is which of the systems, the pooled or the fused one, performs better.

For this purpose Figure 4.1 was created, where EERs of the fused system (blue line)
were sorted, and for each value of EER and latent dimension Dh and Dw for which
this value occurred, value of EER of the pooled system (red line) in point [Dh, Dw]T is
plotted. For several values of EER also the dimensions Dh and Dw of latent variables
are specified on the x-axis. Note that the fused system performs better in each of
the conditions (for each dimension Dh and Dw), moreover variations in error rates
related to distinct latent dimensions are lower.

4.6.2 Development Corpora: NIST040506, SW1, SW2, SWC

Now the SWC corpus is added, and the previous experiments will be repeated.
Results related to the pooled corpora and to the fused system (fusion coefficients
trained again on NIST08) can be found in Figure 4.2. Note that the fused system
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Figure 4.2: Plots depict the comparison of situations when development corpora
(NIST040506, SW1, SW2, SWC) are pooled and fused.

does still outperform the pooled one in the case of female speakers, but for male
speakers this is no longer true for a substantial amount of values of latent dimensions.
However, the fused system does not get worse than the pooled one, and for certain
values of Dh and Dw the fused system still performs best. Apparently, having a larger
development set leads to more efficient cancelling/averaging of undesirable acoustic
deviations in this set.

4.7 Complementarity Analysis

In order to investigate the complementarity of SVM based systems and i-vector
based system, outputs (verification scores) of these systems will be fused. For this
purpose the logistic linear regression from the FoCal tool kit [18] will be utilized. To
train the Fusion Coefficients (FCs) NIST08 will be utilized, and the learned FCs will
be then used to fuse outputs of systems trained for NIST10. Let us summarize the
main ideas and dissimilarities of methods examined in this thesis:

1. i-vectors combined with a PLDA model are used to find a low dimensional rep-
resentation of a Supervector (SV) similar to GMM-mean SV (GSV), moreover
PLDA decomposes the feature space into speaker- and session-dependent parts

2. i-vectors and PLDA model are generative and do not discriminate between
speakers, whereas SVM as a discriminative classifier does; note that even if
PLDA is a discriminative model it discriminates between the speaker- and the
channel-subspace

3. presented SVs used with SVM incorporate different kinds of information
4. GSV is build from a set of vectors pointing to positions in the feature space

with increased concentration of feature vectors; these vectors are concatenated
to a high dimensional SV

5. in the case of GLDS the covariance and higher order moments of the whole
speaker’s data set are extracted
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Table 4.7: Equal error rates [%] for different speaker recognition systems and their
fusion.

female male
NIST08 NIST10 NIST08 NIST10

GLDS 10.12 11.71 8.21 9.16
GSV 9.12 9.31 7.273 7.68

MLLR 13.17 14.38 11.90 11.37
PLDA 7.96 9.12 6.49 7.05

GSV-GLDS 8.23 9.31 6.65 7.05
GSV-GLDS-MLLR 8.14 9.22 6.70 7.05
GSV-GLDS-PLDA 6.78 8.48 5.51 5.79

ALL 6.78 8.48 5.30 6.00

6. MLLR is used to transform all the means of a UBM in order to fit given feature
vectors, therefore information contained in the MLLR SVs can be thought of as
a "model error" (UBM error) given a (spekaer’s) feature set

In the fusion systems GSV-NAP-256, GLDS-NAP-64, MLLR-NAP-16 (trained via
SVM with a simple linear kernel) performing best in experiments from previous sec-
tions will participate along with the fused i-vec/PLDA system trained on NIST040506,
SW1, SW2 and SWC, and Dh = 100, Dw = 600 (they give good results in all four
cases male/female and NIST08/NIST10). Results are given in Table 4.7. The fusion
of systems is undoubtedly beneficial since error rates decreased in all cases. How-
ever, the performance of the MLLR based system is too poor in comparison with
the other systems and the fusion does not contribute any further to the recognition
performance.
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5 Estimation of GMM Statistics on GPU

The Expectation-Maximization (EM) algorithm, in clustering often used also with
Gaussian Mixture Models (GMMs), was in [21] identified as one of the top 10 data
mining algorithms. GMMs trained via EM are widely used in many state-of-the art
recognition and data mining systems. They are of most importance in the speaker
recognition. They are utilized in the concept of supervectors and Support Vector
Machines (SVMs) and also in Factor Analysis (FA) based systems like JFA and i-
Vectors (see Chapter 3). Another usage can be found in speech recognition systems
based on Hidden Markov Models with output probabilities described by GMMs [22].
Nevertheless, GMMs are utilized also by biologists and immunologists for counting,
sorting, and analyzing cells suspended in a fluid [23]. This chapter is based on the
work published in [24].
Focus is laid on GMMs described by diagonal covariance matrices. Only the esti-

mation of GMM statistics is implemented on GPU, rather than the overall estimation
of new GMM parameters. The statistics are more general and may be used also in
other techniques, e.g. in the adaptation or i-vector extraction discussed in Section 3.1.
Note that the estimation process does not involve any approximations, GMM statis-
tics obtained using any of the methods are equal (to some negligible rounding errors).

5.1 Estimation Utilizing CUDA

GPU’s CUDA may be seen as a fully parallel system operating with hundreds of
threads at once. According to the GPU architecture threads are organized into thread
blocks. All thread blocks are ordered in an one- or two-dimensional grid. Thread
blocks are independent of each other (algorithm executed in each of the blocks does
not depend on what is going on in other blocks), while threads in each block are
allowed to cooperate. All thread blocks execute the same algorithm called a kernel.
The information on the position in the grid along with the grid dimension is utilized
to properly divide input data into smaller independent portions. Each of the data
portions is then handled by a separate thread block according to the specified kernel
function.
Not all the tasks can be parallelized using only one kernel function since a problem

can not always be divided into several fully independent parallel subtasks. More often
a result of one subtask depends on a result of a different subtask. However, such tasks
may have only a few points where they need to exchange their outcomes. Thus, to
parallelize the task one has to employ more kernels. We have proposed 4 kernels
• γ̂-kernel – computes γ̂m,t = log(ωm) +

∑D

i=1 logN (ot,i|µm,i, σ
2
m,i) for each t,m,

• L-kernel – computes overall log-likelihood Lt = log
∑M

m=1 ωmN (ot|µm,Σm) for
each t,
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• γ-kernel – normalizes each γ̂m,t by Lt to get a proper Gaussian posterior γm(ot),
• ε-kernel – estimates first and second moments εm =

∑T

t=1 γm(ot)ot and ε2
m =∑T

t=1 γm(ot)oto
T
t for each m,

where D is the dimension of a feature vector ot, M is the number of Gaussians in the
GMM, ωm, µm, Σm are weight, mean vector and covariance matrix of Gaussian m,
respectively, and σ2 is the diagonal of Σm.
A high GPU computing performance can be fully utilized only with proper memory

management. Several memory types exist, which significantly differ in their size,
access speed and access permission. Global memory (GM) has read/write access, has
hundreds of mega bytes available and can be accessed from every block and every
thread, but the access latency is relatively high. The best performance of GM can
be achieved using the Texture Memory (TM). TM can be seen as a part of GM, but
it is read only and cached, thus the access speed may be significantly faster than in
the case of GM. Another type of memory is the Shared Memory (SM), which storage
size is around kilo bytes, but the access speed is very high (very low latency). SM
is visible only for threads in a thread block. In order to make the best of the GPU
computing power one has to align the data into Memory-Aligned-Blocks (MABs).
The optimal size of a MAB is closely related to the number of threads in a thread
block. Number of threads in a block is user dependent, but optimally has to be
a multiple of the warp size. Warp size is hardware dependent and represents the
minimum number of threads in a thread block that run at once (mostly a multiple of
32) – run in a warp. For the best performance threads in a warp have to access data
in the memory sequentially therefore data in MABs have to be properly organized.
Since CUDA supports X4 data types (e.g. short4, int4, float4, etc.), data are stored
in the memory in quaternions, and the normalization coefficient of each Gaussian
gm = log(ωm)− 0.5Dlog(2π)− 0.5log |Σm| is precomputed. It should be stated that
all the GPU’s memory management of feature vectors, model parameters, temporary
data (once computed) is assigned to the cached TM (all data are visible to all thread
blocks and their threads). However, feature vectors are copied to the faster SM in
some kernels.

5.2 Experiments

Experiments were performed on a single EM iteration. Data were taken from NIST
SRE 2008, only training data were used for adaptation. In summary, we extracted
3,125,506 (3125.6k) feature vectors of dimension 40. CPU implementation was tested
on 2.39 GHz Intel 4 GB RAM PC, the GPU implementation was tested on low-end
NVIDIA GeForce GTX 280 video card and the algorithms were developed in CUDA
toolkit 3.1.
We have tried to compare the time consumptions also with other implementations.

We have tested several freely available implementations, but all of them failed (lack
of numerical stability) on our large dataset of high dimensional real data. We have
found two recent publications (worth to be mentioned) interested in the GPU imple-
mentation of the EM algorithm focusing on GMMs with diagonal covariances, namely
a publication by Kumar et al. [25] and a master thesis from Andrew Pangborn [23].
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Table 5.1: Comparison given in milliseconds of different implementations for different
amounts of training data assuming feature vectors of dimension 32 and
GMM with 32 Gaussians.

#samples Kumar et al. A.Pangborn UWB MATLABR©

153.6k 215.0 51.1 9.25 10936.0
230.4k 264.9 71.1 13.99 16461.0

Experiments performed by Kumar et al. used NVIDIA Quadro FX 5800, which is
almost identical to the NVIDIA TESLA C1060 on which the experiments of Andrew
Pangborn were performed, and to NVIDIA GeForce GTX 280 on which our experi-
ments were performed. Time consumptions of both implementations were taken from
Tab. 5.8 from [23]. In order to compare the implementations to ours we set up same
conditions as in [25] and [23]. Hence, we reduced the dimension of our data to 32 and
took only 153.6k and 230.4k feature vectors. Tab. 5.1 is the extended table containing
also our results denoted as UWB and the CPU reference computed in MATLABR©

7.5.0.342 (R2007b) utilizing the Statistics Toolbox function gmdistribution.fit()
(only the time spent on estimation of statistics was measured).
As can be seen from Tab. 5.1, the implementation proposed in this chapter outper-

formed the others. It is more than 5 times faster than A. Pangborn’s implementation
and more than 20 times faster than Kumar’s implementation. The key part of the
speed up is the proper memory management of the data adhering to the rules of
coalesced access [26]. In addition, data loaded to the kernels are reused as much as
possible (higher degree of parallelization), e.g. the log-likelihoods are estimated for
several feature vectors and several Gaussians at once in each kernel, the same principle
holds for the accumulation kernel. Another important performance related technique
lays in the use of the Texture Memory (TM) with float4 data types for read-only
data. Data shared across a thread block or data that are accessed repeatedly should
be copied into the Shared Memory (SM) in advance. The mentioned advices are of
course well known, but it is quite difficult to integrate them to a specific task.
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6 Conclusion

Techniques of automatic speaker recognition developed in the last decade were
presented. The main emphasize was laid on the modelling of feature vectors once
extracted. Feature vectors are of relatively small dimension (in our case the dimension
was 40) and are based on the power spectrum of the speech signal. Feature vectors
are mapped to a high dimensional space with the use of a generative model. The task
of the generative model is to segment the feature space according to the concentration
of feature vectors from the development set localized in specific areas of the feature
space. The high dimensional vectors denoted Supervectors (SVs) are composed of
various statistics related to feature sets of a speaker, and they can be thought of as a
higher level features. For each recording of a speaker only one SV is extracted. Since
nowadays large corpora containing hundreds of speakers recorded on several channels
(we say that several sessions of a speaker are at hand) are available, information on
channel distortions is utilized in order to identify directions in the SV space most
responsible for channel and speaker changes. Moreover, since SVs are of substantially
high dimension these techniques incorporate also the dimensionality reduction.

The thesis was devoted to a thorough description of methods used in the experi-
ments in a logical sequence. Following problems were solved:

1. An efficient implementation of the EM estimation algorithm on a Graphics Pro-
cessing Unit (GPU). More precisely, the evaluation of EM related statistics
was transfered to GPU. Since several thousand hours of speech had to be pro-
cessed yielding over 104 millions of 40 dimensional feature vectors, and since
these statistics are required not only when estimating the Universal Background
Model (UBM), but are needed also when extracting SVs used with Support Vec-
tor Machines (SVMs) and in the i-vector extraction, the speed up was of great
importance. Moreover, the EM algorithm and GMM estimation are frequently
used also in other fields than the speaker recognition [23, 21].

2. The influence of normalizations of SVs on the performance of the SVM system.
Surprisingly, the lowest error rates were acquired without any normalizations
of SVs. The result was attributed to the pre-normalization of low dimensional
feature vectors using the Feature Warping (FW) technique.

3. An efficient implementation of the PLDA estimation algorithm. In order to in-
vestigate the impact of development data sets on the PLDA modelling analysed
in Section 4.6 and performance of the speaker verification system more than
4000 PLDA models were trained for 800 dimensional i-vectors (each training
consisted from 50 iterations).

4. Relation of Nuisance Attribute Projection (NAP) to Factor Analysis (FA) based
channel compensation. Since NAP used with SVM does a channel compensation
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and so does the FA model used in JFA/PLDA, the similarities and working
principles of both approaches were examined. Both problems were converted
to the formulation of Least Squares (LS) and reviewed in the new light of LS
yielding interesting conclusions on handling the noise. In simple terms, both do
the eigenvector decomposition of a within-speaker covariance matrix, but FA
based approach does in addition scale the directions according to the estimated
noise level.

5. The influence of the size of development sets and fusion of PLDA decomposi-
tions of several total variability spaces (composed from i-vectors from individual
development corpora) on the performance of the speaker verification. It was
shown that if enough data to train a reliable PLDA model are available then
it is more convenient to train one PLDA model for each development corpus,
and let a fusion algorithm assign a weight to each verification score related to
each model. If variations in one corpus would be much higher than in other
corpora, and in addition data from such a corpus would be inappropriate for
given recognition conditions (e.g. telephone speech), the PLDA model trained
from pooled corpora could notably spoil the recognition.

6. Information redundancy in SVM models. In addition to the dimensionality
reduction of SVs via i-vector extraction, also the dimensionality reduction of
SVM model was investigated. Obviously, SVM model does contain a lot of
redundancies yielding a SVM decision hyperplane of much lower dimension.
Such an observation may be of help when proposing a kernel function, which
could instead of mapping to higher dimensions utilize some (e.g. non-linear)
mapping to a lower dimensional space.

7. Complementarity of discussed methods. It was shown that methods used in the
experiments do possess a complementary information since the fused system
outperformed all systems based on particular methods.
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