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Bag of Words

Lesson 06

is an image classification method using ideas from document
classification

uses a sparse histogram of words from a vocabulary - local
image features

WORD:
a word is a local feature

the feature should be independent on scale, rotation,
translation, intensity and contrast changes - SIFT

the features will have some diversity - like normal words

we want to obtain one representative form of the word
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Vocabulary

» all features are put together - we don't know what the

individual words are yet

» the features are clustered using k-means
» 'k’ will define the size of the vocabulary

EEEE
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Clustering
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Image descriptor

we now have the words and vocabulary defined

SIFT analysis will provide us with features from the image
each SIFT is classified as a word using nearest neighbor
the image is represented as a histogram of these words
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Image classification

Lesson 06

» there are several options how to classify the unknown vector -
Machine Learning - but not yet

» our vector is the histogram of the local features - words

» we have defined several measures for comparing histogram -
LBP histogram comparison

» in BoW an angle between the histograms is used

H*. H?
cosq = ————— (1)
IHH T H>]

» the smaller the angle the more similar the histograms are
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Optical Flow

» if a camera moves in 3D scene, the apparent motion in the
sequence is called optical flow
» describes the direction and the speed of the motion of
features in an image
» the computation is based on two assumptions:
1. The observed brightness of any object point is constant over

time.
2. Neighboring pixels in the image plain move in a similar manner.
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Figure 14.6 Optical flow: {a} Time ty, {b) time 1y, {c) opticaf Rid)!
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Lesson 06

» let f(x,y,t) be a dynamic image function
» we want to observe the changes (dx,dy) in consecutive frames

meaning that t = t 4+ 0t
for this reason we express the dynamic image function as a
Taylor series

of of of

B or. or . of 2
f(x+0x,y+d0y, t+0t) = f(x,y, t)+ax(5x+ ayéy—l-atét—i-O((? )
(2)

since the pixel at (x, y, t) will move to (x + dx,y + dy, t + 0t)
and we will assume the intensity of the pixel is constant, we
can write

f(x+dx,y + 0y, t+dt) = f(x,y,t) (3)
and we can substitute to the prior equation (with notation
% - 1) )
X Y
—fp=fh—+f—= 4
TR *)
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Lesson 06

we have an image in time t and image in time t + §t
the goal is to compute the velocity ¢ = (%, %) = (u,v) in
every point of the image function

. _ £ 0x (2%
recall: _ft = fxﬁ + f;’ﬁ
the partial derivatives of the image function can be
approximated directly from the image itself

the spatial derivatives f, f, refer to changes in the brightness
pattern, high values mean corners

the time derivate f; describes the change of brightness in time

the equation has two unknown parameters and thus additional
constrains need to be implemented
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Lucas-Kanade approach

» this method sets the additional conditions to compute the
optical flow

» the method assumes that pixels in local neighborhood move in
similar matter

» thus the optical flow equations can be computed in a least
squares fashion

» this means that the optical flow equation must hold for all
pixels in a window centered at (x, y)

» in other words the flow vector (v, v) must satisfy:

(
f(a)u+ f(q)v = —fi(q1)
f(qz)u+f( @)v = —f(q)

fx(qn)u‘;'ﬂ/(Qn)V = _ft(qn)
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the equation can be written in matrix form Av = b

fe(a1) £ (q1) —fe(q1)
f f, —f;
_ (q2) y(.q2) L, [u] b t.(q2) (6)
: : v :
f(an)  £,(an) —ft(qn)
the least squares method then states
ATAv =ATbh (7)
v=(ATAATh

in this scenario all the pixels in the neighborhood have the
same importance

however in practice it is beneficial to weight the pixels so that
the further they are from the center the less weight they have

ATWAv = AT Wb (8)

W is usually set to be Gaussian
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» https://www.youtube.com/watch?v=8VbylCRn3il
» https://www.youtube.com/watch?v=o0lL67qe-Fhps
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Background subtraction

Lesson 06

is a method of computer vision which extracts the moving
foreground from an image sequence

requires static camera

the method computes differences between an actual frame
and a reference frame

the image is divided into segments S - pixel, superpixel,
region, ...

each segment S; is labeled either as 1 - movement occurs in
the segment, or 0 - segment is background

F’_(t):{1 if d(Si(t), B) > 7 o)

0 otherwise
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Basic approach

» easiest way of obtaining the background model B is to model
the image in which no movement is present

» such image will be composed only of segments that are zero:
Vi:Fi=0

» the model can be adapted with time:

Bi(t+1) = (1 — a)Bi(t) + aSi(t) (10)
do = |Si(t) — Bi(t)]
d = 1Si()F = Bi(t)F| +1Si(t)° — Bi(t)°| +1Si(t)® — Bi(t)°|
= (Si(t)F = Bi()°) +(Si(t)¢ — Bi(t))’ + (Si(t)® — Bi(1)®)?
do = max{|Si(t)" — Bi(t)"|, [Si(t)¢ — Bi(t)°], |Si(t)® — Bi(t)®|}
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Modeling the background

» Gaussian distribution

v

for the training we need samples - in time and in space

v

this requires to obtain more images of the background in time

» each segment S; has a color distribution in time and space
sio(to) si(to) si2(to) ... sin(to)
5i0(.t1) sin(t1) si2(t1) .. siv(t1) (1)
soltn) sn(tn) si(t) .. sw(tn)

v

note: if the segment consist only of one pixel, we have:

[si(to) si(t1) si(t2) ... si(ta)]” (12)
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» nevertheless we have our training data as a sample of the
background in given position

» from this sample we can approximate the distribution - in this
case a Gaussian distribution - p, ¥

1
pi = stij(f) (13)
Jit
1
Ti= g o (i) — ) (si(e) — ) (18)
Jit
1S i K1) = e M) B ) (1)
(2m)? |2
ple+1) = (1=a)ui(t) +aSi(e)

Ti(t+1) = (1-a)Zi(t) +a(Si(t) — mi(t) " (Si(t) — mi(t))

» the distance is computed as Mahalanobis distance

d (1o pt0.0) = /(e — p0.0) " Tt (Lot — e PAT(1G)
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Gaussian mixture model

» sometimes the background can be dynamic

» the color of pixels can change in time, but still is considered as
background (running water, moving trees, ...)

» we will model the multimodal density as GMM

K
P(Si(t)) = wiie - n(Si(t), mi(t), Zi(t)),  (17)
k=1

Wks,t+1 = (]- - a)wk,s,t + a,
pi(t+1) = (1—a)pis:+aSi(t),
Ti(t+1) = (1—a)%i(t) +a(Si(t) — (1) (Si(t) — mit)),

» in this case we cannot compute distance, but must compute
probability
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Modeling using Histogram

» in this case the segment must consist of several pixels

» from these pixels a histogram is computed
» the distance of histograms of segments in consecutive frames
is computed via Pearson’s correlation

d(Hi, Ha) =1 — ryy ., (18)
S (Hi — ) (H} — )
THyHy = N':l y (19)
¢ S (= ) 3% (M — i’

i=1 i=1

» we can use other metrics: recall Local Binary Patterns
histogram comparison
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» https://www.youtube.com/watch?v=QSfcrbtOaQw
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