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Corner detection

» the corner can be defined as

1. an intersection of two edges
2. a (important) point where two dominant directions (gradients)
exist

> every corner is an important point, but not the other way
around

» a corner detection algorithm needs to be very robust
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Moravec corner detection

Lesson 03

one of the first corner detection algorithm

the alg. tests the similarity of a patch centered on the
analyzed pixel with nearby patches

the similarity is measured as a sum of absolute differences

the corners are the pixels with a low similarity with its
neighborhood - the local maxima of the SoAD

E(u,v) =) wl)ll(x+uy+v) =1y (1)

X?y

(u7 V) = {(17 O), (17 ]-)7 (07 1)7 (_17 1)}
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Harris corner detection

> reacts to weak points in Moravec algorithm

» the rectangular window w(x,y) becomes a Gaussian window,
which functions also as a filter

» the discretized directions (u, v) disappear and are replaced by
Taylor expansion

I(x+uy+v)=I(xy)+ L(x,y)u+ L(xy)v (2)

E(u,v) = > wi )l y)u+ Loy (3)

E(u,v)~ Z w(x, y)[u?12 + 2uviy 1, + v?12], (4)
X?y
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» which in matrix form can be written as

Ewn) =~ ween [ | M@

v
Xy

» next we define matrix M

. Bley)  hh(x.)
M= 2 ) oy e e

» and then we can write

E(u,v)~[u v]M H . (7)

4
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» the matrix M is called a Harris matrix

» the derivations /,, [, can be approximated by gradient
operators

» for every pixel we have a matrix M and we analyze their
eigenvalues
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The distribution of x and y

derivatives can be characterized -

by the shape and size of the
principal component ellipse

A~A2 = small
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the computational cost of the eigenvalues is very high

we want the eigenvalues to be relatively the same and also big

Ao = det(M) (8)
A1 + Ao = trace(M),

R = det(M) — k(trace(M))?, (9)
big R > 10000 is a corner

negative and big R < —10000 is an edge
small R € (—10000; 10000) is a flat region
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I.Q.

Obrazek: Detected corners.
U
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Interest Points
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it has a clear, preferably mathematically well-founded,
definition
it has a well-defined position in image space

the local image structure around the interest point is rich in
terms of local information contents, such that the use of
interest points simplify further processing in the vision system

it is stable under local and global perturbations in the image
domain as illumination/brightness variations, such that the
interest points can be reliably computed with high degree of
reproducibility

optionally, the notion of interest point should include an
attribute of scale, to make it possible to compute interest
points from real-life images as well as under scale changes

11/31



Scale Invariant Feature Transform

Ll A
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SIFT is an algorithm that finds interest point
inspired by Harris corner detection

the algorithm works the following way:

detection of extremes in scale-space representation
adjustment of the position of interest points
assignment of orientation to the interest points

construction of the descriptor of interest point
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Detection of Extremes in Scale-Space

» the scale-space representation is just the image in different
resolutions, but with the same width and height

» the different resolution is achieved by convolving the image
with a Gaussian kernel

L(x,y,0) =G (x,y,0)*1(x,y),

x2 2
where G (x,y,0) = 5~ exp <—( 2—: )) . (10)

T 2mo?

» the Gaussian is self-similar, we can apply it consecutively to
obtain more blurred images

Lesson 03 13 /31



Obrazek: Different scale representations

» such images compose an octave
» several octaves are built

» the octave is just the same representation only with smaller
width and height
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zména
méfitka

1. oktava 2. oktava 3. oktava
LN J
Y
< >
Obrazek: Scale-space representations
DEPARTMENT OF
CYBERNETICS

15/31



» difference images are constructed by using the octave
scale-space representation

D(x,y,0)=L(x,y, ko) — L(x,y,0) (11)

LN 4 2. oktava scale-space
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obrazy vniklé konvoluci L(x,y,0) rozdilové obrazy D(x,y,0)
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Obrazek: Difference images computed as Difference of Gaussians
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Obrazek: Difference images computed as Difference of Gaussians on a
corner
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» local maxima and minima are detected using non-maxima
suppression

» the size of the window is 3x3x3 which means 26 values are
compared with the center pixel

» the detected extremes are considered candidates of the
interest points

zména
méritka
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Adjustment of the position of interest points

» the candidate points are fixed on the raster and can be
adjusted

» the Taylor expansion is used

~ oDT 1 +0°D
D(X)—D‘f‘WX"‘EX Wx (12)

» the extreme of the expansion is found by derivation and
setting the derivative to zero

o6 _op D
ox  Ox  Ox2

. 2D\ ' oD
= <82> ox (14)
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Eliminating low-contrast and edge points

» when we use the X to compute the value of D(X) we get

10D7
D(x)=D+ = X 1
(0)=D+;0 2 (15)
» we use the value of D (X) to eliminate low contrast key-points

(<0.03)
» we also want to eliminate unstable key-points - edge points
» we use similar algorithm as in Harris corner detector - the
analysis of eigenvalues of Hess (not Harris) matrix

o Dxx DX)’
H—-L%X Dw] (16)
LG N G N R U G
Det (H) af r? r

Tr (H)?  (r+1)?
Det(H) = r
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Assigning the orientation to the key-points

» to make the key-points independent on rotation we have to
find their "mainorientation

» in the image L(x,y, o) in the key-point we find the
magnitudes and directions of the image gradient

» the directions are quantified into bins of 36°
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gradienty v okoli histogram orientaci

» if there are more important directions (at least 80% of the
biggest) then new key-points are established in the samepixe
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The Key-point descriptor

» a description should be independent on geometric and
brightness transformations

» the neighborhood of the key-point is divided into 4x4 regions

» in each region the gradients are computed

» the orientations of the gradients are then rotated to align with
the dominant direction

» they are concatenated into a 128-dimensional feature vector
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SURF - Speeded Up Robust Features

» inspired by SIFT with real-time capabilities
» the DoG images and computing of Hess matrix is integrated
into computing the determinant of Hess matrix
» this approach is using the integral image
i<x j<y

ZZI i,J) (19)

i=0 j=0
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Hess matrix approximation

» the Hess matrix can be written as

o Lxx(vava) ny(XayaU)
Hixy.0) = LyX(Xa%U) Lyy(x,y,a)} (20)

» the approximation uses discrete convolution with kernels

[T 1T
1

1

» the determinant of Hess matrix is then computed as

Det (Haprox) = DxxDyy — (WDyy, ) (21)
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Il this operat

-space approximation

» the scale-space does not need to be constructed explicitly

» different sizes of the kernels fulf
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» the different octaves are constructed by using different
combinations of sizes of the kernels

oktava @
R L
[9T15121[27] i

zména méfitka s

Obrazek: Zmény rozméri filtragnich jader pro jednotlivé oktdvy
scale-space (vlevo) a ndzornd ukdzka zm&ny rozméru jadra (vpravo).
Poznamenejme, Ze krok Iy je vzdy sudy (6, 12, 24) tak, aby p¥i
zvySovani méfitka nedochazelo ke zméné struktury filtragnich jader.

» again, the key-points are local extremes of the determinants of
Hess matrix
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Orientation of the Key-points

» the Haar filters are used to approximate the orientation of the
gradients

» the size of the filters is relative to the scale (40) at which the
key-point is detected

Obrazek: Haarova vinka aproximovand obdélnikovymi filtry ve sméru
osy x ay.

» the responses are filtered with a Gaussian
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» the space of the responses (dy, d, ) is divided into several
segments

dy

» the dominant direction is the one with the biggest sum of
vectors inside it
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The SURF descriptor

» a neighborhood around the key-point is constructed and
rotated by the angle of the dominant direction

the neighborhood is of size 200

this patch is divided into 4 x 4 segments

for each segment the responses of the Haar filter is computed
- (dXv d}/)

the descriptor is then a vector () dx, > d,, > |dy|, > |dy|)

v vy

v
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» https://www.youtube.com/watch?v=-r9J1eO4qg4
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