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Bag of Words

I is an image classification method using ideas from document
classification

I uses a sparse histogram of words from a vocabulary - local
image features

I WORD:

I a word is a local feature

I the feature should be independent on scale, rotation,
translation, intensity and contrast changes - SIFT

I the features will have some diversity - like normal words

I we want to obtain one representative form of the word
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Vocabulary

I all features are put together - we don’t know what the
individual words are yet

I the features are clustered using k-means
I ’k’ will define the size of the vocabulary
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Image descriptor

I we now have the words and vocabulary defined
I SIFT analysis will provide us with features from the image
I each SIFT is classified as a word using nearest neighbor
I the image is represented as a histogram of these words
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Image classification

I there are several options how to classify the unknown vector -
Machine Learning - but not yet

I our vector is the histogram of the local features - words

I we have defined several measures for comparing histogram -
LBP histogram comparison

I in BoW an angle between the histograms is used

cosα =
H1.H2

‖H1‖‖H2‖
(1)

I the smaller the angle the more similar the histograms are
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Optical Flow

I if a camera moves in 3D scene, the apparent motion in the
sequence is called optical flow

I describes the direction and the speed of the motion of
features in an image

I the computation is based on two assumptions:
1. The observed brightness of any object point is constant over

time.
2. Neighboring pixels in the image plain move in a similar manner.
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I let f (x , y , t) be a dynamic image function
I we want to observe the changes (δx , δy) in consecutive frames

meaning that t = t + δt
I for this reason we express the dynamic image function as a

Taylor series

f (x+δx , y+δy , t+δt) = f (x , y , t)+
∂f

∂x
δx+

∂f

∂y
δy+

∂f

∂t
δt+O(∂2)

(2)
I since the pixel at (x , y , t) will move to (x + δx , y + δy , t + δt)

and we will assume the intensity of the pixel is constant, we
can write

f (x + δx , y + δy , t + δt) = f (x , y , t) (3)

I and we can substitute to the prior equation (with notation
∂f
∂x = fx)

−ft = fx
δx

δt
+ fy

δy

δt
(4)
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I we have an image in time t and image in time t + δt

I the goal is to compute the velocity c = ( δxδt ,
δy
δt ) = (u, v) in

every point of the image function

I recall: −ft = fx
δx
δt + fy

δy
δt

I the partial derivatives of the image function can be
approximated directly from the image itself

I the spatial derivatives fx , fy refer to changes in the brightness
pattern, high values mean corners

I the time derivate ft describes the change of brightness in time

I the equation has two unknown parameters and thus additional
constrains need to be implemented
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Lucas-Kanade approach

I this method sets the additional conditions to compute the
optical flow

I the method assumes that pixels in local neighborhood move in
similar matter

I thus the optical flow equations can be computed in a least
squares fashion

I this means that the optical flow equation must hold for all
pixels in a window centered at (x , y)

I in other words the flow vector (u, v) must satisfy:

fx(q1)u + fy (q1)v = −ft(q1)
fx(q2)u + fy (q2)v = −ft(q2)

...
fx(qn)u + fy (qn)v = −ft(qn)

(5)
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I the equation can be written in matrix form Av = b

A =


fx(q1) fy (q1)
fx(q2) fy (q2)

...
...

fx(qn) fy (qn)

 v =

[
u
v

]
b =


−ft(q1)
−ft(q2)

...
−ft(qn)

 (6)

I the least squares method then states

ATAv = ATb
v = (ATA)−1ATb

(7)

I in this scenario all the pixels in the neighborhood have the
same importance

I however in practice it is beneficial to weight the pixels so that
the further they are from the center the less weight they have

ATWAv = ATWb (8)

I W is usually set to be Gaussian
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Lucas Kanade tracking applications

I https://www.youtube.com/watch?v=8VbylCRn3iI

I https://www.youtube.com/watch?v=oL67qe-Fhps
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Background subtraction

I is a method of computer vision which extracts the moving
foreground from an image sequence

I requires static camera

I the method computes differences between an actual frame
and a reference frame

I the image is divided into segments S - pixel, superpixel,
region, . . .

I each segment Si is labeled either as 1 - movement occurs in
the segment, or 0 - segment is background

Fi (t) =

{
1 if d(Si (t),B) > τ
0 otherwise

(9)
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Basic approach

I easiest way of obtaining the background model B is to model
the image in which no movement is present

I such image will be composed only of segments that are zero:
∀i : Fi = 0

I the model can be adapted with time:

Bi (t + 1) = (1− α)Bi (t) + αSi (t) (10)

d0 = |Si (t)− Bi (t)|
d1 = |Si (t)

R − Bi (t)
R |+ |Si (t)

G − Bi (t)
G |+ |Si (t)

B − Bi (t)
B |

d2 = (Si (t)
R − Bi (t)

R)2 + (Si (t)
G − Bi (t)

G )2 + (Si (t)
B − Bi (t)

B)2

d∞ = max{|Si (t)
R − Bi (t)

R |, |Si (t)
G − Bi (t)

G |, |Si (t)
B − Bi (t)

B |}
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Modeling the background

I Gaussian distribution

I for the training we need samples - in time and in space

I this requires to obtain more images of the background in time

I each segment Si has a color distribution in time and space
si0(t0) si1(t0) si2(t0) . . . siN(t0)
si0(t1) si1(t1) si2(t1) . . . siN(t1)

...
si0(tn) si1(tn) si2(tn) . . . siN(tn)

 (11)

I note: if the segment consist only of one pixel, we have:[
si (t0) si (t1) si (t2) . . . si (tn)

]T
(12)
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I nevertheless we have our training data as a sample of the
background in given position

I from this sample we can approximate the distribution - in this
case a Gaussian distribution - µ, Σ

µi =
1

N

∑
j ,t

sij(t) (13)

Σi =
1

N − 1

∑
j ,t

(sij(t)− µi )T (sij(t)− µi ) (14)

η (Si (t),µi ,Σi ) =
1

(2π)
K
2 |Σi |

1
2

·e−
1
2

(Is,t−µi )
>Σ−1

i (Is,t−µi ), (15)

µi (t + 1) = (1− α)µi (t) + αSi (t),

Σi (t + 1) = (1− α) Σi (t) + α (Si (t)− µi (t))> (Si (t)− µi (t))

I the distance is computed as Mahalanobis distance

d (Is,t ,µs,t) =

√
(Is,t − µs,t)

>Σ−1
s,t (Is,t − µs,t), (16)
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Gaussian mixture model

I sometimes the background can be dynamic
I the color of pixels can change in time, but still is considered as

background (running water, moving trees, . . . )
I we will model the multimodal density as GMM

P (Si (t)) =
K∑

k=1

ωk,i ,t · η (Si (t),µi (t),Σi (t)) , (17)

ωk,s,t+1 = (1− α)ωk,s,t + α,

µi (t + 1) = (1− α)µi ,s,t + αSi (t),

Σi (t + 1) = (1− α)Σi (t) + α (Si (t)− µi (t))> (Si (t)− µi (t)) ,

I in this case we cannot compute distance, but must compute
probability
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Modeling using Histogram

I in this case the segment must consist of several pixels

I from these pixels a histogram is computed

I the distance of histograms of segments in consecutive frames
is computed via Pearson’s correlation

d (H1,H2) = 1− rH1,H2 , (18)

rH1,H2 =

N∑
i=1

(
H i

1 − H̄1

) (
H i

2 − H̄2

)
√

N∑
i=1

(
H i

1 − H̄1

)2 ·
N∑
i=1

(
H i

2 − H̄2

)2

(19)

I we can use other metrics: recall Local Binary Patterns
histogram comparison
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Usage

I https://www.youtube.com/watch?v=QSfcrbtOaQw
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