Publikace
Detail publikace
Citace
p. 472-479, Springer, Heidelberg, 2010. : A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks . Lecture Notes in Artificial Intelligence, vol. 6231,
PDF ke stažení
Abstrakt
The main idea of a priori machine learning is to apply a machine learning method on a machine learning problem itself.We call it "a priori" because the processed data set does not originate from any measurement or other observation.Machine learning which deals with any observation is called "posterior". The paper describes how posterior machine learning can be modified by a priori machine learning. A priori and posterior machine learning algorithms are proposed for artificial neural network training and are tested in the task of audio-visual phoneme classification.
Detail publikace
Název: | A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks |
---|---|
Autor: | Jan Zelinka ; Jan Romportl ; Luděk Müller |
Název - česky: | Apriorní a aposteriorní Machine Learning a ANN |
Jazyk publikace: | anglicky |
Datum vydání: | 1.9.2010 |
Rok vydání: | 2010 |
Typ publikace: | Článek z časopisu |
Název časopisu / knihy: | Lecture Notes in Artificial Intelligence |
Číslo vydání: | 6231 |
Strana: | 472 - 479 |
ISSN: | 0302-9743 |
Nakladatel: | Springer |
Místo vydání: | Heidelberg |
Klíčová slova
ANN, Machine Learning
Klíčová slova v češtině
umělé neuronové sítě, strojové učení
BibTeX
@ARTICLE{JanZelinka_2010_APrioriandA, author = {Jan Zelinka and Jan Romportl and Lud\v{e}k M\"{u}ller}, title = {A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks}, year = {2010}, publisher = {Springer}, journal = {Lecture Notes in Artificial Intelligence}, address = {Heidelberg}, volume = {6231}, pages = {472-479}, ISSN = {0302-9743}, url = {http://www.kky.zcu.cz/en/publications/JanZelinka_2010_APrioriandA}, }