Přejít na obsah

Detail publikace

Citace

Trmal Jan and Zelinka Jan and Luděk Müller : On Speaker Adaptive Training of Artificial Neural Networks . Proceedings of Int. Conf. Interspeech 2010, 2010.

PDF ke stažení

PDF

Abstrakt

In the paper we present two techniques improving the recognition accuracy of multilayer perceptron neural networks (MLP ANN) by means of adopting Speaker Adaptive Training. The use of the MLP ANN, usually in combination with the TRAPS parametrization, includes applications in speech recognition tasks, discriminative features production for GMM-HMM and other. In the first SAT experiments, we used the VTLN as a speaker normalization technique. Moreover, we developed a novel speaker normalization technique called Minimum Error Linear Transform (MELT) that resembles the cMLLR/fMLLR method \cite{gales96variance} with respect to the possible application either on the model or features. We tested these two methods extensively on telephone speech corpus SpeechDat-East. The results obtained in these experiments suggest that incorporation of SAT into MLP ANN training process is beneficial and depending on the setup leads to significant decrease of phoneme error rate (3% -- 8% absolute, 12% -- 25% relative).

Detail publikace

Název: On Speaker Adaptive Training of Artificial Neural Networks
Autor: Trmal Jan ; Zelinka Jan ; Luděk Müller
Název - česky: Speaker Adaptive Training pro ANN
Jazyk publikace: anglicky
Datum vydání: 1.9.2010
Rok vydání: 2010
Typ publikace: Stať ve sborníku
Název časopisu / knihy: Proceedings of Int. Conf. Interspeech 2010
Datum: 27.9.2010 - 30.9.2010
/ 2010-10-19 13:39:14 /

BibTeX

@INPROCEEDINGS{TrmalJan_2010_OnSpeakerAdaptive,
 author = {Trmal Jan and Zelinka Jan and Lud\v{e}k M\"{u}ller},
 title = {On Speaker Adaptive Training of Artificial Neural Networks},
 year = {2010},
 journal = {Proceedings of Int. Conf. Interspeech 2010},
 url = {http://www.kky.zcu.cz/en/publications/TrmalJan_2010_OnSpeakerAdaptive},
}