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Corner detection

I the corner can be defined as

1. an intersection of two edges
2. a (important) point where two dominant directions (gradients)

exist

I every corner is an important point, but not the other way
around

I a corner detection algorithm needs to be very robust
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Obrázek: Different regions and their derivatives.
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Moravec corner detection

I one of the first corner detection algorithm

I the alg. tests the similarity of a patch centered on the
analyzed pixel with nearby patches

I the similarity is measured as a sum of absolute differences

I the corners are the pixels with a low similarity with its
neighborhood - the local maxima of the SoAD

E (u, v) =
∑
x ,y

w(x , y)[I (x + u, y + v)− I (x , y)]2. (1)

I (u, v) = {(1, 0), (1, 1), (0, 1), (−1, 1)}

Lesson 03 4 / 31



Harris corner detection

I reacts to weak points in Moravec algorithm

I the rectangular window w(x , y) becomes a Gaussian window,
which functions also as a filter

I the discretized directions (u, v) disappear and are replaced by
Taylor expansion

I (x + u, y + v) ≈ I (x , y) + Iu(x , y)u + Iv (x , y)v (2)

E (u, v) ≈
∑
x ,y

w(x , y)[Iu(x , y)u + Iv (x , y)v ]2. (3)

E (u, v) ≈
∑
x ,y

w(x , y)[u2I 2
u + 2uvIuIv + v2I 2

v ], (4)
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I which in matrix form can be written as

E (u, v) ≈
∑
x ,y

w(x , y)
[
u v

] [ I 2
u IuIv

IuIv I 2
v

] [
u
v

]
. (5)

I next we define matrix M

M =
∑
x ,y

w(x , y)

[
I 2
u (x , y) IuIv (x , y)

IuIv (x , y) I 2
v (x , y)

]
(6)

I and then we can write

E (u, v) ≈
[
u v

]
M

[
u
v

]
. (7)
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I the matrix M is called a Harris matrix
I the derivations Iu, Iv can be approximated by gradient

operators
I for every pixel we have a matrix M and we analyze their

eigenvalues

Obrázek: Different regions and their derivatives.
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Obrázek: Body proložené elipsami.
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I the computational cost of the eigenvalues is very high

I we want the eigenvalues to be relatively the same and also big

λ1λ2 = det(M)
λ1 + λ2 = trace(M),

(8)

R = det(M)− k(trace(M))2, (9)

I big R > 10000 is a corner

I negative and big R < −10000 is an edge

I small R ∈ (−10000; 10000) is a flat region
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Obrázek: Detected corners.
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Interest Points

I it has a clear, preferably mathematically well-founded,
definition

I it has a well-defined position in image space

I the local image structure around the interest point is rich in
terms of local information contents, such that the use of
interest points simplify further processing in the vision system

I it is stable under local and global perturbations in the image
domain as illumination/brightness variations, such that the
interest points can be reliably computed with high degree of
reproducibility

I optionally, the notion of interest point should include an
attribute of scale, to make it possible to compute interest
points from real-life images as well as under scale changes

Lesson 03 11 / 31



Scale Invariant Feature Transform

I SIFT is an algorithm that finds interest point

I inspired by Harris corner detection

I the algorithm works the following way:

1. detection of extremes in scale-space representation

2. adjustment of the position of interest points

3. assignment of orientation to the interest points

4. construction of the descriptor of interest point
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Detection of Extremes in Scale-Space

I the scale-space representation is just the image in different
resolutions, but with the same width and height

I the different resolution is achieved by convolving the image
with a Gaussian kernel

L (x , y , σ) = G (x , y , σ) ∗ I (x , y) ,

where G (x , y , σ) = 1
2πσ2 exp

(
−(x2+y2)

2σ2

)
.

(10)

I the Gaussian is self-similar, we can apply it consecutively to
obtain more blurred images
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Obrázek: Different scale representations

I such images compose an octave

I several octaves are built

I the octave is just the same representation only with smaller
width and height
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Obrázek: Scale-space representations
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I difference images are constructed by using the octave
scale-space representation

D (x , y , σ) = L (x , y , kσ)− L (x , y , σ) (11)
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Obrázek: Difference images computed as Difference of Gaussians
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Obrázek: Difference images computed as Difference of Gaussians on a
corner
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I local maxima and minima are detected using non-maxima
suppression

I the size of the window is 3x3x3 which means 26 values are
compared with the center pixel

I the detected extremes are considered candidates of the
interest points
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Adjustment of the position of interest points

I the candidate points are fixed on the raster and can be
adjusted

I the Taylor expansion is used

D̃ (x) = D +
∂D>

∂x
x +

1

2
x>
∂2D

∂x2
x (12)

I the extreme of the expansion is found by derivation and
setting the derivative to zero

∂D̃

∂x
=
∂D

∂x
+
∂2D

∂x2
x (13)

x̂ = −
(
∂2D

∂x2

)−1
∂D

∂x
(14)
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Eliminating low-contrast and edge points

I when we use the x̂ to compute the value of D(x̂) we get

D (x̂) = D +
1

2

∂D>

∂x
x̂ (15)

I we use the value of D (x̂) to eliminate low contrast key-points
( < 0.03 )

I we also want to eliminate unstable key-points - edge points
I we use similar algorithm as in Harris corner detector - the

analysis of eigenvalues of Hess (not Harris) matrix

H =

[
Dxx Dxy

Dyx Dyy

]
(16)

Tr (H)2

Det (H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
(17)

Tr (H)2

Det (H)
<

(r + 1)2

r
(18)
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Assigning the orientation to the key-points

I to make the key-points independent on rotation we have to
find their ”main”orientation

I in the image L(x , y , σ) in the key-point we find the
magnitudes and directions of the image gradient

I the directions are quantified into bins of 36◦

gradienty v okolí histogram orientací

I if there are more important directions (at least 80% of the
biggest) then new key-points are established in the same pixel

Lesson 03 22 / 31



The Key-point descriptor

I a description should be independent on geometric and
brightness transformations

I the neighborhood of the key-point is divided into 4x4 regions
I in each region the gradients are computed
I the orientations of the gradients are then rotated to align with

the dominant direction
I they are concatenated into a 128-dimensional feature vector

gradienty v okolí finální deskriptor
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SURF - Speeded Up Robust Features

I inspired by SIFT with real-time capabilities
I the DoG images and computing of Hess matrix is integrated

into computing the determinant of Hess matrix
I this approach is using the integral image

IΣ (x , y) =

i≤x∑
i=0

j≤y∑
j=0

I (i , j) (19)
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Hess matrix approximation

I the Hess matrix can be written as

H (x , y , σ) =

[
Lxx (x , y , σ) Lxy (x , y , σ)
Lyx (x , y , σ) Lyy (x , y , σ)

]
(20)

I the approximation uses discrete convolution with kernels

1

1

-2-2 11

1

1-1

-1

I the determinant of Hess matrix is then computed as

Det (Haprox) = DxxDyy − (wDxy )2 (21)
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Scale-space approximation

I the scale-space does not need to be constructed explicitly
I different sizes of the kernels fulfill this operation
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I the different octaves are constructed by using different
combinations of sizes of the kernels

9 15 21 27

15 273951

27517599

změna měřítka s

oktáva

Obrázek: Změny rozměr̊u filtračńıch jader pro jednotlivé oktávy
scale-space (vlevo) a názorná ukázka změny rozměru jádra (vpravo).
Poznamenejme, že krok l0 je vždy sudý (6, 12, 24) tak, aby p̌ri
zvyšováńı mě̌ŕıtka nedocházelo ke změně struktury filtračńıch jader.

I again, the key-points are local extremes of the determinants of
Hess matrix
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Orientation of the Key-points

I the Haar filters are used to approximate the orientation of the
gradients

I the size of the filters is relative to the scale (4σ) at which the
key-point is detected

1

1

-1

-1

Obrázek: Haarova vlnka aproximovaná obdélńıkovými filtry ve směru
osy x a y .

I the responses are filtered with a Gaussian
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I the space of the responses (dx , dy ) is divided into several
segments

dx

dy

∑dx 

∑dy 

I the dominant direction is the one with the biggest sum of
vectors inside it
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The SURF descriptor

I a neighborhood around the key-point is constructed and
rotated by the angle of the dominant direction

I the neighborhood is of size 20σ
I this patch is divided into 4× 4 segments
I for each segment the responses of the Haar filter is computed

- (dx , dy )
I the descriptor is then a vector (

∑
dx ,
∑

dy ,
∑
|dx |,

∑
|dy |)
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Application of key-points

I https://www.youtube.com/watch?v=-r9J1eO4qg4
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